1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

# 

# The Python Imaging Library. 

# $Id$ 

# 

# standard filters 

# 

# History: 

# 1995-11-27 fl Created 

# 2002-06-08 fl Added rank and mode filters 

# 2003-09-15 fl Fixed rank calculation in rank filter; added expand call 

# 

# Copyright (c) 1997-2003 by Secret Labs AB. 

# Copyright (c) 1995-2002 by Fredrik Lundh. 

# 

# See the README file for information on usage and redistribution. 

# 

 

from __future__ import division 

 

import functools 

 

try: 

import numpy 

except ImportError: # pragma: no cover 

numpy = None 

 

 

class Filter(object): 

pass 

 

 

class MultibandFilter(Filter): 

pass 

 

 

class BuiltinFilter(MultibandFilter): 

def filter(self, image): 

if image.mode == "P": 

raise ValueError("cannot filter palette images") 

return image.filter(*self.filterargs) 

 

 

class Kernel(BuiltinFilter): 

""" 

Create a convolution kernel. The current version only 

supports 3x3 and 5x5 integer and floating point kernels. 

 

In the current version, kernels can only be applied to 

"L" and "RGB" images. 

 

:param size: Kernel size, given as (width, height). In the current 

version, this must be (3,3) or (5,5). 

:param kernel: A sequence containing kernel weights. 

:param scale: Scale factor. If given, the result for each pixel is 

divided by this value. the default is the sum of the 

kernel weights. 

:param offset: Offset. If given, this value is added to the result, 

after it has been divided by the scale factor. 

""" 

name = "Kernel" 

 

def __init__(self, size, kernel, scale=None, offset=0): 

if scale is None: 

# default scale is sum of kernel 

scale = functools.reduce(lambda a, b: a+b, kernel) 

if size[0] * size[1] != len(kernel): 

raise ValueError("not enough coefficients in kernel") 

self.filterargs = size, scale, offset, kernel 

 

 

class RankFilter(Filter): 

""" 

Create a rank filter. The rank filter sorts all pixels in 

a window of the given size, and returns the **rank**'th value. 

 

:param size: The kernel size, in pixels. 

:param rank: What pixel value to pick. Use 0 for a min filter, 

``size * size / 2`` for a median filter, ``size * size - 1`` 

for a max filter, etc. 

""" 

name = "Rank" 

 

def __init__(self, size, rank): 

self.size = size 

self.rank = rank 

 

def filter(self, image): 

if image.mode == "P": 

raise ValueError("cannot filter palette images") 

image = image.expand(self.size//2, self.size//2) 

return image.rankfilter(self.size, self.rank) 

 

 

class MedianFilter(RankFilter): 

""" 

Create a median filter. Picks the median pixel value in a window with the 

given size. 

 

:param size: The kernel size, in pixels. 

""" 

name = "Median" 

 

def __init__(self, size=3): 

self.size = size 

self.rank = size*size//2 

 

 

class MinFilter(RankFilter): 

""" 

Create a min filter. Picks the lowest pixel value in a window with the 

given size. 

 

:param size: The kernel size, in pixels. 

""" 

name = "Min" 

 

def __init__(self, size=3): 

self.size = size 

self.rank = 0 

 

 

class MaxFilter(RankFilter): 

""" 

Create a max filter. Picks the largest pixel value in a window with the 

given size. 

 

:param size: The kernel size, in pixels. 

""" 

name = "Max" 

 

def __init__(self, size=3): 

self.size = size 

self.rank = size*size-1 

 

 

class ModeFilter(Filter): 

""" 

Create a mode filter. Picks the most frequent pixel value in a box with the 

given size. Pixel values that occur only once or twice are ignored; if no 

pixel value occurs more than twice, the original pixel value is preserved. 

 

:param size: The kernel size, in pixels. 

""" 

name = "Mode" 

 

def __init__(self, size=3): 

self.size = size 

 

def filter(self, image): 

return image.modefilter(self.size) 

 

 

class GaussianBlur(MultibandFilter): 

"""Gaussian blur filter. 

 

:param radius: Blur radius. 

""" 

name = "GaussianBlur" 

 

def __init__(self, radius=2): 

self.radius = radius 

 

def filter(self, image): 

return image.gaussian_blur(self.radius) 

 

 

class BoxBlur(MultibandFilter): 

"""Blurs the image by setting each pixel to the average value of the pixels 

in a square box extending radius pixels in each direction. 

Supports float radius of arbitrary size. Uses an optimized implementation 

which runs in linear time relative to the size of the image 

for any radius value. 

 

:param radius: Size of the box in one direction. Radius 0 does not blur, 

returns an identical image. Radius 1 takes 1 pixel 

in each direction, i.e. 9 pixels in total. 

""" 

name = "BoxBlur" 

 

def __init__(self, radius): 

self.radius = radius 

 

def filter(self, image): 

return image.box_blur(self.radius) 

 

 

class UnsharpMask(MultibandFilter): 

"""Unsharp mask filter. 

 

See Wikipedia's entry on `digital unsharp masking`_ for an explanation of 

the parameters. 

 

:param radius: Blur Radius 

:param percent: Unsharp strength, in percent 

:param threshold: Threshold controls the minimum brightness change that 

will be sharpened 

 

.. _digital unsharp masking: https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking 

 

""" # noqa: E501 

name = "UnsharpMask" 

 

def __init__(self, radius=2, percent=150, threshold=3): 

self.radius = radius 

self.percent = percent 

self.threshold = threshold 

 

def filter(self, image): 

return image.unsharp_mask(self.radius, self.percent, self.threshold) 

 

 

class BLUR(BuiltinFilter): 

name = "Blur" 

filterargs = (5, 5), 16, 0, ( 

1, 1, 1, 1, 1, 

1, 0, 0, 0, 1, 

1, 0, 0, 0, 1, 

1, 0, 0, 0, 1, 

1, 1, 1, 1, 1 

) 

 

 

class CONTOUR(BuiltinFilter): 

name = "Contour" 

filterargs = (3, 3), 1, 255, ( 

-1, -1, -1, 

-1, 8, -1, 

-1, -1, -1 

) 

 

 

class DETAIL(BuiltinFilter): 

name = "Detail" 

filterargs = (3, 3), 6, 0, ( 

0, -1, 0, 

-1, 10, -1, 

0, -1, 0 

) 

 

 

class EDGE_ENHANCE(BuiltinFilter): 

name = "Edge-enhance" 

filterargs = (3, 3), 2, 0, ( 

-1, -1, -1, 

-1, 10, -1, 

-1, -1, -1 

) 

 

 

class EDGE_ENHANCE_MORE(BuiltinFilter): 

name = "Edge-enhance More" 

filterargs = (3, 3), 1, 0, ( 

-1, -1, -1, 

-1, 9, -1, 

-1, -1, -1 

) 

 

 

class EMBOSS(BuiltinFilter): 

name = "Emboss" 

filterargs = (3, 3), 1, 128, ( 

-1, 0, 0, 

0, 1, 0, 

0, 0, 0 

) 

 

 

class FIND_EDGES(BuiltinFilter): 

name = "Find Edges" 

filterargs = (3, 3), 1, 0, ( 

-1, -1, -1, 

-1, 8, -1, 

-1, -1, -1 

) 

 

 

class SHARPEN(BuiltinFilter): 

name = "Sharpen" 

filterargs = (3, 3), 16, 0, ( 

-2, -2, -2, 

-2, 32, -2, 

-2, -2, -2 

) 

 

 

class SMOOTH(BuiltinFilter): 

name = "Smooth" 

filterargs = (3, 3), 13, 0, ( 

1, 1, 1, 

1, 5, 1, 

1, 1, 1 

) 

 

 

class SMOOTH_MORE(BuiltinFilter): 

name = "Smooth More" 

filterargs = (5, 5), 100, 0, ( 

1, 1, 1, 1, 1, 

1, 5, 5, 5, 1, 

1, 5, 44, 5, 1, 

1, 5, 5, 5, 1, 

1, 1, 1, 1, 1 

) 

 

 

class Color3DLUT(MultibandFilter): 

"""Three-dimensional color lookup table. 

 

Transforms 3-channel pixels using the values of the channels as coordinates 

in the 3D lookup table and interpolating the nearest elements. 

 

This method allows you to apply almost any color transformation 

in constant time by using pre-calculated decimated tables. 

 

.. versionadded:: 5.2.0 

 

:param size: Size of the table. One int or tuple of (int, int, int). 

Minimal size in any dimension is 2, maximum is 65. 

:param table: Flat lookup table. A list of ``channels * size**3`` 

float elements or a list of ``size**3`` channels-sized 

tuples with floats. Channels are changed first, 

then first dimension, then second, then third. 

Value 0.0 corresponds lowest value of output, 1.0 highest. 

:param channels: Number of channels in the table. Could be 3 or 4. 

Default is 3. 

:param target_mode: A mode for the result image. Should have not less 

than ``channels`` channels. Default is ``None``, 

which means that mode wouldn't be changed. 

""" 

name = "Color 3D LUT" 

 

def __init__(self, size, table, channels=3, target_mode=None, **kwargs): 

if channels not in (3, 4): 

raise ValueError("Only 3 or 4 output channels are supported") 

self.size = size = self._check_size(size) 

self.channels = channels 

self.mode = target_mode 

 

# Hidden flag `_copy_table=False` could be used to avoid extra copying 

# of the table if the table is specially made for the constructor. 

copy_table = kwargs.get('_copy_table', True) 

items = size[0] * size[1] * size[2] 

wrong_size = False 

 

if numpy and isinstance(table, numpy.ndarray): 

if copy_table: 

table = table.copy() 

 

if table.shape in [(items * channels,), (items, channels), 

(size[2], size[1], size[0], channels)]: 

table = table.reshape(items * channels) 

else: 

wrong_size = True 

 

else: 

if copy_table: 

table = list(table) 

 

# Convert to a flat list 

if table and isinstance(table[0], (list, tuple)): 

table, raw_table = [], table 

for pixel in raw_table: 

if len(pixel) != channels: 

raise ValueError( 

"The elements of the table should " 

"have a length of {}.".format(channels)) 

table.extend(pixel) 

 

if wrong_size or len(table) != items * channels: 

raise ValueError( 

"The table should have either channels * size**3 float items " 

"or size**3 items of channels-sized tuples with floats. " 

"Table should be: {}x{}x{}x{}. Actual length: {}".format( 

channels, size[0], size[1], size[2], len(table))) 

self.table = table 

 

@staticmethod 

def _check_size(size): 

try: 

_, _, _ = size 

except ValueError: 

raise ValueError("Size should be either an integer or " 

"a tuple of three integers.") 

except TypeError: 

size = (size, size, size) 

size = [int(x) for x in size] 

for size1D in size: 

if not 2 <= size1D <= 65: 

raise ValueError("Size should be in [2, 65] range.") 

return size 

 

@classmethod 

def generate(cls, size, callback, channels=3, target_mode=None): 

"""Generates new LUT using provided callback. 

 

:param size: Size of the table. Passed to the constructor. 

:param callback: Function with three parameters which correspond 

three color channels. Will be called ``size**3`` 

times with values from 0.0 to 1.0 and should return 

a tuple with ``channels`` elements. 

:param channels: The number of channels which should return callback. 

:param target_mode: Passed to the constructor of the resulting 

lookup table. 

""" 

size1D, size2D, size3D = cls._check_size(size) 

if channels not in (3, 4): 

raise ValueError("Only 3 or 4 output channels are supported") 

 

table = [0] * (size1D * size2D * size3D * channels) 

idx_out = 0 

for b in range(size3D): 

for g in range(size2D): 

for r in range(size1D): 

table[idx_out:idx_out + channels] = callback( 

r / (size1D-1), g / (size2D-1), b / (size3D-1)) 

idx_out += channels 

 

return cls((size1D, size2D, size3D), table, channels=channels, 

target_mode=target_mode, _copy_table=False) 

 

def transform(self, callback, with_normals=False, channels=None, 

target_mode=None): 

"""Transforms the table values using provided callback and returns 

a new LUT with altered values. 

 

:param callback: A function which takes old lookup table values 

and returns a new set of values. The number 

of arguments which function should take is 

``self.channels`` or ``3 + self.channels`` 

if ``with_normals`` flag is set. 

Should return a tuple of ``self.channels`` or 

``channels`` elements if it is set. 

:param with_normals: If true, ``callback`` will be called with 

coordinates in the color cube as the first 

three arguments. Otherwise, ``callback`` 

will be called only with actual color values. 

:param channels: The number of channels in the resulting lookup table. 

:param target_mode: Passed to the constructor of the resulting 

lookup table. 

""" 

if channels not in (None, 3, 4): 

raise ValueError("Only 3 or 4 output channels are supported") 

ch_in = self.channels 

ch_out = channels or ch_in 

size1D, size2D, size3D = self.size 

 

table = [0] * (size1D * size2D * size3D * ch_out) 

idx_in = 0 

idx_out = 0 

for b in range(size3D): 

for g in range(size2D): 

for r in range(size1D): 

values = self.table[idx_in:idx_in + ch_in] 

if with_normals: 

values = callback(r / (size1D-1), g / (size2D-1), 

b / (size3D-1), *values) 

else: 

values = callback(*values) 

table[idx_out:idx_out + ch_out] = values 

idx_in += ch_in 

idx_out += ch_out 

 

return type(self)(self.size, table, channels=ch_out, 

target_mode=target_mode or self.mode, 

_copy_table=False) 

 

def __repr__(self): 

r = [ 

"{} from {}".format(self.__class__.__name__, 

self.table.__class__.__name__), 

"size={:d}x{:d}x{:d}".format(*self.size), 

"channels={:d}".format(self.channels), 

] 

if self.mode: 

r.append("target_mode={}".format(self.mode)) 

return "<{}>".format(" ".join(r)) 

 

def filter(self, image): 

from . import Image 

 

return image.color_lut_3d( 

self.mode or image.mode, Image.LINEAR, self.channels, 

self.size[0], self.size[1], self.size[2], self.table)