1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

# http://pyrocko.org - GPLv3 

# 

# The Pyrocko Developers, 21st Century 

# ---|P------/S----------~Lg---------- 

# python 2/3 

from __future__ import absolute_import 

 

import os 

import math 

import logging 

 

import numpy as num 

from builtins import str as newstr 

 

from pyrocko import trace, util, plot 

from pyrocko.guts import Object, Int, String, Timestamp 

 

from . import io_common 

 

logger = logging.getLogger('pyrocko.io.datacube') 

 

N_GPS_TAGS_WANTED = 200 # must match definition in datacube_ext.c 

 

 

def color(c): 

c = plot.color(c) 

return tuple(x/255. for x in c) 

 

 

class DataCubeError(io_common.FileLoadError): 

pass 

 

 

class ControlPointError(Exception): 

pass 

 

 

def make_control_point(ipos_block, t_block, tref, deltat): 

 

# reduce time (no drift would mean straight line) 

tred = (t_block - tref) - ipos_block*deltat 

 

# first round, remove outliers 

q25, q75 = num.percentile(tred, (25., 75.)) 

iok = num.logical_and(q25 <= tred, tred <= q75) 

 

# detrend 

slope, offset = num.polyfit(ipos_block[iok], tred[iok], 1) 

tred2 = tred - (offset + slope * ipos_block) 

 

# second round, remove outliers based on detrended tred, refit 

q25, q75 = num.percentile(tred2, (25., 75.)) 

iok = num.logical_and(q25 <= tred2, tred2 <= q75) 

x = ipos_block[iok].copy() 

ipos0 = x[0] 

x -= ipos0 

y = tred[iok].copy() 

(slope, offset), cov = num.polyfit(x, y, 1, cov=True) 

 

slope_err, offset_err = num.sqrt(num.diag(cov)) 

slope_err_limit = 1.0e-10 

offset_err_limit = 5.0e-3 

 

if slope_err > slope_err_limit: 

raise ControlPointError('slope error too large') 

 

if offset_err > offset_err_limit: 

raise ControlPointError('offset error too large') 

 

ic = ipos_block[ipos_block.size//2] 

tc = offset + slope * (ic - ipos0) 

 

return ic, tc + ic * deltat + tref 

 

 

def analyse_gps_tags(header, gps_tags, offset, nsamples): 

 

ipos, t, fix, nsvs = gps_tags 

deltat = 1.0 / int(header['S_RATE']) 

 

tquartz = offset + ipos * deltat 

 

toff = t - tquartz 

toff_median = num.median(toff) 

 

n = t.size 

 

dtdt = (t[1:n] - t[0:n-1]) / (tquartz[1:n] - tquartz[0:n-1]) 

 

ok = abs(toff_median - toff) < 10. 

 

xok = num.abs(dtdt - 1.0) < 0.00001 

 

ok[0] = False 

ok[1:n] &= xok 

ok[0:n-1] &= xok 

ok[n-1] = False 

 

ipos = ipos[ok] 

t = t[ok] 

fix = fix[ok] 

nsvs = nsvs[ok] 

 

blocksize = N_GPS_TAGS_WANTED // 2 

 

try: 

if ipos.size < blocksize: 

raise ControlPointError( 

'could not safely determine time corrections from gps') 

 

j = 0 

control_points = [] 

tref = num.median(t - ipos*deltat) 

while j < ipos.size - blocksize: 

ipos_block = ipos[j:j+blocksize] 

t_block = t[j:j+blocksize] 

try: 

ic, tc = make_control_point(ipos_block, t_block, tref, deltat) 

control_points.append((ic, tc)) 

except ControlPointError: 

pass 

j += blocksize 

 

ipos_last = ipos[-blocksize:] 

t_last = t[-blocksize:] 

try: 

ic, tc = make_control_point(ipos_last, t_last, tref, deltat) 

control_points.append((ic, tc)) 

except ControlPointError: 

pass 

 

if len(control_points) < 2: 

raise ControlPointError( 

'could not safely determine time corrections from gps') 

 

i0, t0 = control_points[0] 

i1, t1 = control_points[1] 

i2, t2 = control_points[-2] 

i3, t3 = control_points[-1] 

if len(control_points) == 2: 

tmin = t0 - i0 * deltat - offset * deltat 

tmax = t3 + (nsamples - i3 - 1) * deltat 

else: 

icontrol = num.array( 

[x[0] for x in control_points], dtype=num.int64) 

tcontrol = num.array( 

[x[1] for x in control_points], dtype=num.float) 

# robust against steps: 

slope = num.median( 

(tcontrol[1:] - tcontrol[:-1]) 

/ (icontrol[1:] - icontrol[:-1])) 

 

tmin = t0 + (offset - i0) * slope 

tmax = t2 + (offset + nsamples - 1 - i2) * slope 

 

if offset < i0: 

control_points[0:0] = [(offset, tmin)] 

 

if offset + nsamples - 1 > i3: 

control_points.append((offset + nsamples - 1, tmax)) 

 

icontrol = num.array([x[0] for x in control_points], dtype=num.int64) 

tcontrol = num.array([x[1] for x in control_points], dtype=num.float) 

 

return tmin, tmax, icontrol, tcontrol, ok 

 

except ControlPointError: 

 

tmin = util.str_to_time(header['S_DATE'] + header['S_TIME'], 

format='%y/%m/%d%H:%M:%S') 

 

idat = int(header['DAT_NO']) 

if idat == 0: 

tmin = tmin + util.gps_utc_offset(tmin) 

else: 

tmin = util.day_start(tmin + idat * 24.*3600.) \ 

+ util.gps_utc_offset(tmin) 

 

tmax = tmin + (nsamples - 1) * deltat 

icontrol, tcontrol = None, None 

return tmin, tmax, icontrol, tcontrol, None 

 

 

def plot_timeline(fns): 

from matplotlib import pyplot as plt 

 

fig = plt.figure() 

axes = fig.gca() 

 

h = 3600. 

 

if isinstance(fns, (str, newstr)): 

fn = fns 

if os.path.isdir(fn): 

fns = [ 

os.path.join(fn, entry) for entry in sorted(os.listdir(fn))] 

 

ipos, t, fix, nsvs, header, offset, nsamples = \ 

get_timing_context(fns) 

 

else: 

ipos, t, fix, nsvs, header, offset, nsamples = \ 

get_extended_timing_context(fn) 

 

else: 

ipos, t, fix, nsvs, header, offset, nsamples = \ 

get_timing_context(fns) 

 

deltat = 1.0 / int(header['S_RATE']) 

 

tref = num.median(t - ipos * deltat) 

tref = round(tref / deltat) * deltat 

 

x = ipos*deltat 

y = (t - tref) - ipos*deltat 

 

bfix = fix != 0 

bnofix = fix == 0 

 

tmin, tmax, icontrol, tcontrol, ok = analyse_gps_tags( 

header, (ipos, t, fix, nsvs), offset, nsamples) 

 

la = num.logical_and 

nok = num.logical_not(ok) 

 

axes.plot( 

x[la(bfix, ok)]/h, y[la(bfix, ok)], '+', 

ms=5, color=color('chameleon3')) 

axes.plot( 

x[la(bfix, nok)]/h, y[la(bfix, nok)], '+', 

ms=5, color=color('aluminium4')) 

 

axes.plot( 

x[la(bnofix, ok)]/h, y[la(bnofix, ok)], 'x', 

ms=5, color=color('chocolate3')) 

axes.plot( 

x[la(bnofix, nok)]/h, y[la(bnofix, nok)], 'x', 

ms=5, color=color('aluminium4')) 

 

tred = tcontrol - icontrol*deltat - tref 

axes.plot(icontrol*deltat/h, tred, color=color('aluminium6')) 

axes.plot(icontrol*deltat/h, tred, 'o', ms=5, color=color('aluminium6')) 

 

ymin = (math.floor(tred.min() / deltat)-1) * deltat 

ymax = (math.ceil(tred.max() / deltat)+1) * deltat 

 

# axes.set_ylim(ymin, ymax) 

if ymax - ymin < 1000 * deltat: 

ygrid = math.floor(tred.min() / deltat) * deltat 

while ygrid < ymax: 

axes.axhline(ygrid, color=color('aluminium4'), alpha=0.3) 

ygrid += deltat 

 

xmin = icontrol[0]*deltat/h 

xmax = icontrol[-1]*deltat/h 

xsize = xmax - xmin 

xmin -= xsize * 0.1 

xmax += xsize * 0.1 

axes.set_xlim(xmin, xmax) 

 

axes.set_ylim(ymin, ymax) 

 

axes.set_xlabel('Uncorrected (quartz) time [h]') 

axes.set_ylabel('Relative time correction [s]') 

 

plt.show() 

 

 

g_dir_contexts = {} 

 

 

class DirContextEntry(Object): 

path = String.T() 

tstart = Timestamp.T() 

ifile = Int.T() 

 

 

class DirContext(Object): 

path = String.T() 

mtime = Timestamp.T() 

entries = DirContextEntry.T() 

 

def get_entry(self, fn): 

path = os.path.abspath(fn) 

for entry in self.entries: 

if entry.path == path: 

return entry 

 

raise Exception('entry not found') 

 

def iter_entries(self, fn, step=1): 

current = self.get_entry(fn) 

by_ifile = dict( 

(entry.ifile, entry) for entry in self.entries 

if entry.tstart == current.tstart) 

 

icurrent = current.ifile 

while True: 

icurrent += step 

try: 

yield by_ifile[icurrent] 

 

except KeyError: 

break 

 

 

def context(fn): 

from pyrocko import datacube_ext 

 

dpath = os.path.dirname(os.path.abspath(fn)) 

mtimes = [os.stat(dpath)[8]] 

 

dentries = sorted([os.path.join(dpath, f) for f in os.listdir(dpath) 

if os.path.isfile(os.path.join(dpath, f))]) 

for dentry in dentries: 

fn2 = os.path.join(dpath, dentry) 

mtimes.append(os.stat(fn2)[8]) 

 

mtime = float(max(mtimes)) 

 

if dpath in g_dir_contexts: 

dir_context = g_dir_contexts[dpath] 

if dir_context.mtime == mtime: 

return dir_context 

 

del g_dir_contexts[dpath] 

 

entries = [] 

for dentry in dentries: 

fn2 = os.path.join(dpath, dentry) 

if not os.path.isfile(fn2): 

continue 

 

with open(fn2, 'rb') as f: 

first512 = f.read(512) 

if not detect(first512): 

continue 

 

with open(fn2, 'rb') as f: 

try: 

header, data_arrays, gps_tags, nsamples, _ = \ 

datacube_ext.load(f.fileno(), 3, 0, -1, None) 

 

except datacube_ext.DataCubeError as e: 

e = DataCubeError(str(e)) 

e.set_context('filename', fn) 

raise e 

 

header = dict(header) 

entries.append(DirContextEntry( 

path=os.path.abspath(fn2), 

tstart=util.str_to_time( 

'20' + header['S_DATE'] + ' ' + header['S_TIME'], 

format='%Y/%m/%d %H:%M:%S'), 

ifile=int(header['DAT_NO']))) 

 

dir_context = DirContext(mtime=mtime, path=dpath, entries=entries) 

 

return dir_context 

 

 

def get_time_infos(fn): 

from pyrocko import datacube_ext 

 

with open(fn, 'rb') as f: 

try: 

header, _, gps_tags, nsamples, _ = datacube_ext.load( 

f.fileno(), 1, 0, -1, None) 

 

except datacube_ext.DataCubeError as e: 

e = DataCubeError(str(e)) 

e.set_context('filename', fn) 

raise e 

 

return dict(header), gps_tags, nsamples 

 

 

def get_timing_context(fns): 

joined = [[], [], [], []] 

ioff = 0 

for fn in fns: 

header, gps_tags, nsamples = get_time_infos(fn) 

 

ipos = gps_tags[0] 

ipos += ioff 

 

for i in range(4): 

joined[i].append(gps_tags[i]) 

 

ioff += nsamples 

 

ipos, t, fix, nsvs = [num.concatenate(x) for x in joined] 

 

nsamples = ioff 

return ipos, t, fix, nsvs, header, 0, nsamples 

 

 

def get_extended_timing_context(fn): 

c = context(fn) 

 

header, gps_tags, nsamples_base = get_time_infos(fn) 

 

ioff = 0 

aggregated = [gps_tags] 

 

nsamples_total = nsamples_base 

 

if num.sum(gps_tags[2]) == 0: 

 

ioff = nsamples_base 

for entry in c.iter_entries(fn, 1): 

 

_, gps_tags, nsamples = get_time_infos(entry.path) 

 

ipos = gps_tags[0] 

ipos += ioff 

 

aggregated.append(gps_tags) 

nsamples_total += nsamples 

 

if num.sum(gps_tags[2]) > 0: 

break 

 

ioff += nsamples 

 

ioff = 0 

for entry in c.iter_entries(fn, -1): 

 

_, gps_tags, nsamples = get_time_infos(entry.path) 

 

ioff -= nsamples 

 

ipos = gps_tags[0] 

ipos += ioff 

 

aggregated[0:0] = [gps_tags] 

 

nsamples_total += nsamples 

 

if num.sum(gps_tags[2]) > 0: 

break 

 

ipos, t, fix, nsvs = [num.concatenate(x) for x in zip(*aggregated)] 

 

# return ipos, t, fix, nsvs, header, ioff, nsamples_total 

return ipos, t, fix, nsvs, header, 0, nsamples_base 

 

 

def iload(fn, load_data=True, interpolation='sinc'): 

from pyrocko import datacube_ext 

from pyrocko import signal_ext 

 

if interpolation not in ('sinc', 'off'): 

raise NotImplementedError( 

'no such interpolation method: %s' % interpolation) 

 

with open(fn, 'rb') as f: 

if load_data: 

loadflag = 2 

else: 

loadflag = 1 

 

try: 

header, data_arrays, gps_tags, nsamples, _ = datacube_ext.load( 

f.fileno(), loadflag, 0, -1, None) 

 

except datacube_ext.DataCubeError as e: 

e = DataCubeError(str(e)) 

e.set_context('filename', fn) 

raise e 

 

header = dict(header) 

deltat = 1.0 / int(header['S_RATE']) 

nchannels = int(header['CH_NUM']) 

 

ipos, t, fix, nsvs, header_, offset_, nsamples_ = \ 

get_extended_timing_context(fn) 

 

tmin, tmax, icontrol, tcontrol, _ = analyse_gps_tags( 

header_, (ipos, t, fix, nsvs), offset_, nsamples_) 

 

if icontrol is None: 

logger.warn( 

'No usable GPS timestamps found. Using datacube header ' 

'information to guess time. (file: "%s")' % fn) 

 

tmin_ip = round(tmin / deltat) * deltat 

if interpolation != 'off': 

tmax_ip = round(tmax / deltat) * deltat 

else: 

tmax_ip = tmin_ip + (nsamples-1) * deltat 

 

nsamples_ip = int(round((tmax_ip - tmin_ip)/deltat)) + 1 

# to prevent problems with rounding errors: 

tmax_ip = tmin_ip + (nsamples_ip-1) * deltat 

 

leaps = num.array( 

[x[0] + util.gps_utc_offset(x[0]) for x in util.read_leap_seconds2()], 

dtype=num.float) 

 

if load_data and icontrol is not None: 

ncontrol_this = num.sum( 

num.logical_and(0 <= icontrol, icontrol < nsamples)) 

 

if ncontrol_this <= 1: 

logger.warn( 

'Extrapolating GPS time information from directory context ' 

'(insufficient number of GPS timestamps in file: "%s").' % fn) 

 

for i in range(nchannels): 

if load_data: 

arr = data_arrays[i] 

assert arr.size == nsamples 

 

if interpolation == 'sinc' and icontrol is not None: 

 

ydata = num.empty(nsamples_ip, dtype=num.float) 

try: 

signal_ext.antidrift( 

icontrol, tcontrol, 

arr.astype(num.float), tmin_ip, deltat, ydata) 

 

except signal_ext.Error as e: 

e = DataCubeError(str(e)) 

e.set_context('filename', fn) 

e.set_context('n_control_points', icontrol.size) 

e.set_context('n_samples_raw', arr.size) 

e.set_context('n_samples_ip', ydata.size) 

e.set_context('tmin_ip', util.time_to_str(tmin_ip)) 

raise e 

 

ydata = num.round(ydata).astype(arr.dtype) 

else: 

ydata = arr 

 

tr_tmin = tmin_ip 

tr_tmax = None 

else: 

ydata = None 

tr_tmin = tmin_ip 

tr_tmax = tmax_ip 

 

tr = trace.Trace('', header['DEV_NO'], '', 'p%i' % i, deltat=deltat, 

ydata=ydata, tmin=tr_tmin, tmax=tr_tmax, meta=header) 

 

bleaps = num.logical_and(tmin_ip <= leaps, leaps < tmax_ip) 

 

if num.any(bleaps): 

assert num.sum(bleaps) == 1 

tcut = leaps[bleaps][0] 

 

for tmin_cut, tmax_cut in [ 

(tr.tmin, tcut), (tcut, tr.tmax+tr.deltat)]: 

 

try: 

tr_cut = tr.chop(tmin_cut, tmax_cut, inplace=False) 

tr_cut.shift( 

util.utc_gps_offset(0.5*(tr_cut.tmin+tr_cut.tmax))) 

yield tr_cut 

 

except trace.NoData: 

pass 

 

else: 

tr.shift(util.utc_gps_offset(0.5*(tr.tmin+tr.tmax))) 

yield tr 

 

 

header_keys = { 

str: b'GIPP_V DEV_NO E_NAME GPS_PO S_TIME S_DATE DAT_NO'.split(), 

int: b'''P_AMPL CH_NUM S_RATE D_FILT C_MODE A_CHOP F_TIME GPS_TI GPS_OF 

A_FILT A_PHAS GPS_ON ACQ_ON V_TCXO D_VOLT E_VOLT'''.split()} 

 

all_header_keys = header_keys[str] + header_keys[int] 

 

 

def detect(first512): 

s = first512 

 

if len(s) < 512: 

return False 

 

if ord(s[0:1]) >> 4 != 15: 

return False 

 

n = s.find(b'\x80') 

if n == -1: 

n = len(s) 

 

s = s[1:n] 

s = s.replace(b'\xf0', b'') 

s = s.replace(b';', b' ') 

s = s.replace(b'=', b' ') 

kvs = s.split(b' ') 

 

if len([k for k in all_header_keys if k in kvs]) == 0: 

return False 

return True 

 

 

if __name__ == '__main__': 

import sys 

fns = sys.argv[1:] 

if len(fns) > 1: 

plot_timeline(fns) 

else: 

plot_timeline(fns[0])