1# http://pyrocko.org - GPLv3 

2# 

3# The Pyrocko Developers, 21st Century 

4# ---|P------/S----------~Lg---------- 

5 

6from math import pi as PI 

7import logging 

8import numpy as num 

9 

10from matplotlib.collections import PatchCollection 

11from matplotlib.patches import Polygon 

12from matplotlib.transforms import Transform 

13from matplotlib.colors import LinearSegmentedColormap 

14 

15from pyrocko import moment_tensor as mtm 

16from pyrocko.util import num_full 

17 

18logger = logging.getLogger('pyrocko.plot.beachball') 

19 

20NA = num.newaxis 

21d2r = num.pi / 180. 

22 

23 

24def view_rotation(strike, dip): 

25 return mtm.euler_to_matrix( 

26 dip*d2r, strike*d2r, -90.*d2r) 

27 

28 

29_view_south = view_rotation(90., 90.) 

30_view_north = view_rotation(-90., 90.) 

31_view_east = view_rotation(0., 90.) 

32_view_west = view_rotation(180., 90.) 

33 

34 

35class BeachballError(Exception): 

36 pass 

37 

38 

39class _FixedPointOffsetTransform(Transform): 

40 def __init__(self, trans, dpi_scale_trans, fixed_point): 

41 Transform.__init__(self) 

42 self.input_dims = self.output_dims = 2 

43 self.has_inverse = False 

44 self.trans = trans 

45 self.dpi_scale_trans = dpi_scale_trans 

46 self.fixed_point = num.asarray(fixed_point, dtype=num.float64) 

47 

48 def transform_non_affine(self, values): 

49 fp = self.trans.transform(self.fixed_point) 

50 return fp + self.dpi_scale_trans.transform(values) 

51 

52 

53def vnorm(points): 

54 return num.sqrt(num.sum(points**2, axis=1)) 

55 

56 

57def clean_poly(points): 

58 if not num.all(points[0, :] == points[-1, :]): 

59 points = num.vstack((points, points[0:1, :])) 

60 

61 dupl = num.concatenate( 

62 (num.all(points[1:, :] == points[:-1, :], axis=1), [False])) 

63 points = points[num.logical_not(dupl)] 

64 return points 

65 

66 

67def close_poly(points): 

68 if not num.all(points[0, :] == points[-1, :]): 

69 points = num.vstack((points, points[0:1, :])) 

70 

71 return points 

72 

73 

74def circulation(points, axis): 

75 # assert num.all(points[:, axis] >= 0.0) or num.all(points[:, axis] <= 0.0) 

76 

77 points2 = points[:, ((axis+2) % 3, (axis+1) % 3)].copy() 

78 points2 *= 1.0 / num.sqrt(1.0 + num.abs(points[:, axis]))[:, num.newaxis] 

79 

80 result = -num.sum( 

81 (points2[1:, 0] - points2[:-1, 0]) * 

82 (points2[1:, 1] + points2[:-1, 1])) 

83 

84 result -= (points2[0, 0] - points2[-1, 0]) \ 

85 * (points2[0, 1] + points2[-1, 1]) 

86 return result 

87 

88 

89def spoly_cut(l_points, axis=0, nonsimple=True, arcres=181): 

90 dphi = 2.*PI / (2*arcres) 

91 

92 # cut sub-polygons and gather crossing point information 

93 crossings = [] 

94 snippets = {} 

95 for ipath, points in enumerate(l_points): 

96 if not num.all(points[0, :] == points[-1, :]): 

97 points = num.vstack((points, points[0:1, :])) 

98 

99 # get upward crossing points 

100 iup = num.where(num.logical_and(points[:-1, axis] <= 0., 

101 points[1:, axis] > 0.))[0] 

102 aup = - points[iup, axis] / (points[iup+1, axis] - points[iup, axis]) 

103 pup = points[iup, :] + aup[:, num.newaxis] * (points[iup+1, :] - 

104 points[iup, :]) 

105 phiup = num.arctan2(pup[:, (axis+2) % 3], pup[:, (axis+1) % 3]) 

106 

107 for i in range(len(iup)): 

108 crossings.append((phiup[i], ipath, iup[i], 1, pup[i], [1, -1])) 

109 

110 # get downward crossing points 

111 idown = num.where(num.logical_and(points[:-1, axis] > 0., 

112 points[1:, axis] <= 0.))[0] 

113 adown = - points[idown+1, axis] / (points[idown, axis] - 

114 points[idown+1, axis]) 

115 pdown = points[idown+1, :] + adown[:, num.newaxis] * ( 

116 points[idown, :] - points[idown+1, :]) 

117 phidown = num.arctan2(pdown[:, (axis+2) % 3], pdown[:, (axis+1) % 3]) 

118 

119 for i in range(idown.size): 

120 crossings.append( 

121 (phidown[i], ipath, idown[i], -1, pdown[i], [1, -1])) 

122 

123 icuts = num.sort(num.concatenate((iup, idown))) 

124 

125 for i in range(icuts.size-1): 

126 snippets[ipath, icuts[i]] = ( 

127 ipath, icuts[i+1], points[icuts[i]+1:icuts[i+1]+1]) 

128 

129 if icuts.size: 

130 points_last = num.concatenate(( 

131 points[icuts[-1]+1:], 

132 points[:icuts[0]+1])) 

133 

134 snippets[ipath, icuts[-1]] = (ipath, icuts[0], points_last) 

135 else: 

136 snippets[ipath, 0] = (ipath, 0, points) 

137 

138 crossings.sort() 

139 

140 # assemble new sub-polygons 

141 current = snippets.pop(list(snippets.keys())[0]) 

142 outs = [[]] 

143 while True: 

144 outs[-1].append(current[2]) 

145 for i, c1 in enumerate(crossings): 

146 if c1[1:3] == current[:2]: 

147 direction = -1 * c1[3] 

148 break 

149 else: 

150 if not snippets: 

151 break 

152 current = snippets.pop(list(snippets.keys())[0]) 

153 outs.append([]) 

154 continue 

155 

156 while True: 

157 i = (i + direction) % len(crossings) 

158 if crossings[i][3] == direction and direction in crossings[i][-1]: 

159 break 

160 

161 c2 = crossings[i] 

162 c2[-1].remove(direction) 

163 

164 phi1 = c1[0] 

165 phi2 = c2[0] 

166 if direction == 1: 

167 if phi1 > phi2: 

168 phi2 += PI * 2. 

169 

170 if direction == -1: 

171 if phi1 < phi2: 

172 phi2 -= PI * 2. 

173 

174 n = int(abs(phi2 - phi1) / dphi) + 2 

175 

176 phis = num.linspace(phi1, phi2, n) 

177 cpoints = num.zeros((n, 3)) 

178 cpoints[:, (axis+1) % 3] = num.cos(phis) 

179 cpoints[:, (axis+2) % 3] = num.sin(phis) 

180 cpoints[:, axis] = 0.0 

181 

182 outs[-1].append(cpoints) 

183 

184 try: 

185 current = snippets[c2[1:3]] 

186 del snippets[c2[1:3]] 

187 

188 except KeyError: 

189 if not snippets: 

190 break 

191 

192 current = snippets.pop(list(snippets.keys())[0]) 

193 outs.append([]) 

194 

195 # separate hemispheres, force polygons closed, remove duplicate points 

196 # remove polygons with less than 3 points (4, when counting repeated 

197 # endpoint) 

198 

199 outs_upper = [] 

200 outs_lower = [] 

201 for out in outs: 

202 if out: 

203 out = clean_poly(num.vstack(out)) 

204 if out.shape[0] >= 4: 

205 if num.sum(out[:, axis]) > 0.0: 

206 outs_upper.append(out) 

207 else: 

208 outs_lower.append(out) 

209 

210 if nonsimple and ( 

211 len(crossings) == 0 or 

212 len(outs_upper) == 0 or 

213 len(outs_lower) == 0): 

214 

215 # check if we are cutting between holes 

216 need_divider = False 

217 if outs_upper: 

218 candis = sorted( 

219 outs_upper, key=lambda out: num.min(out[:, axis])) 

220 

221 if circulation(candis[0], axis) > 0.0: 

222 need_divider = True 

223 

224 if outs_lower: 

225 candis = sorted( 

226 outs_lower, key=lambda out: num.max(out[:, axis])) 

227 

228 if circulation(candis[0], axis) < 0.0: 

229 need_divider = True 

230 

231 if need_divider: 

232 phi1 = 0. 

233 phi2 = PI*2. 

234 n = int(abs(phi2 - phi1) / dphi) + 2 

235 

236 phis = num.linspace(phi1, phi2, n) 

237 cpoints = num.zeros((n, 3)) 

238 cpoints[:, (axis+1) % 3] = num.cos(phis) 

239 cpoints[:, (axis+2) % 3] = num.sin(phis) 

240 cpoints[:, axis] = 0.0 

241 

242 outs_upper.append(cpoints) 

243 outs_lower.append(cpoints[::-1, :]) 

244 

245 return outs_lower, outs_upper 

246 

247 

248def numpy_rtp2xyz(rtp): 

249 r = rtp[:, 0] 

250 theta = rtp[:, 1] 

251 phi = rtp[:, 2] 

252 vecs = num.empty(rtp.shape, dtype=num.float64) 

253 vecs[:, 0] = r*num.sin(theta)*num.cos(phi) 

254 vecs[:, 1] = r*num.sin(theta)*num.sin(phi) 

255 vecs[:, 2] = r*num.cos(theta) 

256 return vecs 

257 

258 

259def numpy_xyz2rtp(xyz): 

260 x, y, z = xyz[:, 0], xyz[:, 1], xyz[:, 2] 

261 vecs = num.empty(xyz.shape, dtype=num.float64) 

262 vecs[:, 0] = num.sqrt(x**2+y**2+z**2) 

263 vecs[:, 1] = num.arctan2(num.sqrt(x**2+y**2), z) 

264 vecs[:, 2] = num.arctan2(y, x) 

265 return vecs 

266 

267 

268def circle_points(aphi, sign=1.0): 

269 vecs = num.empty((aphi.size, 3), dtype=num.float64) 

270 vecs[:, 0] = num.cos(sign*aphi) 

271 vecs[:, 1] = num.sin(sign*aphi) 

272 vecs[:, 2] = 0.0 

273 return vecs 

274 

275 

276def eig2gx(eig, arcres=181): 

277 aphi = num.linspace(0., 2.*PI, arcres) 

278 ep, en, et, vp, vn, vt = eig 

279 

280 mt_sign = num.sign(ep + en + et) 

281 

282 groups = [] 

283 for (pt_name, pt_sign) in [('P', -1.), ('T', 1.)]: 

284 patches = [] 

285 patches_lower = [] 

286 patches_upper = [] 

287 lines = [] 

288 lines_lower = [] 

289 lines_upper = [] 

290 for iperm, (va, vb, vc, ea, eb, ec) in enumerate([ 

291 (vp, vn, vt, ep, en, et), 

292 (vt, vp, vn, et, ep, en)]): # (vn, vt, vp, en, et, ep)]): 

293 

294 perm_sign = [-1.0, 1.0][iperm] 

295 to_e = num.vstack((vb, vc, va)) 

296 from_e = to_e.T 

297 

298 poly_es = [] 

299 polys = [] 

300 for sign in (-1., 1.): 

301 xphi = perm_sign*pt_sign*sign*aphi 

302 denom = eb*num.cos(xphi)**2 + ec*num.sin(xphi)**2 

303 if num.any(denom == 0.): 

304 continue 

305 

306 Y = -ea/denom 

307 if num.any(Y < 0.): 

308 continue 

309 

310 xtheta = num.arctan(num.sqrt(Y)) 

311 rtp = num.empty(xphi.shape+(3,), dtype=num.float64) 

312 rtp[:, 0] = 1. 

313 if sign > 0: 

314 rtp[:, 1] = xtheta 

315 else: 

316 rtp[:, 1] = PI - xtheta 

317 

318 rtp[:, 2] = xphi 

319 poly_e = numpy_rtp2xyz(rtp) 

320 poly = num.dot(from_e, poly_e.T).T 

321 poly[:, 2] -= 0.001 

322 

323 poly_es.append(poly_e) 

324 polys.append(poly) 

325 

326 if polys: 

327 polys_lower, polys_upper = spoly_cut(polys, 2, arcres=arcres) 

328 lines.extend(polys) 

329 lines_lower.extend(polys_lower) 

330 lines_upper.extend(polys_upper) 

331 

332 if poly_es: 

333 for aa in spoly_cut(poly_es, 0, arcres=arcres): 

334 for bb in spoly_cut(aa, 1, arcres=arcres): 

335 for cc in spoly_cut(bb, 2, arcres=arcres): 

336 for poly_e in cc: 

337 poly = num.dot(from_e, poly_e.T).T 

338 poly[:, 2] -= 0.001 

339 polys_lower, polys_upper = spoly_cut( 

340 [poly], 2, nonsimple=False, arcres=arcres) 

341 

342 patches.append(poly) 

343 patches_lower.extend(polys_lower) 

344 patches_upper.extend(polys_upper) 

345 

346 if not patches: 

347 if mt_sign * pt_sign == 1.: 

348 patches_lower.append(circle_points(aphi, -1.0)) 

349 patches_upper.append(circle_points(aphi, 1.0)) 

350 lines_lower.append(circle_points(aphi, -1.0)) 

351 lines_upper.append(circle_points(aphi, 1.0)) 

352 

353 groups.append(( 

354 pt_name, 

355 patches, patches_lower, patches_upper, 

356 lines, lines_lower, lines_upper)) 

357 

358 return groups 

359 

360 

361def extr(points): 

362 pmean = num.mean(points, axis=0) 

363 return points + pmean*0.05 

364 

365 

366def draw_eigenvectors_mpl(eig, axes): 

367 vp, vn, vt = eig[3:] 

368 for lab, v in [('P', vp), ('N', vn), ('T', vt)]: 

369 sign = num.sign(v[2]) + (v[2] == 0.0) 

370 axes.plot(sign*v[1], sign*v[0], 'o', color='black') 

371 axes.text(sign*v[1], sign*v[0], ' '+lab) 

372 

373 

374def project(points, projection='lambert'): 

375 points_out = points[:, :2].copy() 

376 if projection == 'lambert': 

377 factor = 1.0 / num.sqrt(1.0 + points[:, 2]) 

378 elif projection == 'stereographic': 

379 factor = 1.0 / (1.0 + points[:, 2]) 

380 elif projection == 'orthographic': 

381 factor = None 

382 else: 

383 raise BeachballError( 

384 'invalid argument for projection: %s' % projection) 

385 

386 if factor is not None: 

387 points_out *= factor[:, num.newaxis] 

388 

389 return points_out 

390 

391 

392def inverse_project(points, projection='lambert'): 

393 points_out = num.zeros((points.shape[0], 3)) 

394 

395 rsqr = points[:, 0]**2 + points[:, 1]**2 

396 if projection == 'lambert': 

397 points_out[:, 2] = 1.0 - rsqr 

398 points_out[:, 1] = num.sqrt(2.0 - rsqr) * points[:, 1] 

399 points_out[:, 0] = num.sqrt(2.0 - rsqr) * points[:, 0] 

400 elif projection == 'stereographic': 

401 points_out[:, 2] = - (rsqr - 1.0) / (rsqr + 1.0) 

402 points_out[:, 1] = 2.0 * points[:, 1] / (rsqr + 1.0) 

403 points_out[:, 0] = 2.0 * points[:, 0] / (rsqr + 1.0) 

404 elif projection == 'orthographic': 

405 points_out[:, 2] = num.sqrt(num.maximum(1.0 - rsqr, 0.0)) 

406 points_out[:, 1] = points[:, 1] 

407 points_out[:, 0] = points[:, 0] 

408 else: 

409 raise BeachballError( 

410 'invalid argument for projection: %s' % projection) 

411 

412 return points_out 

413 

414 

415def deco_part(mt, mt_type='full', view='top'): 

416 mt = mtm.as_mt(mt) 

417 

418 if isinstance(view, str): 

419 if view == 'top': 

420 pass 

421 elif view == 'north': 

422 mt = mt.rotated(_view_north) 

423 elif view == 'south': 

424 mt = mt.rotated(_view_south) 

425 elif view == 'east': 

426 mt = mt.rotated(_view_east) 

427 elif view == 'west': 

428 mt = mt.rotated(_view_west) 

429 elif isinstance(view, tuple): 

430 mt = mt.rotated(view_rotation(*view)) 

431 else: 

432 raise BeachballError( 

433 'Invaild argument for `view`. Allowed values are "top", "north", ' 

434 '"south", "east", "west" or a tuple of angles `(strike, dip)` ' 

435 'orienting the view plane.') 

436 

437 if mt_type == 'full': 

438 return mt 

439 

440 res = mt.standard_decomposition() 

441 m = dict( 

442 dc=res[1][2], 

443 deviatoric=res[3][2])[mt_type] 

444 

445 return mtm.MomentTensor(m=m) 

446 

447 

448def choose_transform(axes, size_units, position, size): 

449 

450 if size_units == 'points': 

451 transform = _FixedPointOffsetTransform( 

452 axes.transData, 

453 axes.figure.dpi_scale_trans, 

454 position) 

455 

456 if size is None: 

457 size = 12. 

458 

459 size = size * 0.5 / 72. 

460 position = (0., 0.) 

461 

462 elif size_units == 'data': 

463 transform = axes.transData 

464 

465 if size is None: 

466 size = 1.0 

467 

468 size = size * 0.5 

469 

470 elif size_units == 'axes': 

471 transform = axes.transAxes 

472 if size is None: 

473 size = 1. 

474 

475 size = size * .5 

476 

477 else: 

478 raise BeachballError( 

479 'invalid argument for size_units: %s' % size_units) 

480 

481 position = num.asarray(position, dtype=num.float64) 

482 

483 return transform, position, size 

484 

485 

486def mt2beachball( 

487 mt, 

488 beachball_type='deviatoric', 

489 position=(0., 0.), 

490 size=None, 

491 color_t='red', 

492 color_p='white', 

493 edgecolor='black', 

494 linewidth=2, 

495 projection='lambert', 

496 view='top'): 

497 

498 position = num.asarray(position, dtype=num.float64) 

499 size = size or 1 

500 mt = deco_part(mt, beachball_type, view) 

501 

502 eig = mt.eigensystem() 

503 if eig[0] == 0. and eig[1] == 0. and eig[2] == 0: 

504 raise BeachballError('eigenvalues are zero') 

505 

506 data = [] 

507 for (group, patches, patches_lower, patches_upper, 

508 lines, lines_lower, lines_upper) in eig2gx(eig): 

509 

510 if group == 'P': 

511 color = color_p 

512 else: 

513 color = color_t 

514 

515 for poly in patches_upper: 

516 verts = project(poly, projection)[:, ::-1] * size + \ 

517 position[NA, :] 

518 data.append((verts, color, color, 1.0)) 

519 

520 for poly in lines_upper: 

521 verts = project(poly, projection)[:, ::-1] * size + \ 

522 position[NA, :] 

523 data.append((verts, 'none', edgecolor, linewidth)) 

524 return data 

525 

526 

527def plot_beachball_mpl( 

528 mt, axes, 

529 beachball_type='deviatoric', 

530 position=(0., 0.), 

531 size=None, 

532 zorder=0, 

533 color_t='red', 

534 color_p='white', 

535 edgecolor='black', 

536 linewidth=2, 

537 alpha=1.0, 

538 arcres=181, 

539 decimation=1, 

540 projection='lambert', 

541 size_units='points', 

542 view='top'): 

543 

544 ''' 

545 Plot beachball diagram to a Matplotlib plot 

546 

547 :param mt: :py:class:`pyrocko.moment_tensor.MomentTensor` object or an 

548 array or sequence which can be converted into an MT object 

549 :param beachball_type: ``'deviatoric'`` (default), ``'full'``, or ``'dc'`` 

550 :param position: position of the beachball in data coordinates 

551 :param size: diameter of the beachball either in points or in data 

552 coordinates, depending on the ``size_units`` setting 

553 :param zorder: (passed through to matplotlib drawing functions) 

554 :param color_t: color for compressional quadrants (default: ``'red'``) 

555 :param color_p: color for extensive quadrants (default: ``'white'``) 

556 :param edgecolor: color for lines (default: ``'black'``) 

557 :param linewidth: linewidth in points (default: ``2``) 

558 :param alpha: (passed through to matplotlib drawing functions) 

559 :param projection: ``'lambert'`` (default), ``'stereographic'``, or 

560 ``'orthographic'`` 

561 :param size_units: ``'points'`` (default) or ``'data'``, where the 

562 latter causes the beachball to be projected in the plots data 

563 coordinates (axes must have an aspect ratio of 1.0 or the 

564 beachball will be shown distorted when using this). 

565 :param view: View the beachball from ``'top'``, ``'north'``, ``'south'``, 

566 ``'east'`` or ``'west'``, or project onto plane given by 

567 ``(strike, dip)``. Useful to show beachballs in cross-sections. 

568 Default is ``'top'``. 

569 ''' 

570 

571 transform, position, size = choose_transform( 

572 axes, size_units, position, size) 

573 

574 mt = deco_part(mt, beachball_type, view) 

575 

576 eig = mt.eigensystem() 

577 if eig[0] == 0. and eig[1] == 0. and eig[2] == 0: 

578 raise BeachballError('eigenvalues are zero') 

579 

580 data = [] 

581 for (group, patches, patches_lower, patches_upper, 

582 lines, lines_lower, lines_upper) in eig2gx(eig, arcres): 

583 

584 if group == 'P': 

585 color = color_p 

586 else: 

587 color = color_t 

588 

589 # plot "upper" features for lower hemisphere, because coordinate system 

590 # is NED 

591 

592 for poly in patches_upper: 

593 verts = project(poly, projection)[:, ::-1] * size + position[NA, :] 

594 if alpha == 1.0: 

595 data.append( 

596 (verts[::decimation], color, color, linewidth)) 

597 else: 

598 data.append( 

599 (verts[::decimation], color, 'none', 0.0)) 

600 

601 for poly in lines_upper: 

602 verts = project(poly, projection)[:, ::-1] * size + position[NA, :] 

603 data.append( 

604 (verts[::decimation], 'none', edgecolor, linewidth)) 

605 

606 patches = [] 

607 for (path, facecolor, edgecolor, linewidth) in data: 

608 patches.append(Polygon( 

609 xy=path, facecolor=facecolor, 

610 edgecolor=edgecolor, 

611 linewidth=linewidth, 

612 alpha=alpha)) 

613 

614 collection = PatchCollection( 

615 patches, zorder=zorder, transform=transform, match_original=True) 

616 

617 axes.add_artist(collection) 

618 return collection 

619 

620 

621def amplitudes_ned(mt, vecs): 

622 ep, en, et, vp, vn, vt = mt.eigensystem() 

623 to_e = num.vstack((vn, vt, vp)) 

624 vecs_e = num.dot(to_e, vecs.T).T 

625 rtp = numpy_xyz2rtp(vecs_e) 

626 atheta, aphi = rtp[:, 1], rtp[:, 2] 

627 return ep * num.cos(atheta)**2 + ( 

628 en * num.cos(aphi)**2 + et * num.sin(aphi)**2) * num.sin(atheta)**2 

629 

630 

631def amplitudes(mt, azimuths, takeoff_angles): 

632 azimuths = num.asarray(azimuths, dtype=float) 

633 takeoff_angles = num.asarray(takeoff_angles, dtype=float) 

634 assert azimuths.size == takeoff_angles.size 

635 rtps = num.vstack((num.ones(azimuths.size), takeoff_angles, azimuths)).T 

636 vecs = numpy_rtp2xyz(rtps) 

637 return amplitudes_ned(mt, vecs) 

638 

639 

640def mts2amps( 

641 mts, 

642 projection, 

643 beachball_type, 

644 grid_resolution=200, 

645 mask=True, 

646 view='top'): 

647 

648 n_balls = len(mts) 

649 nx = grid_resolution 

650 ny = grid_resolution 

651 

652 x = num.linspace(-1., 1., nx) 

653 y = num.linspace(-1., 1., ny) 

654 

655 vecs2 = num.zeros((nx * ny, 2), dtype=num.float64) 

656 vecs2[:, 0] = num.tile(x, ny) 

657 vecs2[:, 1] = num.repeat(y, nx) 

658 

659 ii_ok = vecs2[:, 0]**2 + vecs2[:, 1]**2 <= 1.0 

660 amps = num_full(nx * ny, num.nan, dtype=num.float64) 

661 

662 amps[ii_ok] = 0. 

663 vecs3_ok = inverse_project(vecs2[ii_ok, :], projection) 

664 

665 for mt in mts: 

666 amps_ok = amplitudes_ned(deco_part(mt, beachball_type, view), vecs3_ok) 

667 if mask: 

668 amps_ok[amps_ok > 0] = 1. 

669 amps_ok[amps_ok < 0] = 0. 

670 

671 amps[ii_ok] += amps_ok 

672 

673 return num.reshape(amps, (ny, nx)) / n_balls, x, y 

674 

675 

676def plot_fuzzy_beachball_mpl_pixmap( 

677 mts, axes, 

678 best_mt=None, 

679 beachball_type='deviatoric', 

680 position=(0., 0.), 

681 size=None, 

682 zorder=0, 

683 color_t='red', 

684 color_p='white', 

685 edgecolor='black', 

686 best_color='red', 

687 linewidth=2, 

688 alpha=1.0, 

689 projection='lambert', 

690 size_units='data', 

691 grid_resolution=200, 

692 method='imshow', 

693 view='top'): 

694 ''' 

695 Plot fuzzy beachball from a list of given MomentTensors 

696 

697 :param mts: list of 

698 :py:class:`pyrocko.moment_tensor.MomentTensor` object or an 

699 array or sequence which can be converted into an MT object 

700 :param best_mt: :py:class:`pyrocko.moment_tensor.MomentTensor` object or 

701 an array or sequence which can be converted into an MT object 

702 of most likely or minimum misfit solution to extra highlight 

703 :param best_color: mpl color for best MomentTensor edges, 

704 polygons are not plotted 

705 

706 See plot_beachball_mpl for other arguments 

707 ''' 

708 if size_units == 'points': 

709 raise BeachballError( 

710 'size_units="points" not supported in ' 

711 'plot_fuzzy_beachball_mpl_pixmap') 

712 

713 transform, position, size = choose_transform( 

714 axes, size_units, position, size) 

715 

716 amps, x, y = mts2amps( 

717 mts, 

718 grid_resolution=grid_resolution, 

719 projection=projection, 

720 beachball_type=beachball_type, 

721 mask=True, 

722 view=view) 

723 

724 ncolors = 256 

725 cmap = LinearSegmentedColormap.from_list( 

726 'dummy', [color_p, color_t], N=ncolors) 

727 

728 levels = num.linspace(0, 1., ncolors) 

729 if method == 'contourf': 

730 axes.contourf( 

731 position[0] + y * size, position[1] + x * size, amps.T, 

732 levels=levels, 

733 cmap=cmap, 

734 transform=transform, 

735 zorder=zorder, 

736 alpha=alpha) 

737 

738 elif method == 'imshow': 

739 axes.imshow( 

740 amps.T, 

741 extent=( 

742 position[0] + y[0] * size, 

743 position[0] + y[-1] * size, 

744 position[1] - x[0] * size, 

745 position[1] - x[-1] * size), 

746 cmap=cmap, 

747 transform=transform, 

748 zorder=zorder-0.1, 

749 alpha=alpha) 

750 else: 

751 assert False, 'invalid `method` argument' 

752 

753 # draw optimum edges 

754 if best_mt is not None: 

755 best_amps, bx, by = mts2amps( 

756 [best_mt], 

757 grid_resolution=grid_resolution, 

758 projection=projection, 

759 beachball_type=beachball_type, 

760 mask=False) 

761 

762 axes.contour( 

763 position[0] + by * size, position[1] + bx * size, best_amps.T, 

764 levels=[0.], 

765 colors=[best_color], 

766 linewidths=linewidth, 

767 transform=transform, 

768 zorder=zorder, 

769 alpha=alpha) 

770 

771 phi = num.linspace(0., 2 * PI, 361) 

772 x = num.cos(phi) 

773 y = num.sin(phi) 

774 axes.plot( 

775 position[0] + x * size, position[1] + y * size, 

776 linewidth=linewidth, 

777 color=edgecolor, 

778 transform=transform, 

779 zorder=zorder, 

780 alpha=alpha) 

781 

782 

783def plot_beachball_mpl_construction( 

784 mt, axes, 

785 show='patches', 

786 beachball_type='deviatoric', 

787 view='top'): 

788 

789 mt = deco_part(mt, beachball_type, view) 

790 eig = mt.eigensystem() 

791 

792 for (group, patches, patches_lower, patches_upper, 

793 lines, lines_lower, lines_upper) in eig2gx(eig): 

794 

795 if group == 'P': 

796 color = 'blue' 

797 lw = 1 

798 else: 

799 color = 'red' 

800 lw = 1 

801 

802 if show == 'patches': 

803 for poly in patches_upper: 

804 px, py, pz = poly.T 

805 axes.plot(*extr(poly).T, color=color, lw=lw, alpha=0.5) 

806 

807 if show == 'lines': 

808 for poly in lines_upper: 

809 px, py, pz = poly.T 

810 axes.plot(*extr(poly).T, color=color, lw=lw, alpha=0.5) 

811 

812 

813def plot_beachball_mpl_pixmap( 

814 mt, axes, 

815 beachball_type='deviatoric', 

816 position=(0., 0.), 

817 size=None, 

818 zorder=0, 

819 color_t='red', 

820 color_p='white', 

821 edgecolor='black', 

822 linewidth=2, 

823 alpha=1.0, 

824 projection='lambert', 

825 size_units='data', 

826 view='top'): 

827 

828 if size_units == 'points': 

829 raise BeachballError( 

830 'size_units="points" not supported in plot_beachball_mpl_pixmap') 

831 

832 transform, position, size = choose_transform( 

833 axes, size_units, position, size) 

834 

835 mt = deco_part(mt, beachball_type, view) 

836 

837 ep, en, et, vp, vn, vt = mt.eigensystem() 

838 

839 amps, x, y = mts2amps( 

840 [mt], projection, beachball_type, grid_resolution=200, mask=False) 

841 

842 axes.contourf( 

843 position[0] + y * size, position[1] + x * size, amps.T, 

844 levels=[-num.inf, 0., num.inf], 

845 colors=[color_p, color_t], 

846 transform=transform, 

847 zorder=zorder, 

848 alpha=alpha) 

849 

850 axes.contour( 

851 position[0] + y * size, position[1] + x * size, amps.T, 

852 levels=[0.], 

853 colors=[edgecolor], 

854 linewidths=linewidth, 

855 transform=transform, 

856 zorder=zorder, 

857 alpha=alpha) 

858 

859 phi = num.linspace(0., 2 * PI, 361) 

860 x = num.cos(phi) 

861 y = num.sin(phi) 

862 axes.plot( 

863 position[0] + x * size, position[1] + y * size, 

864 linewidth=linewidth, 

865 color=edgecolor, 

866 transform=transform, 

867 zorder=zorder, 

868 alpha=alpha) 

869 

870 

871if __name__ == '__main__': 

872 import sys 

873 import os 

874 import matplotlib.pyplot as plt 

875 from pyrocko import model 

876 

877 args = sys.argv[1:] 

878 

879 data = [] 

880 for iarg, arg in enumerate(args): 

881 

882 if os.path.exists(arg): 

883 events = model.load_events(arg) 

884 for ev in events: 

885 if not ev.moment_tensor: 

886 logger.warning('no moment tensor given for event') 

887 continue 

888 

889 data.append((ev.name, ev.moment_tensor)) 

890 else: 

891 vals = list(map(float, arg.split(','))) 

892 mt = mtm.as_mt(vals) 

893 data.append(('%i' % (iarg+1), mt)) 

894 

895 n = len(data) 

896 

897 ncols = 1 

898 while ncols**2 < n: 

899 ncols += 1 

900 

901 nrows = ncols 

902 

903 fig = plt.figure() 

904 axes = fig.add_subplot(1, 1, 1, aspect=1.) 

905 axes.axison = False 

906 axes.set_xlim(-0.05 - ncols, ncols + 0.05) 

907 axes.set_ylim(-0.05 - nrows, nrows + 0.05) 

908 

909 for ibeach, (name, mt) in enumerate(data): 

910 irow = ibeach // ncols 

911 icol = ibeach % ncols 

912 plot_beachball_mpl( 

913 mt, axes, 

914 position=(icol*2-ncols+1, -irow*2+nrows-1), 

915 size_units='data') 

916 

917 axes.annotate( 

918 name, 

919 xy=(icol*2-ncols+1, -irow*2+nrows-2), 

920 xycoords='data', 

921 xytext=(0, 0), 

922 textcoords='offset points', 

923 verticalalignment='center', 

924 horizontalalignment='center', 

925 rotation=0.) 

926 

927 plt.show()