Source code for grond.problems.singleforce.problem

import numpy as num
import logging

from pyrocko import gf, util
from pyrocko.guts import String, Float, Dict, StringChoice, Int

from grond.meta import expand_template, Parameter, has_get_plot_classes

from ..base import Problem, ProblemConfig

guts_prefix = 'grond'
logger = logging.getLogger('grond.problems.singleforce.problem')
km = 1e3
as_km = dict(scale_factor=km, scale_unit='km')


class STFType(StringChoice):
    choices = ['HalfSinusoidSTF', 'ResonatorSTF']

    cls = {
        'HalfSinusoidSTF': gf.HalfSinusoidSTF,
        'ResonatorSTF': gf.ResonatorSTF}

    @classmethod
    def base_stf(cls, name):
        return cls.cls[name]()


[docs]class SFProblemConfig(ProblemConfig): ranges = Dict.T(String.T(), gf.Range.T()) distance_min = Float.T(default=0.0) stf_type = STFType.T(default='HalfSinusoidSTF') nthreads = Int.T(default=1)
[docs] def get_problem(self, event, target_groups, targets): if event.depth is None: event.depth = 0. base_source = gf.SFSource.from_pyrocko_event(event) stf = STFType.base_stf(self.stf_type) stf.duration = event.duration or 0.0 base_source.stf = stf subs = dict( event_name=event.name, event_time=util.time_to_str(event.time)) problem = SFProblem( name=expand_template(self.name_template, subs), base_source=base_source, target_groups=target_groups, targets=targets, ranges=self.ranges, distance_min=self.distance_min, stf_type=self.stf_type, norm_exponent=self.norm_exponent, nthreads=self.nthreads) return problem
[docs]@has_get_plot_classes class SFProblem(Problem): problem_parameters = [ Parameter('time', 's', label='Time'), Parameter('north_shift', 'm', label='Northing', **as_km), Parameter('east_shift', 'm', label='Easting', **as_km), Parameter('depth', 'm', label='Depth', **as_km), Parameter('fn', 'N', label='$F_{n}$'), Parameter('fe', 'N', label='$F_{e}$'), Parameter('fd', 'N', label='$F_{d}$')] problem_parameters_stf = { 'HalfSinusoidSTF': [ Parameter('duration', 's', label='Duration')], 'ResonatorSTF': [ Parameter('duration', 's', label='Duration'), Parameter('frequency', 'Hz', label='Frequency')]} dependants = [] distance_min = Float.T(default=0.0) stf_type = STFType.T(default='HalfSinusoidSTF') def __init__(self, **kwargs): Problem.__init__(self, **kwargs) self.deps_cache = {} self.problem_parameters = self.problem_parameters \ + self.problem_parameters_stf[self.stf_type] self._base_stf = STFType.base_stf(self.stf_type) def get_stf(self, d): d_stf = {} for p in self.problem_parameters_stf[self.stf_type]: d_stf[p.name] = float(d[p.name]) return self._base_stf.clone(**d_stf) def get_source(self, x): d = self.get_parameter_dict(x) p = {} for k in self.base_source.keys(): if k in d: p[k] = float( self.ranges[k].make_relative(self.base_source[k], d[k])) source = self.base_source.clone(stf=self.get_stf(d), **p) return source def make_dependant(self, xs, pname): pass def pack_stf(self, stf): return [ stf[p.name] for p in self.problem_parameters_stf[self.stf_type]] def pack(self, source): x = num.array([ source.time - self.base_source.time, source.north_shift, source.east_shift, source.depth, source.fn, source.fe, source.fd, ] + self.pack_stf(source.stf), dtype=num.float) return x def random_uniform(self, xbounds, rstate, fixed_magnitude=None): x = num.zeros(self.nparameters) for i in range(self.nparameters): x[i] = rstate.uniform(xbounds[i, 0], xbounds[i, 1]) return x.tolist() def preconstrain(self, x): d = self.get_parameter_dict(x) x = self.get_parameter_array(d) return x @classmethod def get_plot_classes(cls): from . import plot plots = super(SFProblem, cls).get_plot_classes() plots.extend([plot.SFLocationPlot, plot.SFForcePlot]) return plots
__all__ = ''' SFProblem SFProblemConfig '''.split()