Source code for pyrocko.io.stationxml

# http://pyrocko.org - GPLv3
#
# The Pyrocko Developers, 21st Century
# ---|P------/S----------~Lg----------
from __future__ import absolute_import, division

import sys
import time
import logging
import datetime
import calendar
import math
import copy

import numpy as num

from pyrocko.guts import (StringChoice, StringPattern, UnicodePattern, String,
                          Unicode, Int, Float, List, Object, Timestamp,
                          ValidationError, TBase, re_tz)
from pyrocko.guts import load_xml  # noqa
from pyrocko.util import hpfloat, time_to_str, get_time_float

import pyrocko.model
from pyrocko import trace, util

try:
    newstr = unicode
except NameError:
    newstr = str

guts_prefix = 'sx'

guts_xmlns = 'http://www.fdsn.org/xml/station/1'

logger = logging.getLogger('pyrocko.io.stationxml')

conversion = {
    ('M', 'M'): None,
    ('M/S', 'M'): trace.IntegrationResponse(1),
    ('M/S**2', 'M'): trace.IntegrationResponse(2),
    ('M', 'M/S'): trace.DifferentiationResponse(1),
    ('M/S', 'M/S'): None,
    ('M/S**2', 'M/S'): trace.IntegrationResponse(1),
    ('M', 'M/S**2'): trace.DifferentiationResponse(2),
    ('M/S', 'M/S**2'): trace.DifferentiationResponse(1),
    ('M/S**2', 'M/S**2'): None}


[docs]class NoResponseInformation(Exception): pass
[docs]class MultipleResponseInformation(Exception): pass
def wrap(s, width=80, indent=4): words = s.split() lines = [] t = [] n = 0 for w in words: if n + len(w) >= width: lines.append(' '.join(t)) n = indent t = [' '*(indent-1)] t.append(w) n += len(w) + 1 lines.append(' '.join(t)) return '\n'.join(lines) def same(x, eps=0.0): if any(type(x[0]) != type(r) for r in x): return False if isinstance(x[0], float): return all(abs(r-x[0]) <= eps for r in x) else: return all(r == x[0] for r in x)
[docs]class InconsistentResponseInformation(Exception): pass
def check_resp(resp, value, frequency, limit_db, prelude=''): if not value or not frequency: logger.warn('Cannot validate frequency response') return value_resp = num.abs( resp.evaluate(num.array([frequency], dtype=float)))[0] if value_resp == 0.0: raise InconsistentResponseInformation( '%s\n' ' computed response is zero' % prelude) diff_db = 20.0 * num.log10(value_resp/value) if num.abs(diff_db) > limit_db: raise InconsistentResponseInformation( '%s\n' ' reported value: %g\n' ' computed value: %g\n' ' at frequency [Hz]: %g\n' ' difference [dB]: %g\n' ' limit [dB]: %g' % ( prelude, value, value_resp, frequency, diff_db, limit_db)) this_year = time.gmtime()[0]
[docs]class DummyAwareOptionalTimestamp(Object): dummy_for = (hpfloat, float) dummy_for_description = 'time_float' class __T(TBase): def regularize_extra(self, val): time_float = get_time_float() if isinstance(val, datetime.datetime): tt = val.utctimetuple() val = time_float(calendar.timegm(tt)) + val.microsecond * 1e-6 elif isinstance(val, datetime.date): tt = val.timetuple() val = time_float(calendar.timegm(tt)) elif isinstance(val, (str, newstr)): val = val.strip() tz_offset = 0 m = re_tz.search(val) if m: sh = m.group(2) sm = m.group(4) tz_offset = (int(sh)*3600 if sh else 0) \ + (int(sm)*60 if sm else 0) val = re_tz.sub('', val) if len(val) > 10 and val[10] == 'T': val = val.replace('T', ' ', 1) try: val = util.str_to_time(val) - tz_offset except util.TimeStrError: year = int(val[:4]) if sys.maxsize > 2**32: # if we're on 64bit if year > this_year + 100: return None # StationXML contained a dummy date if year < 1903: # for macOS, 1900-01-01 dummy dates return None else: # 32bit end of time is in 2038 if this_year < 2037 and year > 2037 or year < 1903: return None # StationXML contained a dummy date raise elif isinstance(val, (int, float)): val = time_float(val) else: raise ValidationError( '%s: cannot convert "%s" to type %s' % ( self.xname(), val, time_float)) return val def to_save(self, val): return time_to_str(val, format='%Y-%m-%d %H:%M:%S.9FRAC')\ .rstrip('0').rstrip('.') def to_save_xml(self, val): return time_to_str(val, format='%Y-%m-%dT%H:%M:%S.9FRAC')\ .rstrip('0').rstrip('.') + 'Z'
[docs]class Nominal(StringChoice): choices = [ 'NOMINAL', 'CALCULATED']
[docs]class Email(UnicodePattern): pattern = u'[\\w\\.\\-_]+@[\\w\\.\\-_]+'
[docs]class RestrictedStatus(StringChoice): choices = [ 'open', 'closed', 'partial']
[docs]class Type(StringChoice): choices = [ 'TRIGGERED', 'CONTINUOUS', 'HEALTH', 'GEOPHYSICAL', 'WEATHER', 'FLAG', 'SYNTHESIZED', 'INPUT', 'EXPERIMENTAL', 'MAINTENANCE', 'BEAM'] class __T(StringChoice.T): def validate_extra(self, val): if val not in self.choices: logger.warn( 'channel type: "%s" is not a valid choice out of %s' % (val, repr(self.choices)))
[docs]class PzTransferFunction(StringChoice): choices = [ 'LAPLACE (RADIANS/SECOND)', 'LAPLACE (HERTZ)', 'DIGITAL (Z-TRANSFORM)']
[docs]class Symmetry(StringChoice): choices = [ 'NONE', 'EVEN', 'ODD']
[docs]class CfTransferFunction(StringChoice): class __T(StringChoice.T): def validate(self, val, regularize=False, depth=-1): if regularize: try: val = str(val) except ValueError: raise ValidationError( '%s: cannot convert to string %s' % (self.xname, repr(val))) val = self.dummy_cls.replacements.get(val, val) self.validate_extra(val) return val choices = [ 'ANALOG (RADIANS/SECOND)', 'ANALOG (HERTZ)', 'DIGITAL'] replacements = { 'ANALOG (RAD/SEC)': 'ANALOG (RADIANS/SECOND)', 'ANALOG (HZ)': 'ANALOG (HERTZ)', }
[docs]class Approximation(StringChoice): choices = [ 'MACLAURIN']
class PhoneNumber(StringPattern): pattern = '[0-9]+-[0-9]+'
[docs]class Site(Object): ''' Description of a site location using name and optional geopolitical boundaries (country, city, etc.). ''' name = Unicode.T(xmltagname='Name') description = Unicode.T(optional=True, xmltagname='Description') town = Unicode.T(optional=True, xmltagname='Town') county = Unicode.T(optional=True, xmltagname='County') region = Unicode.T(optional=True, xmltagname='Region') country = Unicode.T(optional=True, xmltagname='Country')
[docs]class ExternalReference(Object): ''' This type contains a URI and description for external data that users may want to reference in StationXML. ''' uri = String.T(xmltagname='URI') description = Unicode.T(xmltagname='Description')
[docs]class Units(Object): ''' A type to document units. Corresponds to SEED blockette 34. ''' def __init__(self, name=None, **kwargs): Object.__init__(self, name=name, **kwargs) name = String.T(xmltagname='Name') description = Unicode.T(optional=True, xmltagname='Description')
[docs]class Counter(Int): pass
[docs]class SampleRateRatio(Object): ''' Sample rate expressed as number of samples in a number of seconds. ''' number_samples = Int.T(xmltagname='NumberSamples') number_seconds = Int.T(xmltagname='NumberSeconds')
[docs]class Gain(Object): ''' Complex type for sensitivity and frequency ranges. This complex type can be used to represent both overall sensitivities and individual stage gains. The FrequencyRangeGroup is an optional construct that defines a pass band in Hertz ( FrequencyStart and FrequencyEnd) in which the SensitivityValue is valid within the number of decibels specified in FrequencyDBVariation. ''' def __init__(self, value=None, **kwargs): Object.__init__(self, value=value, **kwargs) value = Float.T(optional=True, xmltagname='Value') frequency = Float.T(optional=True, xmltagname='Frequency')
[docs]class NumeratorCoefficient(Object): i = Int.T(optional=True, xmlstyle='attribute') value = Float.T(xmlstyle='content')
[docs]class FloatNoUnit(Object): def __init__(self, value=None, **kwargs): Object.__init__(self, value=value, **kwargs) plus_error = Float.T(optional=True, xmlstyle='attribute') minus_error = Float.T(optional=True, xmlstyle='attribute') value = Float.T(xmlstyle='content')
[docs]class FloatWithUnit(FloatNoUnit): unit = String.T(optional=True, xmlstyle='attribute')
[docs]class Equipment(Object): resource_id = String.T(optional=True, xmlstyle='attribute') type = String.T(optional=True, xmltagname='Type') description = Unicode.T(optional=True, xmltagname='Description') manufacturer = Unicode.T(optional=True, xmltagname='Manufacturer') vendor = Unicode.T(optional=True, xmltagname='Vendor') model = Unicode.T(optional=True, xmltagname='Model') serial_number = String.T(optional=True, xmltagname='SerialNumber') installation_date = DummyAwareOptionalTimestamp.T( optional=True, xmltagname='InstallationDate') removal_date = DummyAwareOptionalTimestamp.T( optional=True, xmltagname='RemovalDate') calibration_date_list = List.T(Timestamp.T(xmltagname='CalibrationDate'))
[docs]class PhoneNumber(Object): description = Unicode.T(optional=True, xmlstyle='attribute') country_code = Int.T(optional=True, xmltagname='CountryCode') area_code = Int.T(xmltagname='AreaCode') phone_number = PhoneNumber.T(xmltagname='PhoneNumber')
[docs]class BaseFilter(Object): ''' The BaseFilter is derived by all filters. ''' resource_id = String.T(optional=True, xmlstyle='attribute') name = String.T(optional=True, xmlstyle='attribute') description = Unicode.T(optional=True, xmltagname='Description') input_units = Units.T(optional=True, xmltagname='InputUnits') output_units = Units.T(optional=True, xmltagname='OutputUnits')
[docs]class Sensitivity(Gain): ''' Sensitivity and frequency ranges. The FrequencyRangeGroup is an optional construct that defines a pass band in Hertz (FrequencyStart and FrequencyEnd) in which the SensitivityValue is valid within the number of decibels specified in FrequencyDBVariation. ''' input_units = Units.T(optional=True, xmltagname='InputUnits') output_units = Units.T(optional=True, xmltagname='OutputUnits') frequency_start = Float.T(optional=True, xmltagname='FrequencyStart') frequency_end = Float.T(optional=True, xmltagname='FrequencyEnd') frequency_db_variation = Float.T(optional=True, xmltagname='FrequencyDBVariation')
[docs]class Coefficient(FloatNoUnit): number = Counter.T(optional=True, xmlstyle='attribute')
[docs]class PoleZero(Object): ''' Complex numbers used as poles or zeros in channel response. ''' number = Int.T(optional=True, xmlstyle='attribute') real = FloatNoUnit.T(xmltagname='Real') imaginary = FloatNoUnit.T(xmltagname='Imaginary') def value(self): return self.real.value + 1J * self.imaginary.value
[docs]class ClockDrift(FloatWithUnit): unit = String.T(default='SECONDS/SAMPLE', optional=True, xmlstyle='attribute') # fixed
[docs]class Second(FloatWithUnit): ''' A time value in seconds. ''' unit = String.T(default='SECONDS', optional=True, xmlstyle='attribute')
# fixed unit
[docs]class Voltage(FloatWithUnit): unit = String.T(default='VOLTS', optional=True, xmlstyle='attribute')
# fixed unit
[docs]class Angle(FloatWithUnit): unit = String.T(default='DEGREES', optional=True, xmlstyle='attribute')
# fixed unit
[docs]class Azimuth(FloatWithUnit): ''' Instrument azimuth, degrees clockwise from North. ''' unit = String.T(default='DEGREES', optional=True, xmlstyle='attribute')
# fixed unit
[docs]class Dip(FloatWithUnit): ''' Instrument dip in degrees down from horizontal. Together azimuth and dip describe the direction of the sensitive axis of the instrument. ''' unit = String.T(default='DEGREES', optional=True, xmlstyle='attribute')
# fixed unit
[docs]class Distance(FloatWithUnit): ''' Extension of FloatWithUnit for distances, elevations, and depths. ''' unit = String.T(default='METERS', optional=True, xmlstyle='attribute')
# NOT fixed unit!
[docs]class Frequency(FloatWithUnit): unit = String.T(default='HERTZ', optional=True, xmlstyle='attribute')
# fixed unit
[docs]class SampleRate(FloatWithUnit): ''' Sample rate in samples per second. ''' unit = String.T(default='SAMPLES/S', optional=True, xmlstyle='attribute')
# fixed unit
[docs]class Person(Object): ''' Representation of a person's contact information. A person can belong to multiple agencies and have multiple email addresses and phone numbers. ''' name_list = List.T(Unicode.T(xmltagname='Name')) agency_list = List.T(Unicode.T(xmltagname='Agency')) email_list = List.T(Email.T(xmltagname='Email')) phone_list = List.T(PhoneNumber.T(xmltagname='Phone'))
[docs]class FIR(BaseFilter): ''' Response: FIR filter. Corresponds to SEED blockette 61. FIR filters are also commonly documented using the Coefficients element. ''' symmetry = Symmetry.T(xmltagname='Symmetry') numerator_coefficient_list = List.T( NumeratorCoefficient.T(xmltagname='NumeratorCoefficient'))
[docs]class Coefficients(BaseFilter): ''' Response: coefficients for FIR filter. Laplace transforms or IIR filters can be expressed using type as well but the PolesAndZeros should be used instead. Corresponds to SEED blockette 54. ''' cf_transfer_function_type = CfTransferFunction.T( xmltagname='CfTransferFunctionType') numerator_list = List.T(FloatWithUnit.T(xmltagname='Numerator')) denominator_list = List.T(FloatWithUnit.T(xmltagname='Denominator'))
[docs]class Latitude(FloatWithUnit): ''' Type for latitude coordinate. ''' unit = String.T(default='DEGREES', optional=True, xmlstyle='attribute') # fixed unit datum = String.T(default='WGS84', optional=True, xmlstyle='attribute')
[docs]class Longitude(FloatWithUnit): ''' Type for longitude coordinate. ''' unit = String.T(default='DEGREES', optional=True, xmlstyle='attribute') # fixed unit datum = String.T(default='WGS84', optional=True, xmlstyle='attribute')
[docs]class PolesZeros(BaseFilter): ''' Response: complex poles and zeros. Corresponds to SEED blockette 53. ''' pz_transfer_function_type = PzTransferFunction.T( xmltagname='PzTransferFunctionType') normalization_factor = Float.T(default=1.0, xmltagname='NormalizationFactor') normalization_frequency = Frequency.T(xmltagname='NormalizationFrequency') zero_list = List.T(PoleZero.T(xmltagname='Zero')) pole_list = List.T(PoleZero.T(xmltagname='Pole')) def get_pyrocko_response(self, nslc): if self.pz_transfer_function_type == 'DIGITAL (Z-TRANSFORM)': logger.warn( 'unhandled pole-zero response of type "DIGITAL (Z-TRANSFORM)" ' '(%s)' % '.'.join(nslc)) return [] if self.pz_transfer_function_type not in ( 'LAPLACE (RADIANS/SECOND)', 'LAPLACE (HERTZ)'): raise NoResponseInformation( 'cannot convert PoleZero response of type %s (%s)' % (self.pz_transfer_function_type, '.'.join(nslc))) factor = 1.0 cfactor = 1.0 if self.pz_transfer_function_type == 'LAPLACE (HERTZ)': factor = 2. * math.pi cfactor = (2. * math.pi)**( len(self.pole_list) - len(self.zero_list)) if self.normalization_factor is None \ or self.normalization_factor == 0.0: logger.warn( 'no pole-zero normalization factor given. Assuming a value of ' '1.0 (%s)' % '.'.join(nslc)) nfactor = 1.0 else: nfactor = self.normalization_factor resp = trace.PoleZeroResponse( constant=nfactor*cfactor, zeros=[z.value()*factor for z in self.zero_list], poles=[p.value()*factor for p in self.pole_list]) if not self.normalization_frequency.value: logger.warn( 'cannot check pole-zero normalization factor (%s)' % '.'.join(nslc)) else: computed_normalization_factor = nfactor / abs( resp.evaluate( num.array([self.normalization_frequency.value]))[0]) db = 20.0 * num.log10( computed_normalization_factor / nfactor) if abs(db) > 0.17: logger.warn( 'computed and reported normalization factors differ by ' '%g dB: computed: %g, reported: %g (%s)' % ( db, computed_normalization_factor, nfactor, '.'.join(nslc))) return [resp]
[docs]class ResponseListElement(Object): frequency = Frequency.T(xmltagname='Frequency') amplitude = FloatWithUnit.T(xmltagname='Amplitude') phase = Angle.T(xmltagname='Phase')
[docs]class Polynomial(BaseFilter): ''' Response: expressed as a polynomial (allows non-linear sensors to be described). Corresponds to SEED blockette 62. Can be used to describe a stage of acquisition or a complete system. ''' approximation_type = Approximation.T(default='MACLAURIN', xmltagname='ApproximationType') frequency_lower_bound = Frequency.T(xmltagname='FrequencyLowerBound') frequency_upper_bound = Frequency.T(xmltagname='FrequencyUpperBound') approximation_lower_bound = Float.T(xmltagname='ApproximationLowerBound') approximation_upper_bound = Float.T(xmltagname='ApproximationUpperBound') maximum_error = Float.T(xmltagname='MaximumError') coefficient_list = List.T(Coefficient.T(xmltagname='Coefficient'))
[docs]class Decimation(Object): ''' Corresponds to SEED blockette 57. ''' input_sample_rate = Frequency.T(xmltagname='InputSampleRate') factor = Int.T(xmltagname='Factor') offset = Int.T(xmltagname='Offset') delay = FloatWithUnit.T(xmltagname='Delay') correction = FloatWithUnit.T(xmltagname='Correction')
[docs]class Operator(Object): agency_list = List.T(Unicode.T(xmltagname='Agency')) contact_list = List.T(Person.T(xmltagname='Contact')) web_site = String.T(optional=True, xmltagname='WebSite')
[docs]class Comment(Object): ''' Container for a comment or log entry. Corresponds to SEED blockettes 31, 51 and 59. ''' id = Counter.T(optional=True, xmlstyle='attribute') value = Unicode.T(xmltagname='Value') begin_effective_time = DummyAwareOptionalTimestamp.T( optional=True, xmltagname='BeginEffectiveTime') end_effective_time = DummyAwareOptionalTimestamp.T( optional=True, xmltagname='EndEffectiveTime') author_list = List.T(Person.T(xmltagname='Author'))
[docs]class ResponseList(BaseFilter): ''' Response: list of frequency, amplitude and phase values. Corresponds to SEED blockette 55. ''' response_list_element_list = List.T( ResponseListElement.T(xmltagname='ResponseListElement'))
[docs]class Log(Object): ''' Container for log entries. ''' entry_list = List.T(Comment.T(xmltagname='Entry'))
[docs]class ResponseStage(Object): ''' This complex type represents channel response and covers SEED blockettes 53 to 56. ''' number = Counter.T(xmlstyle='attribute') resource_id = String.T(optional=True, xmlstyle='attribute') poles_zeros_list = List.T( PolesZeros.T(optional=True, xmltagname='PolesZeros')) coefficients_list = List.T( Coefficients.T(optional=True, xmltagname='Coefficients')) response_list = ResponseList.T(optional=True, xmltagname='ResponseList') fir = FIR.T(optional=True, xmltagname='FIR') polynomial = Polynomial.T(optional=True, xmltagname='Polynomial') decimation = Decimation.T(optional=True, xmltagname='Decimation') stage_gain = Gain.T(optional=True, xmltagname='StageGain') def get_pyrocko_response(self, nslc): responses = [] for pzs in self.poles_zeros_list: responses.extend(pzs.get_pyrocko_response(nslc)) if len(self.poles_zeros_list) > 1: logger.warn( 'multiple poles and zeros records in single response stage ' '(%s.%s.%s.%s)' % nslc) if (self.coefficients_list or self.response_list or self.fir or self.polynomial): logger.debug('unhandled response at stage %i' % self.number) if self.stage_gain: responses.append( trace.PoleZeroResponse(constant=self.stage_gain.value)) return responses @property def input_units(self): for e in (self.poles_zeros_list + self.coefficients_list + [self.response_list, self.fir, self.polynomial]): if e is not None: return e.input_units @property def output_units(self): for e in (self.poles_zeros_list + self.coefficients_list + [self.response_list, self.fir, self.polynomial]): if e is not None: return e.output_units
[docs]class Response(Object): resource_id = String.T(optional=True, xmlstyle='attribute') instrument_sensitivity = Sensitivity.T(optional=True, xmltagname='InstrumentSensitivity') instrument_polynomial = Polynomial.T(optional=True, xmltagname='InstrumentPolynomial') stage_list = List.T(ResponseStage.T(xmltagname='Stage')) def get_pyrocko_response(self, nslc, fake_input_units=None): responses = [] for stage in self.stage_list: responses.extend(stage.get_pyrocko_response(nslc)) if not self.stage_list and self.instrument_sensitivity: responses.append( trace.PoleZeroResponse( constant=self.instrument_sensitivity.value)) if self.instrument_sensitivity: trial = trace.MultiplyResponse(responses) sval = self.instrument_sensitivity.value sfreq = self.instrument_sensitivity.frequency try: check_resp( trial, sval, sfreq, 0.1, prelude='Instrument sensitivity value inconsistent with ' 'sensitivity computed from complete response\n' ' channel: %s' % '.'.join(nslc)) except InconsistentResponseInformation as e: logger.warn(str(e)) if fake_input_units is not None: if not self.instrument_sensitivity or \ self.instrument_sensitivity.input_units is None: raise NoResponseInformation('no input units given') input_units = self.instrument_sensitivity.input_units.name try: conresp = conversion[ fake_input_units.upper(), input_units.upper()] except KeyError: raise NoResponseInformation( 'cannot convert between units: %s, %s' % (fake_input_units, input_units)) if conresp is not None: responses.append(conresp) return trace.MultiplyResponse(responses)
[docs] @classmethod def from_pyrocko_pz_response(cls, presponse, input_unit, output_unit, normalization_frequency=1.0): ''' Convert Pyrocko pole-zero response to StationXML response. :param presponse: Pyrocko pole-zero response :type presponse: :py:class:`~pyrocko.trace.PoleZeroResponse` :param input_unit: Input unit to be reported in the StationXML response. :type input_unit: str :param output_unit: Output unit to be reported in the StationXML response. :type output_unit: str :param normalization_frequency: Frequency where the normalization factor for the StationXML response should be computed. :type normalization_frequency: float ''' norm_factor = 1.0/float(abs( presponse.evaluate(num.array([normalization_frequency]))[0] / presponse.constant)) pzs = PolesZeros( pz_transfer_function_type='LAPLACE (RADIANS/SECOND)', normalization_factor=norm_factor, normalization_frequency=Frequency(normalization_frequency), zero_list=[PoleZero(real=FloatNoUnit(z.real), imaginary=FloatNoUnit(z.imag)) for z in presponse.zeros], pole_list=[PoleZero(real=FloatNoUnit(z.real), imaginary=FloatNoUnit(z.imag)) for z in presponse.poles]) pzs.validate() stage = ResponseStage( number=1, poles_zeros_list=[pzs], stage_gain=Gain(float(abs(presponse.constant))/norm_factor)) resp = Response( instrument_sensitivity=Sensitivity( value=stage.stage_gain.value, input_units=Units(input_unit), output_units=Units(output_unit)), stage_list=[stage]) return resp
[docs]class BaseNode(Object): ''' A base node type for derivation from: Network, Station and Channel types. ''' code = String.T(xmlstyle='attribute') start_date = DummyAwareOptionalTimestamp.T(optional=True, xmlstyle='attribute') end_date = DummyAwareOptionalTimestamp.T(optional=True, xmlstyle='attribute') restricted_status = RestrictedStatus.T(optional=True, xmlstyle='attribute') alternate_code = String.T(optional=True, xmlstyle='attribute') historical_code = String.T(optional=True, xmlstyle='attribute') description = Unicode.T(optional=True, xmltagname='Description') comment_list = List.T(Comment.T(xmltagname='Comment')) def spans(self, *args): if len(args) == 0: return True elif len(args) == 1: return ((self.start_date is None or self.start_date <= args[0]) and (self.end_date is None or args[0] <= self.end_date)) elif len(args) == 2: return ((self.start_date is None or args[1] >= self.start_date) and (self.end_date is None or self.end_date >= args[0]))
[docs]class Channel(BaseNode): ''' Equivalent to SEED blockette 52 and parent element for the related the response blockettes. ''' location_code = String.T(xmlstyle='attribute') external_reference_list = List.T( ExternalReference.T(xmltagname='ExternalReference')) latitude = Latitude.T(xmltagname='Latitude') longitude = Longitude.T(xmltagname='Longitude') elevation = Distance.T(xmltagname='Elevation') depth = Distance.T(xmltagname='Depth') azimuth = Azimuth.T(optional=True, xmltagname='Azimuth') dip = Dip.T(optional=True, xmltagname='Dip') type_list = List.T(Type.T(xmltagname='Type')) sample_rate = SampleRate.T(optional=True, xmltagname='SampleRate') sample_rate_ratio = SampleRateRatio.T(optional=True, xmltagname='SampleRateRatio') storage_format = String.T(optional=True, xmltagname='StorageFormat') clock_drift = ClockDrift.T(optional=True, xmltagname='ClockDrift') calibration_units = Units.T(optional=True, xmltagname='CalibrationUnits') sensor = Equipment.T(optional=True, xmltagname='Sensor') pre_amplifier = Equipment.T(optional=True, xmltagname='PreAmplifier') data_logger = Equipment.T(optional=True, xmltagname='DataLogger') equipment = Equipment.T(optional=True, xmltagname='Equipment') response = Response.T(optional=True, xmltagname='Response') @property def position_values(self): lat = self.latitude.value lon = self.longitude.value elevation = value_or_none(self.elevation) depth = value_or_none(self.depth) return lat, lon, elevation, depth
[docs]class Station(BaseNode): ''' This type represents a Station epoch. It is common to only have a single station epoch with the station's creation and termination dates as the epoch start and end dates. ''' latitude = Latitude.T(xmltagname='Latitude') longitude = Longitude.T(xmltagname='Longitude') elevation = Distance.T(xmltagname='Elevation') site = Site.T(optional=True, xmltagname='Site') vault = Unicode.T(optional=True, xmltagname='Vault') geology = Unicode.T(optional=True, xmltagname='Geology') equipment_list = List.T(Equipment.T(xmltagname='Equipment')) operator_list = List.T(Operator.T(xmltagname='Operator')) creation_date = DummyAwareOptionalTimestamp.T( optional=True, xmltagname='CreationDate') termination_date = DummyAwareOptionalTimestamp.T( optional=True, xmltagname='TerminationDate') total_number_channels = Counter.T( optional=True, xmltagname='TotalNumberChannels') selected_number_channels = Counter.T( optional=True, xmltagname='SelectedNumberChannels') external_reference_list = List.T( ExternalReference.T(xmltagname='ExternalReference')) channel_list = List.T(Channel.T(xmltagname='Channel')) @property def position_values(self): lat = self.latitude.value lon = self.longitude.value elevation = value_or_none(self.elevation) return lat, lon, elevation
[docs]class Network(BaseNode): ''' This type represents the Network layer, all station metadata is contained within this element. The official name of the network or other descriptive information can be included in the Description element. The Network can contain 0 or more Stations. ''' total_number_stations = Counter.T(optional=True, xmltagname='TotalNumberStations') selected_number_stations = Counter.T(optional=True, xmltagname='SelectedNumberStations') station_list = List.T(Station.T(xmltagname='Station')) @property def station_code_list(self): return sorted(set(s.code for s in self.station_list)) @property def sl_code_list(self): sls = set() for station in self.station_list: for channel in station.channel_list: sls.add((station.code, channel.location_code)) return sorted(sls) def summary(self, width=80, indent=4): sls = self.sl_code_list or [(x,) for x in self.station_code_list] lines = ['%s (%i):' % (self.code, len(sls))] if sls: ssls = ['.'.join(x for x in c if x) for c in sls] w = max(len(x) for x in ssls) n = (width - indent) / (w+1) while ssls: lines.append( ' ' * indent + ' '.join(x.ljust(w) for x in ssls[:n])) ssls[:n] = [] return '\n'.join(lines)
def value_or_none(x): if x is not None: return x.value else: return None def pyrocko_station_from_channels(nsl, channels, inconsistencies='warn'): pos = lat, lon, elevation, depth = \ channels[0].position_values if not all(pos == x.position_values for x in channels): info = '\n'.join( ' %s: %s' % (x.code, x.position_values) for x in channels) mess = 'encountered inconsistencies in channel ' \ 'lat/lon/elevation/depth ' \ 'for %s.%s.%s: \n%s' % (nsl + (info,)) if inconsistencies == 'raise': raise InconsistentChannelLocations(mess) elif inconsistencies == 'warn': logger.warn(mess) logger.warn(' -> using mean values') apos = num.array([x.position_values for x in channels], dtype=float) mlat, mlon, mele, mdep = num.nansum(apos, axis=0) \ / num.sum(num.isfinite(apos), axis=0) groups = {} for channel in channels: if channel.code not in groups: groups[channel.code] = [] groups[channel.code].append(channel) pchannels = [] for code in sorted(groups.keys()): data = [ (channel.code, value_or_none(channel.azimuth), value_or_none(channel.dip)) for channel in groups[code]] azimuth, dip = util.consistency_merge( data, message='channel orientation values differ:', error=inconsistencies) pchannels.append( pyrocko.model.Channel(code, azimuth=azimuth, dip=dip)) return pyrocko.model.Station( *nsl, lat=mlat, lon=mlon, elevation=mele, depth=mdep, channels=pchannels)
[docs]class FDSNStationXML(Object): ''' Top-level type for Station XML. Required field are Source (network ID of the institution sending the message) and one or more Network containers or one or more Station containers. ''' schema_version = Float.T(default=1.0, xmlstyle='attribute') source = String.T(xmltagname='Source') sender = String.T(optional=True, xmltagname='Sender') module = String.T(optional=True, xmltagname='Module') module_uri = String.T(optional=True, xmltagname='ModuleURI') created = Timestamp.T(xmltagname='Created') network_list = List.T(Network.T(xmltagname='Network')) xmltagname = 'FDSNStationXML' guessable_xmlns = [guts_xmlns] def get_pyrocko_stations(self, nslcs=None, nsls=None, time=None, timespan=None, inconsistencies='warn'): assert inconsistencies in ('raise', 'warn') if nslcs is not None: nslcs = set(nslcs) if nsls is not None: nsls = set(nsls) tt = () if time is not None: tt = (time,) elif timespan is not None: tt = timespan pstations = [] for network in self.network_list: if not network.spans(*tt): continue for station in network.station_list: if not station.spans(*tt): continue if station.channel_list: loc_to_channels = {} for channel in station.channel_list: if not channel.spans(*tt): continue loc = channel.location_code.strip() if loc not in loc_to_channels: loc_to_channels[loc] = [] loc_to_channels[loc].append(channel) for loc in sorted(loc_to_channels.keys()): channels = loc_to_channels[loc] if nslcs is not None: channels = [channel for channel in channels if (network.code, station.code, loc, channel.code) in nslcs] if not channels: continue nsl = network.code, station.code, loc if nsls is not None and nsl not in nsls: continue pstations.append( pyrocko_station_from_channels( nsl, channels, inconsistencies=inconsistencies)) else: pstations.append(pyrocko.model.Station( network.code, station.code, '*', lat=station.latitude.value, lon=station.longitude.value, elevation=value_or_none(station.elevation), name=station.description or '')) return pstations
[docs] @classmethod def from_pyrocko_stations( cls, pyrocko_stations, add_flat_responses_from=None): ''' Generate :py:class:`FDSNStationXML` from list of :py:class;`pyrocko.model.Station` instances. :param pyrocko_stations: list of :py:class;`pyrocko.model.Station` instances. :param add_flat_responses_from: unit, 'M', 'M/S' or 'M/S**2' ''' from collections import defaultdict network_dict = defaultdict(list) if add_flat_responses_from: assert add_flat_responses_from in ('M', 'M/S', 'M/S**2') extra = dict( response=Response( instrument_sensitivity=Sensitivity( value=1.0, frequency=1.0, input_units=Units(name=add_flat_responses_from)))) else: extra = {} have_offsets = set() for s in pyrocko_stations: if s.north_shift != 0.0 or s.east_shift != 0.0: have_offsets.add(s.nsl()) network, station, location = s.nsl() channel_list = [] for c in s.channels: channel_list.append( Channel( location_code=location, code=c.name, latitude=Latitude(value=s.effective_lat), longitude=Longitude(value=s.effective_lon), elevation=Distance(value=s.elevation), depth=Distance(value=s.depth), azimuth=Azimuth(value=c.azimuth), dip=Dip(value=c.dip), **extra ) ) network_dict[network].append( Station( code=station, latitude=Latitude(value=s.effective_lat), longitude=Longitude(value=s.effective_lon), elevation=Distance(value=s.elevation), channel_list=channel_list) ) if have_offsets: logger.warn( 'StationXML does not support Cartesian offsets in ' 'coordinates. Storing effective lat/lon for stations: %s' % ', '.join('.'.join(nsl) for nsl in sorted(have_offsets))) timestamp = util.to_time_float(time.time()) network_list = [] for k, station_list in network_dict.items(): network_list.append( Network( code=k, station_list=station_list, total_number_stations=len(station_list))) sxml = FDSNStationXML( source='from pyrocko stations list', created=timestamp, network_list=network_list) sxml.validate() return sxml
def iter_network_stations( self, net=None, sta=None, time=None, timespan=None): tt = () if time is not None: tt = (time,) elif timespan is not None: tt = timespan for network in self.network_list: if not network.spans(*tt) or ( net is not None and network.code != net): continue for station in network.station_list: if not station.spans(*tt) or ( sta is not None and station.code != sta): continue yield (network, station) def iter_network_station_channels( self, net=None, sta=None, loc=None, cha=None, time=None, timespan=None): if loc is not None: loc = loc.strip() tt = () if time is not None: tt = (time,) elif timespan is not None: tt = timespan for network in self.network_list: if not network.spans(*tt) or ( net is not None and network.code != net): continue for station in network.station_list: if not station.spans(*tt) or ( sta is not None and station.code != sta): continue if station.channel_list: for channel in station.channel_list: if (not channel.spans(*tt) or (cha is not None and channel.code != cha) or (loc is not None and channel.location_code.strip() != loc)): continue yield (network, station, channel) def get_channel_groups(self, net=None, sta=None, loc=None, cha=None, time=None, timespan=None): groups = {} for network, station, channel in self.iter_network_station_channels( net, sta, loc, cha, time=time, timespan=timespan): net = network.code sta = station.code cha = channel.code loc = channel.location_code.strip() if len(cha) == 3: bic = cha[:2] # band and intrument code according to SEED elif len(cha) == 1: bic = '' else: bic = cha if channel.response and \ channel.response.instrument_sensitivity and \ channel.response.instrument_sensitivity.input_units: unit = channel.response.instrument_sensitivity.input_units.name else: unit = None bic = (bic, unit) k = net, sta, loc if k not in groups: groups[k] = {} if bic not in groups[k]: groups[k][bic] = [] groups[k][bic].append(channel) for nsl, bic_to_channels in groups.items(): bad_bics = [] for bic, channels in bic_to_channels.items(): sample_rates = [] for channel in channels: sample_rates.append(channel.sample_rate.value) if not same(sample_rates): scs = ','.join(channel.code for channel in channels) srs = ', '.join('%e' % x for x in sample_rates) err = 'ignoring channels with inconsistent sampling ' + \ 'rates (%s.%s.%s.%s: %s)' % (nsl + (scs, srs)) logger.warn(err) bad_bics.append(bic) for bic in bad_bics: del bic_to_channels[bic] return groups def choose_channels( self, target_sample_rate=None, priority_band_code=['H', 'B', 'M', 'L', 'V', 'E', 'S'], priority_units=['M/S', 'M/S**2'], priority_instrument_code=['H', 'L'], time=None, timespan=None): nslcs = {} for nsl, bic_to_channels in self.get_channel_groups( time=time, timespan=timespan).items(): useful_bics = [] for bic, channels in bic_to_channels.items(): rate = channels[0].sample_rate.value if target_sample_rate is not None and \ rate < target_sample_rate*0.99999: continue if len(bic[0]) == 2: if bic[0][0] not in priority_band_code: continue if bic[0][1] not in priority_instrument_code: continue unit = bic[1] prio_unit = len(priority_units) try: prio_unit = priority_units.index(unit) except ValueError: pass prio_inst = len(priority_instrument_code) prio_band = len(priority_band_code) if len(channels[0].code) == 3: try: prio_inst = priority_instrument_code.index( channels[0].code[1]) except ValueError: pass try: prio_band = priority_band_code.index( channels[0].code[0]) except ValueError: pass if target_sample_rate is None: rate = -rate useful_bics.append((-len(channels), prio_band, rate, prio_unit, prio_inst, bic)) useful_bics.sort() for _, _, rate, _, _, bic in useful_bics: channels = sorted( bic_to_channels[bic], key=lambda channel: channel.code) if channels: for channel in channels: nslcs[nsl + (channel.code,)] = channel break return nslcs def get_pyrocko_response( self, nslc, time=None, timespan=None, fake_input_units=None): net, sta, loc, cha = nslc resps = [] for _, _, channel in self.iter_network_station_channels( net, sta, loc, cha, time=time, timespan=timespan): resp = channel.response if resp: resps.append(resp.get_pyrocko_response( nslc, fake_input_units=fake_input_units)) if not resps: raise NoResponseInformation('%s.%s.%s.%s' % nslc) elif len(resps) > 1: raise MultipleResponseInformation('%s.%s.%s.%s' % nslc) return resps[0] @property def n_code_list(self): return sorted(set(x.code for x in self.network_list)) @property def ns_code_list(self): nss = set() for network in self.network_list: for station in network.station_list: nss.add((network.code, station.code)) return sorted(nss) @property def nsl_code_list(self): nsls = set() for network in self.network_list: for station in network.station_list: for channel in station.channel_list: nsls.add( (network.code, station.code, channel.location_code)) return sorted(nsls) @property def nslc_code_list(self): nslcs = set() for network in self.network_list: for station in network.station_list: for channel in station.channel_list: nslcs.add( (network.code, station.code, channel.location_code, channel.code)) return sorted(nslcs) def summary(self): lst = [ 'number of n codes: %i' % len(self.n_code_list), 'number of ns codes: %i' % len(self.ns_code_list), 'number of nsl codes: %i' % len(self.nsl_code_list), 'number of nslc codes: %i' % len(self.nslc_code_list) ] return '\n'.join(lst)
[docs]class InconsistentChannelLocations(Exception): pass
[docs]class InvalidRecord(Exception): def __init__(self, line): Exception.__init__(self) self._line = line def __str__(self): return 'Invalid record: "%s"' % self._line
def load_channel_table(stream): networks = {} stations = {} for line in stream: line = str(line.decode('ascii')) if line.startswith('#'): continue t = line.rstrip().split('|') if len(t) != 17: logger.warn('Invalid channel record: %s' % line) continue (net, sta, loc, cha, lat, lon, ele, dep, azi, dip, sens, scale, scale_freq, scale_units, sample_rate, start_date, end_date) = t try: scale = float(scale) except ValueError: scale = None try: scale_freq = float(scale_freq) except ValueError: scale_freq = None try: depth = float(dep) except ValueError: depth = 0.0 try: azi = float(azi) dip = float(dip) except ValueError: azi = None dip = None try: if net not in networks: network = Network(code=net) else: network = networks[net] if (net, sta) not in stations: station = Station( code=sta, latitude=lat, longitude=lon, elevation=ele) station.regularize() else: station = stations[net, sta] if scale: resp = Response( instrument_sensitivity=Sensitivity( value=scale, frequency=scale_freq, input_units=scale_units)) else: resp = None channel = Channel( code=cha, location_code=loc.strip(), latitude=lat, longitude=lon, elevation=ele, depth=depth, azimuth=azi, dip=dip, sensor=Equipment(description=sens), response=resp, sample_rate=sample_rate, start_date=start_date, end_date=end_date or None) channel.regularize() except ValidationError: raise InvalidRecord(line) if net not in networks: networks[net] = network if (net, sta) not in stations: stations[net, sta] = station network.station_list.append(station) station.channel_list.append(channel) return FDSNStationXML( source='created from table input', created=time.time(), network_list=sorted(networks.values(), key=lambda x: x.code)) def primitive_merge(sxs): networks = [] for sx in sxs: networks.extend(sx.network_list) return FDSNStationXML( source='merged from different sources', created=time.time(), network_list=copy.deepcopy( sorted(networks, key=lambda x: x.code)))