The optimisers.highscore
module¶
- class grond.optimisers.highscore.optimiser.DirectedSamplerPhase(*args, **kwargs)[source]¶
Undocumented.
- ♦ scatter_scale¶
float
, optionalScales search radius around the current highscore models
- ♦ scatter_scale_begin¶
float
, optionalScaling factor at beginning of the phase.
- ♦ scatter_scale_end¶
float
, optionalScaling factor at the end of the directed phase.
- ♦ starting_point¶
str
(SamplerStartingPointChoice
), default:'excentricity_compensated'
Tunes to the center value of the sampler distribution.May increase the likelihood to draw a highscore member model off-center to the mean value
- ♦ sampler_distribution¶
str
(SamplerDistributionChoice
), default:'normal'
Distribution new models are drawn from.
- ♦ standard_deviation_estimator¶
str
(StandardDeviationEstimatorChoice
), default:'median_density_single_chain'
- ♦ ntries_sample_limit¶
int
, default:1000
- class grond.optimisers.highscore.optimiser.HighScoreOptimiser(**kwargs)[source]¶
Monte-Carlo-based directed search optimisation with bootstrap.
- ♦ sampler_phases¶
list
ofSamplerPhase
objects, default:[]
- ♦ chain_length_factor¶
float
, default:8.0
- ♦ nbootstrap¶
int
, default:100
- ♦ bootstrap_type¶
str
(BootstrapTypeChoice
), default:'bayesian'
- ♦ bootstrap_seed¶
int
, default:23
- class grond.optimisers.highscore.optimiser.HighScoreOptimiserConfig(**kwargs)[source]¶
Undocumented.
- ♦ sampler_phases¶
list
ofSamplerPhase
objects, default:[<grond.optimisers.highscore.optimiser.UniformSamplerPhase object at 0x7f24b807ebe0>, <grond.optimisers.highscore.optimiser.DirectedSamplerPhase object at 0x7f24b807ec10>]
Stages of the sampler: Start with uniform sampling of the model model space and narrow down through directed sampling.
- ♦ chain_length_factor¶
float
, default:8.0
Controls the length of each chain: chain_length_factor * nparameters + 1
- ♦ nbootstrap¶
int
, default:100
Number of bootstrap realisations to be tracked simultaneously in the optimisation.
- class grond.optimisers.highscore.optimiser.InjectionSamplerPhase(*args, **kwargs)[source]¶
Inject predefined/precomputed models into the optimisation
Injected models are given either as an array or are generated from sources/events given in a file. Depending on the problem different sources or events can be used:
grond.problems.cmt.problem.CMTProblem
uses as input:pyrocko.model.event.Event
withpyrocko.moment_tensor.MomentTensor
,
pyrocko.gf.seismosizer.DCSource
,pyrocko.gf.seismosizer.MTSource
.
grond.problems.double_dc.problem.DoubleDCProblem
uses asinput: *
pyrocko.gf.seismosizer.DoubleDCSource
.
grond.problems.vlvd.problem.VLVDProblem
uses as input:pyrocko.gf.seismosizer.VLVDSource
.
grond.problems.rectangular.problem.RectangularProblem
uses asinput: *
pyrocko.gf.seismosizer.RectangularSource
.
grond.problems.dynamic_rupture.problem.DynamicRuptureProblem
uses as input: *
pyrocko.gf.seismosizer.PseudoDynamicRupture
.
Only a single source or event file can be handled in one
grond.optimisers.highscore.optimiser.InjectionSamplerPhase
. The number of iterations is adjusted according to the number of sources or events found.- ♦ xs_inject¶
numpy.ndarray
(pyrocko.guts_array.Array
), optionalArray with the injected models.
- ♦ sources_path¶
str
(grond.meta.Path
), optionalFile with sources to be injected as models
- ♦ events_path¶
str
(grond.meta.Path
), optionalFile with events to be injected as models
- class grond.optimisers.highscore.optimiser.SamplerDistributionChoice(...) dummy for str [source]¶
Any
str
out of['multivariate_normal', 'normal']
.
- class grond.optimisers.highscore.optimiser.SamplerPhase(*args, **kwargs)[source]¶
Undocumented.
- ♦ niterations¶
int
Number of iteration for this phase.
- ♦ ntries_preconstrain_limit¶
int
, default:1000
Tries to find a valid preconstrained sample.
- ♦ seed¶
int
, optionalRandom state seed.