Coverage for /usr/local/lib/python3.11/dist-packages/grond/problems/rectangular/problem.py: 81%
69 statements
« prev ^ index » next coverage.py v6.5.0, created at 2023-10-26 16:25 +0000
« prev ^ index » next coverage.py v6.5.0, created at 2023-10-26 16:25 +0000
1import numpy as num
2import logging
4from pyrocko import gf, util
5from pyrocko.guts import String, Float, Dict, Int, Bool
7from grond.meta import expand_template, Parameter, has_get_plot_classes
9from ..base import Problem, ProblemConfig
10from .. import CMTProblem
12guts_prefix = 'grond'
13logger = logging.getLogger('grond.problems.rectangular.problem')
14km = 1e3
15as_km = dict(scale_factor=km, scale_unit='km')
18class RectangularProblemConfig(ProblemConfig):
20 ranges = Dict.T(String.T(), gf.Range.T())
21 decimation_factor = Int.T(default=1)
22 distance_min = Float.T(default=0.)
23 point_source_target_balancing = Bool.T(
24 default=False,
25 help='If ``True``, target balancing (if used) is performed on a '
26 'moment tensor point source at the events location. It increases '
27 'the speed, but might lead to not fully optimized target weights.'
28 )
30 def get_problem(self, event, target_groups, targets):
31 self.check_deprecations()
33 if self.decimation_factor != 1:
34 logger.warning(
35 'Decimation factor for rectangular source set to %i. Results '
36 'may be inaccurate.' % self.decimation_factor)
38 base_source = gf.RectangularSource.from_pyrocko_event(
39 event,
40 anchor='top',
41 decimation_factor=self.decimation_factor)
43 subs = dict(
44 event_name=event.name,
45 event_time=util.time_to_str(event.time))
47 cmt_problem = None
48 if self.point_source_target_balancing:
49 base_source_cmt = gf.MTSource.from_pyrocko_event(event)
51 stf = gf.HalfSinusoidSTF()
52 stf.duration = event.duration or 0.0
54 base_source_cmt.stf = stf
56 ranges = dict(
57 time=self.ranges['time'],
58 north_shift=self.ranges['north_shift'],
59 east_shift=self.ranges['east_shift'],
60 depth=self.ranges['depth'],
61 magnitude=gf.Range(
62 start=event.magnitude - 1.,
63 stop=event.magnitude + 1.),
64 duration=gf.Range(start=0., stop=stf.duration * 2.),
65 rmnn=gf.Range(start=-1.41421, stop=1.41421),
66 rmee=gf.Range(start=-1.41421, stop=1.41421),
67 rmdd=gf.Range(start=-1.41421, stop=1.41421),
68 rmne=gf.Range(start=-1., stop=1.),
69 rmnd=gf.Range(start=-1., stop=1.),
70 rmed=gf.Range(start=-1., stop=1.))
72 cmt_problem = CMTProblem(
73 name=expand_template(self.name_template, subs),
74 base_source=base_source_cmt,
75 distance_min=self.distance_min,
76 target_groups=target_groups,
77 targets=targets,
78 ranges=ranges,
79 mt_type='dc',
80 stf_type='HalfSinusoidSTF',
81 norm_exponent=self.norm_exponent)
83 problem = RectangularProblem(
84 name=expand_template(self.name_template, subs),
85 base_source=base_source,
86 distance_min=self.distance_min,
87 target_groups=target_groups,
88 targets=targets,
89 ranges=self.ranges,
90 norm_exponent=self.norm_exponent,
91 cmt_problem=cmt_problem)
93 return problem
96@has_get_plot_classes
97class RectangularProblem(Problem):
99 problem_parameters = [
100 Parameter('east_shift', 'm', label='Easting', **as_km),
101 Parameter('north_shift', 'm', label='Northing', **as_km),
102 Parameter('depth', 'm', label='Depth', **as_km),
103 Parameter('length', 'm', label='Length', optional=False, **as_km),
104 Parameter('width', 'm', label='Width', optional=False, **as_km),
105 Parameter('slip', 'm', label='Slip', optional=False),
106 Parameter('strike', 'deg', label='Strike'),
107 Parameter('dip', 'deg', label='Dip'),
108 Parameter('rake', 'deg', label='Rake')
109 ]
111 problem_waveform_parameters = [
112 Parameter('nucleation_x', 'offset', label='Nucleation X'),
113 Parameter('nucleation_y', 'offset', label='Nucleation Y'),
114 Parameter('time', 's', label='Time'),
115 Parameter('velocity', 'm/s', label='Rupture Velocity')
116 ]
118 dependants = []
120 distance_min = Float.T(default=0.0)
122 cmt_problem = Problem.T(optional=True)
124 def set_engine(self, engine):
125 self._engine = engine
127 if self.cmt_problem is not None:
128 self.cmt_problem.set_engine(engine)
130 def pack(self, source):
131 arr = self.get_parameter_array(source)
132 for ip, p in enumerate(self.parameters):
133 if p.name == 'time':
134 arr[ip] -= self.base_source.time
135 return arr
137 def get_source(self, x):
138 d = self.get_parameter_dict(x)
139 p = {}
140 for k in self.base_source.keys():
141 if k in d:
142 p[k] = float(
143 self.ranges[k].make_relative(self.base_source[k], d[k]))
145 source = self.base_source.clone(**p)
147 return source
149 def random_uniform(self, xbounds, rstate, fixed_magnitude=None):
150 x = num.zeros(self.nparameters)
151 for i in range(self.nparameters):
152 x[i] = rstate.uniform(xbounds[i, 0], xbounds[i, 1])
154 return x
156 def preconstrain(self, x, optimizer=False):
157 # source = self.get_source(x)
158 # if any(self.distance_min > source.distance_to(t)
159 # for t in self.targets):
160 # raise Forbidden()
161 return x
163 @classmethod
164 def get_plot_classes(cls):
165 plots = super(RectangularProblem, cls).get_plot_classes()
166 return plots
169__all__ = '''
170 RectangularProblem
171 RectangularProblemConfig
172'''.split()