import numpy as num
import logging
from pyrocko import gf, util
from pyrocko.guts import String, Float, Dict, StringChoice, Int
from grond.meta import expand_template, Parameter, has_get_plot_classes
from ..base import Problem, ProblemConfig
guts_prefix = 'grond'
logger = logging.getLogger('grond.problems.singleforce.problem')
km = 1e3
as_km = dict(scale_factor=km, scale_unit='km')
class STFType(StringChoice):
choices = ['HalfSinusoidSTF', 'ResonatorSTF']
cls = {
'HalfSinusoidSTF': gf.HalfSinusoidSTF,
'ResonatorSTF': gf.ResonatorSTF}
@classmethod
def base_stf(cls, name):
return cls.cls[name]()
[docs]class SFProblemConfig(ProblemConfig):
ranges = Dict.T(String.T(), gf.Range.T())
distance_min = Float.T(default=0.0)
stf_type = STFType.T(default='HalfSinusoidSTF')
nthreads = Int.T(default=1)
[docs] def get_problem(self, event, target_groups, targets):
if event.depth is None:
event.depth = 0.
base_source = gf.SFSource.from_pyrocko_event(event)
stf = STFType.base_stf(self.stf_type)
stf.duration = event.duration or 0.0
base_source.stf = stf
subs = dict(
event_name=event.name,
event_time=util.time_to_str(event.time))
problem = SFProblem(
name=expand_template(self.name_template, subs),
base_source=base_source,
target_groups=target_groups,
targets=targets,
ranges=self.ranges,
distance_min=self.distance_min,
stf_type=self.stf_type,
norm_exponent=self.norm_exponent,
nthreads=self.nthreads)
return problem
[docs]@has_get_plot_classes
class SFProblem(Problem):
problem_parameters = [
Parameter('time', 's', label='Time'),
Parameter('north_shift', 'm', label='Northing', **as_km),
Parameter('east_shift', 'm', label='Easting', **as_km),
Parameter('depth', 'm', label='Depth', **as_km),
Parameter('fn', 'N', label='$F_{n}$'),
Parameter('fe', 'N', label='$F_{e}$'),
Parameter('fd', 'N', label='$F_{d}$')]
problem_parameters_stf = {
'HalfSinusoidSTF': [
Parameter('duration', 's', label='Duration')],
'ResonatorSTF': [
Parameter('duration', 's', label='Duration'),
Parameter('frequency', 'Hz', label='Frequency')]}
dependants = []
distance_min = Float.T(default=0.0)
stf_type = STFType.T(default='HalfSinusoidSTF')
def __init__(self, **kwargs):
Problem.__init__(self, **kwargs)
self.deps_cache = {}
self.problem_parameters = self.problem_parameters \
+ self.problem_parameters_stf[self.stf_type]
self._base_stf = STFType.base_stf(self.stf_type)
def get_stf(self, d):
d_stf = {}
for p in self.problem_parameters_stf[self.stf_type]:
d_stf[p.name] = float(d[p.name])
return self._base_stf.clone(**d_stf)
def get_source(self, x):
d = self.get_parameter_dict(x)
p = {}
for k in self.base_source.keys():
if k in d:
p[k] = float(
self.ranges[k].make_relative(self.base_source[k], d[k]))
source = self.base_source.clone(stf=self.get_stf(d), **p)
return source
def make_dependant(self, xs, pname):
pass
def pack_stf(self, stf):
return [
stf[p.name] for p in self.problem_parameters_stf[self.stf_type]]
def pack(self, source):
x = num.array([
source.time - self.base_source.time,
source.north_shift,
source.east_shift,
source.depth,
source.fn,
source.fe,
source.fd,
] + self.pack_stf(source.stf), dtype=num.float)
return x
def random_uniform(self, xbounds, rstate, fixed_magnitude=None):
x = num.zeros(self.nparameters)
for i in range(self.nparameters):
x[i] = rstate.uniform(xbounds[i, 0], xbounds[i, 1])
return x.tolist()
def preconstrain(self, x):
d = self.get_parameter_dict(x)
x = self.get_parameter_array(d)
return x
@classmethod
def get_plot_classes(cls):
from . import plot
plots = super(SFProblem, cls).get_plot_classes()
plots.extend([plot.SFLocationPlot, plot.SFForcePlot])
return plots
__all__ = '''
SFProblem
SFProblemConfig
'''.split()