1# https://pyrocko.org - GPLv3 

2# 

3# The Pyrocko Developers, 21st Century 

4# ---|P------/S----------~Lg---------- 

5 

6import numpy as num 

7import logging 

8 

9from pyrocko import moment_tensor as mt 

10from pyrocko.guts import Float, String, Timestamp, Int 

11from pyrocko.model import Location 

12from pyrocko.modelling import okada_ext 

13from pyrocko.util import get_threadpool_limits 

14 

15guts_prefix = 'modelling' 

16 

17logger = logging.getLogger(__name__) 

18 

19d2r = num.pi/180. 

20r2d = 180./num.pi 

21km = 1e3 

22 

23 

24class AnalyticalSource(Location): 

25 ''' 

26 Base class for analytical source models. 

27 ''' 

28 

29 name = String.T( 

30 optional=True, 

31 default='') 

32 

33 time = Timestamp.T( 

34 default=0., 

35 help='Source origin time', 

36 optional=True) 

37 

38 vr = Float.T( 

39 default=0., 

40 help='Rupture velocity [m/s]', 

41 optional=True) 

42 

43 @property 

44 def northing(self): 

45 return self.north_shift 

46 

47 @property 

48 def easting(self): 

49 return self.east_shift 

50 

51 

52class AnalyticalRectangularSource(AnalyticalSource): 

53 ''' 

54 Rectangular analytical source model. 

55 

56 Coordinates on the source plane are with respect to the origin point given 

57 by `(lat, lon, east_shift, north_shift, depth)`. 

58 ''' 

59 

60 strike = Float.T( 

61 default=0.0, 

62 help='Strike direction in [deg], measured clockwise from north.') 

63 

64 dip = Float.T( 

65 default=90.0, 

66 help='Dip angle in [deg], measured downward from horizontal.') 

67 

68 rake = Float.T( 

69 default=0.0, 

70 help='Rake angle in [deg], measured counter-clockwise from ' 

71 'right-horizontal in on-plane view.') 

72 

73 al1 = Float.T( 

74 default=0., 

75 help='Left edge source plane coordinate [m].') 

76 

77 al2 = Float.T( 

78 default=0., 

79 help='Right edge source plane coordinate [m].') 

80 

81 aw1 = Float.T( 

82 default=0., 

83 help='Lower edge source plane coordinate [m].') 

84 

85 aw2 = Float.T( 

86 default=0., 

87 help='Upper edge source plane coordinate [m].') 

88 

89 slip = Float.T( 

90 default=0., 

91 help='Slip on the rectangular source area [m].', 

92 optional=True) 

93 

94 @property 

95 def length(self): 

96 return abs(-self.al1 + self.al2) 

97 

98 @property 

99 def width(self): 

100 return abs(-self.aw1 + self.aw2) 

101 

102 @property 

103 def area(self): 

104 return self.width * self.length 

105 

106 

107class OkadaSource(AnalyticalRectangularSource): 

108 ''' 

109 Rectangular Okada source model. 

110 ''' 

111 

112 opening = Float.T( 

113 default=0., 

114 help='Opening of the plane in [m].', 

115 optional=True) 

116 

117 poisson__ = Float.T( 

118 default=0.25, 

119 help='Poisson\'s ratio :math:`\\nu`.', 

120 optional=True) 

121 

122 lamb__ = Float.T( 

123 help='First Lame\' s parameter :math:`\\lambda` [Pa].', 

124 optional=True) 

125 

126 shearmod__ = Float.T( 

127 default=32.0e9, 

128 help='Shear modulus along the plane :math:`\\mu` [Pa].', 

129 optional=True) 

130 

131 @property 

132 def poisson(self): 

133 ''' 

134 Calculation of Poisson\' s ratio :math:`\\nu` (if not given). 

135 

136 The Poisson\' s ratio :math:`\\nu` can be calculated from the Lame 

137 parameters :math:`\\lambda` and :math:`\\mu` using :math:`\\nu = 

138 \\frac{\\lambda}{2(\\lambda + \\mu)}` (e.g. Mueller 2007). 

139 ''' 

140 

141 if self.poisson__ is not None: 

142 return self.poisson__ 

143 

144 if self.shearmod__ is None or self.lamb__ is None: 

145 raise ValueError('Shearmod and lambda are needed') 

146 

147 return (self.lamb__) / (2. * (self.lamb__ + self.shearmod__)) 

148 

149 @poisson.setter 

150 def poisson(self, poisson): 

151 self.poisson__ = poisson 

152 

153 @property 

154 def lamb(self): 

155 ''' 

156 Calculation of first Lame\' s parameter (if not given). 

157 

158 Poisson\' s ratio :math:`\\nu` and shear modulus :math:`\\mu` must be 

159 available. 

160 ''' 

161 

162 if self.lamb__ is not None: 

163 return self.lamb__ 

164 

165 if self.shearmod__ is None or self.poisson__ is None: 

166 raise ValueError('Shearmod and poisson ratio are needed') 

167 

168 return ( 

169 2. * self.poisson__ * self.shearmod__) / (1. - 2. * self.poisson__) 

170 

171 @lamb.setter 

172 def lamb(self, lamb): 

173 self.lamb__ = lamb 

174 

175 @property 

176 def shearmod(self): 

177 ''' 

178 Calculation of shear modulus :math:`\\mu` (if not given). 

179 

180 Poisson ratio\' s :math:`\\nu` must be available. 

181 

182 .. important :: 

183 

184 We assume a perfect elastic solid with :math:`K=\\frac{5}{3}\\mu`. 

185 

186 Through :math:`\\mu = \\frac{3K(1-2\\nu)}{2(1+\\nu)}` this leads to 

187 :math:`\\mu = \\frac{8(1+\\nu)}{1-2\\nu}`. 

188 

189 ''' 

190 

191 if self.shearmod__ is not None: 

192 return self.shearmod__ 

193 

194 if self.poisson__ is None: 

195 raise ValueError('Poisson ratio is needed') 

196 

197 return (8. * (1. + self.poisson__)) / (1. - 2. * self.poisson__) 

198 

199 @shearmod.setter 

200 def shearmod(self, shearmod): 

201 self.shearmod__ = shearmod 

202 

203 @property 

204 def seismic_moment(self): 

205 ''' 

206 Scalar Seismic moment :math:`M_0`. 

207 

208 Code copied from Kite. It disregards the opening (as for now). 

209 We assume :math:`M_0 = mu A D`. 

210 

211 .. important :: 

212 

213 We assume a perfect elastic solid with :math:`K=\\frac{5}{3}\\mu`. 

214 

215 Through :math:`\\mu = \\frac{3K(1-2\\nu)}{2(1+\\nu)}` this leads to 

216 :math:`\\mu = \\frac{8(1+\\nu)}{1-2\\nu}`. 

217 

218 :return: 

219 Seismic moment release. 

220 :rtype: 

221 float 

222 ''' 

223 

224 mu = self.shearmod 

225 

226 disl = 0. 

227 if self.slip: 

228 disl = self.slip 

229 if self.opening: 

230 disl = (disl**2 + self.opening**2)**.5 

231 

232 return mu * self.area * disl 

233 

234 @property 

235 def moment_magnitude(self): 

236 ''' 

237 Moment magnitude :math:`M_\\mathrm{w}` from seismic moment. 

238 

239 We assume :math:`M_\\mathrm{w} = {\\frac{2}{3}}\\log_{10}(M_0) - 10.7`. 

240 

241 :returns: 

242 Moment magnitude. 

243 :rtype: 

244 float 

245 ''' 

246 return mt.moment_to_magnitude(self.seismic_moment) 

247 

248 def source_patch(self): 

249 ''' 

250 Build source information array for okada_ext.okada input. 

251 

252 :return: 

253 Source data as input for okada_ext.okada. 

254 :rtype: 

255 :py:class:`~numpy.ndarray`: ``(9, )`` 

256 ''' 

257 return num.array([ 

258 self.northing, 

259 self.easting, 

260 self.depth, 

261 self.strike, 

262 self.dip, 

263 self.al1, 

264 self.al2, 

265 self.aw1, 

266 self.aw2]) 

267 

268 def source_disloc(self): 

269 ''' 

270 Build source dislocation for okada_ext.okada input. 

271 

272 :return: 

273 Source dislocation data as input for okada_ext.okada 

274 :rtype: 

275 :py:class:`~numpy.ndarray`: ``(3, )`` 

276 ''' 

277 return num.array([ 

278 num.cos(self.rake * d2r) * self.slip, 

279 num.sin(self.rake * d2r) * self.slip, 

280 self.opening]) 

281 

282 def discretize(self, nlength, nwidth, *args, **kwargs): 

283 ''' 

284 Discretize fault into rectilinear grid of fault patches. 

285 

286 Fault orientation, slip and elastic parameters are passed to the 

287 sub-faults unchanged. 

288 

289 :param nlength: 

290 Number of patches in strike direction. 

291 :type nlength: 

292 int 

293 

294 :param nwidth: 

295 Number of patches in down-dip direction. 

296 :type nwidth: 

297 int 

298 

299 :return: 

300 Discrete fault patches. 

301 :rtype: 

302 list of :py:class:`~pyrocko.modelling.okada.OkadaPatch` 

303 ''' 

304 assert nlength > 0 

305 assert nwidth > 0 

306 

307 il = num.repeat(num.arange(nlength), nwidth) 

308 iw = num.tile(num.arange(nwidth), nlength) 

309 

310 patch_length = self.length / nlength 

311 patch_width = self.width / nwidth 

312 

313 al1 = -patch_length / 2. 

314 al2 = patch_length / 2. 

315 aw1 = -patch_width / 2. 

316 aw2 = patch_width / 2. 

317 

318 source_points = num.zeros((nlength * nwidth, 3)) 

319 source_points[:, 0] = il * patch_length + patch_length / 2. 

320 source_points[:, 1] = iw * patch_width + patch_width / 2. 

321 

322 source_points[:, 0] += self.al1 

323 source_points[:, 1] -= self.aw2 

324 

325 rotmat = num.asarray( 

326 mt.euler_to_matrix(self.dip*d2r, self.strike*d2r, 0.)) 

327 

328 source_points_rot = num.dot(rotmat.T, source_points.T).T 

329 source_points_rot[:, 0] += self.northing 

330 source_points_rot[:, 1] += self.easting 

331 source_points_rot[:, 2] += self.depth 

332 

333 kwargs = { 

334 prop: getattr(self, prop) for prop in self.T.propnames 

335 if prop not in [ 

336 'north_shift', 'east_shift', 'depth', 

337 'al1', 'al2', 'aw1', 'aw2']} 

338 

339 return ( 

340 [OkadaPatch( 

341 parent=self, 

342 ix=src_point[0], 

343 iy=src_point[1], 

344 north_shift=coord[0], 

345 east_shift=coord[1], 

346 depth=coord[2], 

347 al1=al1, al2=al2, aw1=aw1, aw2=aw2, **kwargs) 

348 for src_point, coord in zip(source_points, source_points_rot)], 

349 source_points) 

350 

351 

352class OkadaPatch(OkadaSource): 

353 

354 ''' 

355 Okada source with additional 2D indexes for bookkeeping. 

356 ''' 

357 

358 ix = Int.T(help='Relative index of the patch in x') 

359 iy = Int.T(help='Relative index of the patch in y') 

360 

361 def __init__(self, parent=None, *args, **kwargs): 

362 OkadaSource.__init__(self, *args, **kwargs) 

363 self.parent = parent 

364 

365 

366def make_okada_coefficient_matrix( 

367 source_patches_list, 

368 pure_shear=False, 

369 rotate_sdn=True, 

370 nthreads=1, variant='normal'): 

371 

372 ''' 

373 Build coefficient matrix for given fault patches. 

374 

375 The boundary element method (BEM) for a discretized fault and the 

376 determination of the slip distribution from stress drop is based on the 

377 relation :math:`stress = coefmat \\cdot displ`. Here the coefficient matrix 

378 is built, based on the displacements from Okada's solution and their 

379 partial derivatives. 

380 

381 :param source_patches_list: 

382 Source patches, to be used in BEM. 

383 :type source_patches_list: 

384 list of :py:class:`~pyrocko.modelling.okada.OkadaSource`. 

385 :param pure_shear: 

386 If ``True``, only shear forces are taken into account. 

387 :type pure_shear: 

388 optional, bool 

389 :param rotate_sdn: 

390 If ``True``, rotate to strike, dip, normal. 

391 :type rotate_sdn: 

392 optional, bool 

393 :param nthreads: 

394 Number of threads. 

395 :type nthreads: 

396 optional, int 

397 

398 :return: 

399 Coefficient matrix for all source combinations. 

400 :rtype: 

401 :py:class:`~numpy.ndarray`: 

402 ``(len(source_patches_list) * 3, len(source_patches_list) * 3)`` 

403 ''' 

404 

405 if variant == 'slow': 

406 return _make_okada_coefficient_matrix_slow( 

407 source_patches_list, pure_shear, rotate_sdn, nthreads) 

408 

409 source_patches = num.array([ 

410 src.source_patch() for src in source_patches_list]) 

411 receiver_coords = source_patches[:, :3].copy() 

412 

413 npoints = len(source_patches_list) 

414 

415 if pure_shear: 

416 n_eq = 2 

417 else: 

418 n_eq = 3 

419 

420 coefmat = num.zeros((npoints * 3, npoints * 3)) 

421 

422 lambda_mean = num.mean([src.lamb for src in source_patches_list]) 

423 mu_mean = num.mean([src.shearmod for src in source_patches_list]) 

424 

425 unit_disl = 1. 

426 disl_cases = { 

427 'strikeslip': { 

428 'slip': unit_disl, 

429 'opening': 0., 

430 'rake': 0.}, 

431 'dipslip': { 

432 'slip': unit_disl, 

433 'opening': 0., 

434 'rake': 90.}, 

435 'tensileslip': { 

436 'slip': 0., 

437 'opening': unit_disl, 

438 'rake': 0.} 

439 } 

440 

441 diag_ind = [0, 4, 8] 

442 kron = num.zeros(9) 

443 kron[diag_ind] = 1. 

444 

445 if variant == 'normal': 

446 kron = kron[num.newaxis, num.newaxis, :] 

447 else: 

448 kron = kron[num.newaxis, :] 

449 

450 for idisl, case_type in enumerate([ 

451 'strikeslip', 'dipslip', 'tensileslip'][:n_eq]): 

452 case = disl_cases[case_type] 

453 source_disl = num.array([ 

454 case['slip'] * num.cos(case['rake'] * d2r), 

455 case['slip'] * num.sin(case['rake'] * d2r), 

456 case['opening']]) 

457 

458 if variant == 'normal': 

459 results = okada_ext.okada( 

460 source_patches, 

461 num.tile(source_disl, npoints).reshape(-1, 3), 

462 receiver_coords, 

463 lambda_mean, 

464 mu_mean, 

465 nthreads=nthreads, 

466 rotate_sdn=int(rotate_sdn), 

467 stack_sources=int(variant != 'normal')) 

468 

469 eps = 0.5 * ( 

470 results[:, :, 3:] + 

471 results[:, :, (3, 6, 9, 4, 7, 10, 5, 8, 11)]) 

472 

473 dilatation \ 

474 = eps[:, :, diag_ind].sum(axis=-1)[:, :, num.newaxis] 

475 

476 stress_sdn = kron*lambda_mean*dilatation + 2.*mu_mean*eps 

477 coefmat[:, idisl::3] = stress_sdn[:, :, (2, 5, 8)]\ 

478 .reshape(-1, npoints*3).T 

479 else: 

480 for isrc, source in enumerate(source_patches): 

481 results = okada_ext.okada( 

482 source[num.newaxis, :], 

483 source_disl[num.newaxis, :], 

484 receiver_coords, 

485 lambda_mean, 

486 mu_mean, 

487 nthreads=nthreads, 

488 rotate_sdn=int(rotate_sdn)) 

489 

490 eps = 0.5 * ( 

491 results[:, 3:] + 

492 results[:, (3, 6, 9, 4, 7, 10, 5, 8, 11)]) 

493 

494 dilatation \ 

495 = num.sum(eps[:, diag_ind], axis=1)[:, num.newaxis] 

496 stress_sdn \ 

497 = kron * lambda_mean * dilatation+2. * mu_mean * eps 

498 

499 coefmat[:, isrc*3 + idisl] \ 

500 = stress_sdn[:, (2, 5, 8)].ravel() 

501 

502 if pure_shear: 

503 coefmat[2::3, :] = 0. 

504 

505 return -coefmat / unit_disl 

506 

507 

508def _make_okada_coefficient_matrix_slow( 

509 source_patches_list, pure_shear=False, rotate_sdn=True, nthreads=1): 

510 

511 source_patches = num.array([ 

512 src.source_patch() for src in source_patches_list]) 

513 receiver_coords = source_patches[:, :3].copy() 

514 

515 npoints = len(source_patches_list) 

516 

517 if pure_shear: 

518 n_eq = 2 

519 else: 

520 n_eq = 3 

521 

522 coefmat = num.zeros((npoints * 3, npoints * 3)) 

523 

524 def ned2sdn_rotmat(strike, dip): 

525 rotmat = mt.euler_to_matrix( 

526 (dip + 180.) * d2r, strike * d2r, 0.).A 

527 return rotmat 

528 

529 lambda_mean = num.mean([src.lamb for src in source_patches_list]) 

530 shearmod_mean = num.mean([src.shearmod for src in source_patches_list]) 

531 

532 unit_disl = 1. 

533 disl_cases = { 

534 'strikeslip': { 

535 'slip': unit_disl, 

536 'opening': 0., 

537 'rake': 0.}, 

538 'dipslip': { 

539 'slip': unit_disl, 

540 'opening': 0., 

541 'rake': 90.}, 

542 'tensileslip': { 

543 'slip': 0., 

544 'opening': unit_disl, 

545 'rake': 0.} 

546 } 

547 for idisl, case_type in enumerate([ 

548 'strikeslip', 'dipslip', 'tensileslip'][:n_eq]): 

549 case = disl_cases[case_type] 

550 source_disl = num.array([ 

551 case['slip'] * num.cos(case['rake'] * d2r), 

552 case['slip'] * num.sin(case['rake'] * d2r), 

553 case['opening']]) 

554 

555 for isource, source in enumerate(source_patches): 

556 results = okada_ext.okada( 

557 source[num.newaxis, :].copy(), 

558 source_disl[num.newaxis, :].copy(), 

559 receiver_coords, 

560 lambda_mean, 

561 shearmod_mean, 

562 nthreads=nthreads, 

563 rotate_sdn=int(rotate_sdn)) 

564 

565 for irec in range(receiver_coords.shape[0]): 

566 eps = num.zeros((3, 3)) 

567 for m in range(3): 

568 for n in range(3): 

569 eps[m, n] = 0.5 * ( 

570 results[irec][m * 3 + n + 3] + 

571 results[irec][n * 3 + m + 3]) 

572 

573 stress = num.zeros((3, 3)) 

574 dilatation = num.sum([eps[i, i] for i in range(3)]) 

575 

576 for m, n in zip([0, 0, 0, 1, 1, 2], [0, 1, 2, 1, 2, 2]): 

577 if m == n: 

578 stress[m, n] = \ 

579 lambda_mean * \ 

580 dilatation + \ 

581 2. * shearmod_mean * \ 

582 eps[m, n] 

583 

584 else: 

585 stress[m, n] = \ 

586 2. * shearmod_mean * \ 

587 eps[m, n] 

588 stress[n, m] = stress[m, n] 

589 

590 normal = num.array([0., 0., -1.]) 

591 for isig in range(3): 

592 tension = num.sum(stress[isig, :] * normal) 

593 coefmat[irec * n_eq + isig, isource * n_eq + idisl] = \ 

594 tension / unit_disl 

595 

596 return coefmat 

597 

598 

599def invert_fault_dislocations_bem( 

600 stress_field, 

601 coef_mat=None, 

602 source_list=None, 

603 pure_shear=False, 

604 epsilon=None, 

605 nthreads=1, 

606 **kwargs): 

607 ''' 

608 BEM least squares inversion to get fault dislocations given stress field. 

609 

610 Follows least squares inversion approach by Menke (1989) to calculate 

611 dislocations on a fault with several segments from a given stress field. 

612 The coefficient matrix connecting stresses and displacements of the fault 

613 patches can either be specified by the user (``coef_mat``) or it is 

614 calculated using the solution of Okada (1992) for a rectangular fault in a 

615 homogeneous half space (``source_list``). 

616 

617 :param stress_field: 

618 Stress change [Pa] for each source patch (as 

619 ``stress_field[isource, icomponent]`` where isource indexes the source 

620 patch and ``icomponent`` indexes component, ordered (strike, dip, 

621 tensile). 

622 :type stress_field: 

623 :py:class:`~numpy.ndarray`: ``(nsources, 3)`` 

624 

625 :param coef_mat: 

626 Coefficient matrix connecting source patch dislocations and the stress 

627 field. 

628 :type coef_mat: 

629 optional, :py:class:`~numpy.ndarray`: 

630 ``(len(source_list) * 3, len(source_list) * 3)`` 

631 

632 :param source_list: 

633 Source patches to be used for BEM. 

634 :type source_list: 

635 optional, list of 

636 :py:class:`~pyrocko.modelling.okada.OkadaSource` 

637 

638 :param epsilon: 

639 If given, values in ``coef_mat`` smaller than ``epsilon`` are set to 

640 zero. 

641 :type epsilon: 

642 optional, float 

643 

644 :param nthreads: 

645 Number of threads allowed. 

646 :type nthreads: 

647 int 

648 

649 :return: 

650 Inverted displacements as ``displacements[isource, icomponent]`` 

651 where isource indexes the source patch and ``icomponent`` indexes 

652 component, ordered (strike, dip, tensile). 

653 :rtype: 

654 :py:class:`~numpy.ndarray`: ``(nsources, 3)`` 

655 ''' 

656 

657 if source_list is not None and coef_mat is None: 

658 coef_mat = make_okada_coefficient_matrix( 

659 source_list, pure_shear=pure_shear, nthreads=nthreads, 

660 **kwargs) 

661 

662 if epsilon is not None: 

663 coef_mat[coef_mat < epsilon] = 0. 

664 

665 idx = num.arange(0, coef_mat.shape[0]) 

666 if pure_shear: 

667 idx = idx[idx % 3 != 2] 

668 

669 coef_mat_in = coef_mat[idx, :][:, idx] 

670 disloc_est = num.zeros(coef_mat.shape[0]) 

671 

672 if stress_field.ndim == 2: 

673 stress_field = stress_field.ravel() 

674 

675 threadpool_limits = get_threadpool_limits() 

676 

677 with threadpool_limits(limits=nthreads, user_api='blas'): 

678 try: 

679 disloc_est[idx] = num.linalg.multi_dot([ 

680 num.linalg.inv(num.dot(coef_mat_in.T, coef_mat_in)), 

681 coef_mat_in.T, 

682 stress_field[idx]]) 

683 except num.linalg.LinAlgError as e: 

684 logger.warning('Linear inversion failed!') 

685 logger.warning( 

686 'coef_mat: %s\nstress_field: %s', 

687 coef_mat_in, stress_field[idx]) 

688 raise e 

689 return disloc_est.reshape(-1, 3) 

690 

691 

692__all__ = [ 

693 'AnalyticalSource', 

694 'AnalyticalRectangularSource', 

695 'OkadaSource', 

696 'OkadaPatch', 

697 'make_okada_coefficient_matrix', 

698 'invert_fault_dislocations_bem']