The optimisers.highscore
module¶
- class grond.optimisers.highscore.optimiser.DirectedSamplerPhase(*args, **kwargs)[source]¶
Undocumented.
- ♦ scatter_scale¶
float
, optionalScales search radius around the current highscore models
- ♦ scatter_scale_begin¶
float
, optionalScaling factor at beginning of the phase.
- ♦ scatter_scale_end¶
float
, optionalScaling factor at the end of the directed phase.
- ♦ starting_point¶
str
(SamplerStartingPointChoice
), default:'excentricity_compensated'
Tunes to the center value of the sampler distribution.May increase the likelihood to draw a highscore member model off-center to the mean value
- ♦ sampler_distribution¶
str
(SamplerDistributionChoice
), default:'normal'
Distribution new models are drawn from.
- ♦ standard_deviation_estimator¶
str
(StandardDeviationEstimatorChoice
), default:'median_density_single_chain'
- ♦ ntries_sample_limit¶
int
, default:1000
- class grond.optimisers.highscore.optimiser.HighScoreOptimiser(**kwargs)[source]¶
Monte-Carlo-based directed search optimisation with bootstrap.
- ♦ sampler_phases¶
list
ofSamplerPhase
objects, default:[]
- ♦ chain_length_factor¶
float
, default:8.0
- ♦ nbootstrap¶
int
, default:100
- ♦ bootstrap_type¶
str
(BootstrapTypeChoice
), default:'bayesian'
- ♦ bootstrap_seed¶
int
, default:23
- class grond.optimisers.highscore.optimiser.HighScoreOptimiserConfig(**kwargs)[source]¶
Undocumented.
- ♦ sampler_phases¶
list
ofSamplerPhase
objects, default:[<grond.optimisers.highscore.optimiser.UniformSamplerPhase object at 0x7f5eb70fb750>, <grond.optimisers.highscore.optimiser.DirectedSamplerPhase object at 0x7f5eb70fb9d0>]
Stages of the sampler: Start with uniform sampling of the model model space and narrow down through directed sampling.
- ♦ chain_length_factor¶
float
, default:8.0
Controls the length of each chain: chain_length_factor * nparameters + 1
- ♦ nbootstrap¶
int
, default:100
Number of bootstrap realisations to be tracked simultaneously in the optimisation.
- class grond.optimisers.highscore.optimiser.InjectionSamplerPhase(*args, **kwargs)[source]¶
Undocumented.
- ♦ xs_inject¶
numpy.ndarray (
pyrocko.guts_array.Array
)Array with the reference model.
- class grond.optimisers.highscore.optimiser.SamplerDistributionChoice(...) dummy for str [source]¶
Any
str
out of['multivariate_normal', 'normal']
.
- class grond.optimisers.highscore.optimiser.SamplerPhase(*args, **kwargs)[source]¶
Undocumented.
- ♦ niterations¶
int
Number of iteration for this phase.
- ♦ ntries_preconstrain_limit¶
int
, default:1000
Tries to find a valid preconstrained sample.
- ♦ seed¶
int
, optionalRandom state seed.