1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

""" 

 

Conventions: 

 

"constrain_x" means to constrain the variable with either 

another kiwisolver variable, or a float. i.e. `constrain_width(0.2)` 

will set a constraint that the width has to be 0.2 and this constraint is 

permanent - i.e. it will not be removed if it becomes obsolete. 

 

"edit_x" means to set x to a value (just a float), and that this value can 

change. So `edit_width(0.2)` will set width to be 0.2, but `edit_width(0.3)` 

will allow it to change to 0.3 later. Note that these values are still just 

"suggestions" in `kiwisolver` parlance, and could be over-ridden by 

other constrains. 

 

""" 

 

import itertools 

import kiwisolver as kiwi 

import logging 

import numpy as np 

import warnings 

 

import matplotlib 

 

_log = logging.getLogger(__name__) 

 

 

# renderers can be complicated 

def get_renderer(fig): 

if fig._cachedRenderer: 

renderer = fig._cachedRenderer 

else: 

canvas = fig.canvas 

if canvas and hasattr(canvas, "get_renderer"): 

renderer = canvas.get_renderer() 

else: 

# not sure if this can happen 

# seems to with PDF... 

_log.info("constrained_layout : falling back to Agg renderer") 

from matplotlib.backends.backend_agg import FigureCanvasAgg 

canvas = FigureCanvasAgg(fig) 

renderer = canvas.get_renderer() 

 

return renderer 

 

 

class LayoutBox(object): 

""" 

Basic rectangle representation using kiwi solver variables 

""" 

 

def __init__(self, parent=None, name='', tightwidth=False, 

tightheight=False, artist=None, 

lower_left=(0, 0), upper_right=(1, 1), pos=False, 

subplot=False, h_pad=None, w_pad=None): 

Variable = kiwi.Variable 

self.parent = parent 

self.name = name 

sn = self.name + '_' 

if parent is None: 

self.solver = kiwi.Solver() 

self.constrained_layout_called = 0 

else: 

self.solver = parent.solver 

self.constrained_layout_called = None 

# parent wants to know about this child! 

parent.add_child(self) 

# keep track of artist associated w/ this layout. Can be none 

self.artist = artist 

# keep track if this box is supposed to be a pos that is constrained 

# by the parent. 

self.pos = pos 

# keep track of whether we need to match this subplot up with others. 

self.subplot = subplot 

 

# we need the str below for Py 2 which complains the string is unicode 

self.top = Variable(str(sn + 'top')) 

self.bottom = Variable(str(sn + 'bottom')) 

self.left = Variable(str(sn + 'left')) 

self.right = Variable(str(sn + 'right')) 

 

self.width = Variable(str(sn + 'width')) 

self.height = Variable(str(sn + 'height')) 

self.h_center = Variable(str(sn + 'h_center')) 

self.v_center = Variable(str(sn + 'v_center')) 

 

self.min_width = Variable(str(sn + 'min_width')) 

self.min_height = Variable(str(sn + 'min_height')) 

self.pref_width = Variable(str(sn + 'pref_width')) 

self.pref_height = Variable(str(sn + 'pref_height')) 

# margis are only used for axes-position layout boxes. maybe should 

# be a separate subclass: 

self.left_margin = Variable(str(sn + 'left_margin')) 

self.right_margin = Variable(str(sn + 'right_margin')) 

self.bottom_margin = Variable(str(sn + 'bottom_margin')) 

self.top_margin = Variable(str(sn + 'top_margin')) 

# mins 

self.left_margin_min = Variable(str(sn + 'left_margin_min')) 

self.right_margin_min = Variable(str(sn + 'right_margin_min')) 

self.bottom_margin_min = Variable(str(sn + 'bottom_margin_min')) 

self.top_margin_min = Variable(str(sn + 'top_margin_min')) 

 

right, top = upper_right 

left, bottom = lower_left 

self.tightheight = tightheight 

self.tightwidth = tightwidth 

self.add_constraints() 

self.children = [] 

self.subplotspec = None 

if self.pos: 

self.constrain_margins() 

self.h_pad = h_pad 

self.w_pad = w_pad 

 

def constrain_margins(self): 

""" 

Only do this for pos. This sets a variable distance 

margin between the position of the axes and the outer edge of 

the axes. 

 

Margins are variable because they change with the fogure size. 

 

Margin minimums are set to make room for axes decorations. However, 

the margins can be larger if we are mathicng the position size to 

otehr axes. 

""" 

sol = self.solver 

 

# left 

if not sol.hasEditVariable(self.left_margin_min): 

sol.addEditVariable(self.left_margin_min, 'strong') 

sol.suggestValue(self.left_margin_min, 0.0001) 

c = (self.left_margin == self.left - self.parent.left) 

self.solver.addConstraint(c | 'required') 

c = (self.left_margin >= self.left_margin_min) 

self.solver.addConstraint(c | 'strong') 

 

# right 

if not sol.hasEditVariable(self.right_margin_min): 

sol.addEditVariable(self.right_margin_min, 'strong') 

sol.suggestValue(self.right_margin_min, 0.0001) 

c = (self.right_margin == self.parent.right - self.right) 

self.solver.addConstraint(c | 'required') 

c = (self.right_margin >= self.right_margin_min) 

self.solver.addConstraint(c | 'required') 

# bottom 

if not sol.hasEditVariable(self.bottom_margin_min): 

sol.addEditVariable(self.bottom_margin_min, 'strong') 

sol.suggestValue(self.bottom_margin_min, 0.0001) 

c = (self.bottom_margin == self.bottom - self.parent.bottom) 

self.solver.addConstraint(c | 'required') 

c = (self.bottom_margin >= self.bottom_margin_min) 

self.solver.addConstraint(c | 'required') 

# top 

if not sol.hasEditVariable(self.top_margin_min): 

sol.addEditVariable(self.top_margin_min, 'strong') 

sol.suggestValue(self.top_margin_min, 0.0001) 

c = (self.top_margin == self.parent.top - self.top) 

self.solver.addConstraint(c | 'required') 

c = (self.top_margin >= self.top_margin_min) 

self.solver.addConstraint(c | 'required') 

 

def add_child(self, child): 

self.children += [child] 

 

def remove_child(self, child): 

try: 

self.children.remove(child) 

except ValueError: 

_log.info("Tried to remove child that doesn't belong to parent") 

 

def add_constraints(self): 

sol = self.solver 

# never let width and height go negative. 

for i in [self.min_width, self.min_height]: 

sol.addEditVariable(i, 1e9) 

sol.suggestValue(i, 0.0) 

# define relation ships between things thing width and right and left 

self.hard_constraints() 

# self.soft_constraints() 

if self.parent: 

self.parent_constrain() 

# sol.updateVariables() 

 

def parent_constrain(self): 

parent = self.parent 

hc = [self.left >= parent.left, 

self.bottom >= parent.bottom, 

self.top <= parent.top, 

self.right <= parent.right] 

for c in hc: 

self.solver.addConstraint(c | 'required') 

 

def hard_constraints(self): 

hc = [self.width == self.right - self.left, 

self.height == self.top - self.bottom, 

self.h_center == (self.left + self.right) * 0.5, 

self.v_center == (self.top + self.bottom) * 0.5, 

self.width >= self.min_width, 

self.height >= self.min_height] 

for c in hc: 

self.solver.addConstraint(c | 'required') 

 

def soft_constraints(self): 

sol = self.solver 

if self.tightwidth: 

suggest = 0. 

else: 

suggest = 20. 

c = (self.pref_width == suggest) 

for i in c: 

sol.addConstraint(i | 'required') 

if self.tightheight: 

suggest = 0. 

else: 

suggest = 20. 

c = (self.pref_height == suggest) 

for i in c: 

sol.addConstraint(i | 'required') 

 

c = [(self.width >= suggest), 

(self.height >= suggest)] 

for i in c: 

sol.addConstraint(i | 150000) 

 

def set_parent(self, parent): 

''' replace the parent of this with the new parent 

''' 

self.parent = parent 

self.parent_constrain() 

 

def constrain_geometry(self, left, bottom, right, top, strength='strong'): 

hc = [self.left == left, 

self.right == right, 

self.bottom == bottom, 

self.top == top] 

for c in hc: 

self.solver.addConstraint((c | strength)) 

# self.solver.updateVariables() 

 

def constrain_same(self, other, strength='strong'): 

""" 

Make the layoutbox have same position as other layoutbox 

""" 

hc = [self.left == other.left, 

self.right == other.right, 

self.bottom == other.bottom, 

self.top == other.top] 

for c in hc: 

self.solver.addConstraint((c | strength)) 

 

def constrain_left_margin(self, margin, strength='strong'): 

c = (self.left == self.parent.left + margin) 

self.solver.addConstraint(c | strength) 

 

def edit_left_margin_min(self, margin): 

self.solver.suggestValue(self.left_margin_min, margin) 

 

def constrain_right_margin(self, margin, strength='strong'): 

c = (self.right == self.parent.right - margin) 

self.solver.addConstraint(c | strength) 

 

def edit_right_margin_min(self, margin): 

self.solver.suggestValue(self.right_margin_min, margin) 

 

def constrain_bottom_margin(self, margin, strength='strong'): 

c = (self.bottom == self.parent.bottom + margin) 

self.solver.addConstraint(c | strength) 

 

def edit_bottom_margin_min(self, margin): 

self.solver.suggestValue(self.bottom_margin_min, margin) 

 

def constrain_top_margin(self, margin, strength='strong'): 

c = (self.top == self.parent.top - margin) 

self.solver.addConstraint(c | strength) 

 

def edit_top_margin_min(self, margin): 

self.solver.suggestValue(self.top_margin_min, margin) 

 

def get_rect(self): 

return (self.left.value(), self.bottom.value(), 

self.width.value(), self.height.value()) 

 

def update_variables(self): 

''' 

Update *all* the variables that are part of the solver this LayoutBox 

is created with 

''' 

self.solver.updateVariables() 

 

def edit_height(self, height, strength='strong'): 

''' 

Set the height of the layout box. 

 

This is done as an editable variable so that the value can change 

due to resizing. 

''' 

sol = self.solver 

for i in [self.height]: 

if not sol.hasEditVariable(i): 

sol.addEditVariable(i, strength) 

sol.suggestValue(self.height, height) 

 

def constrain_height(self, height, strength='strong'): 

''' 

Constrain the height of the layout box. height is 

either a float or a layoutbox.height. 

''' 

c = (self.height == height) 

self.solver.addConstraint(c | strength) 

 

def constrain_height_min(self, height, strength='strong'): 

c = (self.height >= height) 

self.solver.addConstraint(c | strength) 

 

def edit_width(self, width, strength='strong'): 

sol = self.solver 

for i in [self.width]: 

if not sol.hasEditVariable(i): 

sol.addEditVariable(i, strength) 

sol.suggestValue(self.width, width) 

 

def constrain_width(self, width, strength='strong'): 

''' 

Constrain the width of the layout box. `width` is 

either a float or a layoutbox.width. 

''' 

c = (self.width == width) 

self.solver.addConstraint(c | strength) 

 

def constrain_width_min(self, width, strength='strong'): 

c = (self.width >= width) 

self.solver.addConstraint(c | strength) 

 

def constrain_left(self, left, strength='strong'): 

c = (self.left == left) 

self.solver.addConstraint(c | strength) 

 

def constrain_bottom(self, bottom, strength='strong'): 

c = (self.bottom == bottom) 

self.solver.addConstraint(c | strength) 

 

def constrain_right(self, right, strength='strong'): 

c = (self.right == right) 

self.solver.addConstraint(c | strength) 

 

def constrain_top(self, top, strength='strong'): 

c = (self.top == top) 

self.solver.addConstraint(c | strength) 

 

def _is_subplotspec_layoutbox(self): 

''' 

Helper to check if this layoutbox is the layoutbox of a 

subplotspec 

''' 

name = (self.name).split('.')[-1] 

return name[:2] == 'ss' 

 

def _is_gridspec_layoutbox(self): 

''' 

Helper to check if this layoutbox is the layoutbox of a 

gridspec 

''' 

name = (self.name).split('.')[-1] 

return name[:8] == 'gridspec' 

 

def find_child_subplots(self): 

''' 

Find children of this layout box that are subplots. We want to line 

poss up, and this is an easy way to find them all. 

''' 

if self.subplot: 

subplots = [self] 

else: 

subplots = [] 

for child in self.children: 

subplots += child.find_child_subplots() 

return subplots 

 

def layout_from_subplotspec(self, subspec, 

name='', artist=None, pos=False): 

''' Make a layout box from a subplotspec. The layout box is 

constrained to be a fraction of the width/height of the parent, 

and be a fraction of the parent width/height from the left/bottom 

of the parent. Therefore the parent can move around and the 

layout for the subplot spec should move with it. 

 

The parent is *usually* the gridspec that made the subplotspec.?? 

''' 

lb = LayoutBox(parent=self, name=name, artist=artist, pos=pos) 

gs = subspec.get_gridspec() 

nrows, ncols = gs.get_geometry() 

parent = self.parent 

 

# OK, now, we want to set the position of this subplotspec 

# based on its subplotspec parameters. The new gridspec will inherit. 

 

# from gridspec. prob should be new method in gridspec 

left = 0.0 

right = 1.0 

bottom = 0.0 

top = 1.0 

totWidth = right-left 

totHeight = top-bottom 

hspace = 0. 

wspace = 0. 

 

# calculate accumulated heights of columns 

cellH = totHeight / (nrows + hspace * (nrows - 1)) 

sepH = hspace*cellH 

 

if gs._row_height_ratios is not None: 

netHeight = cellH * nrows 

tr = float(sum(gs._row_height_ratios)) 

cellHeights = [netHeight*r/tr for r in gs._row_height_ratios] 

else: 

cellHeights = [cellH] * nrows 

 

sepHeights = [0] + ([sepH] * (nrows - 1)) 

cellHs = np.add.accumulate(np.ravel( 

list(zip(sepHeights, cellHeights)))) 

 

# calculate accumulated widths of rows 

cellW = totWidth/(ncols + wspace * (ncols - 1)) 

sepW = wspace*cellW 

 

if gs._col_width_ratios is not None: 

netWidth = cellW * ncols 

tr = float(sum(gs._col_width_ratios)) 

cellWidths = [netWidth * r / tr for r in gs._col_width_ratios] 

else: 

cellWidths = [cellW] * ncols 

 

sepWidths = [0] + ([sepW] * (ncols - 1)) 

cellWs = np.add.accumulate(np.ravel(list(zip(sepWidths, cellWidths)))) 

 

figTops = [top - cellHs[2 * rowNum] for rowNum in range(nrows)] 

figBottoms = [top - cellHs[2 * rowNum + 1] for rowNum in range(nrows)] 

figLefts = [left + cellWs[2 * colNum] for colNum in range(ncols)] 

figRights = [left + cellWs[2 * colNum + 1] for colNum in range(ncols)] 

 

rowNum, colNum = divmod(subspec.num1, ncols) 

figBottom = figBottoms[rowNum] 

figTop = figTops[rowNum] 

figLeft = figLefts[colNum] 

figRight = figRights[colNum] 

 

if subspec.num2 is not None: 

 

rowNum2, colNum2 = divmod(subspec.num2, ncols) 

figBottom2 = figBottoms[rowNum2] 

figTop2 = figTops[rowNum2] 

figLeft2 = figLefts[colNum2] 

figRight2 = figRights[colNum2] 

 

figBottom = min(figBottom, figBottom2) 

figLeft = min(figLeft, figLeft2) 

figTop = max(figTop, figTop2) 

figRight = max(figRight, figRight2) 

# These are numbers relative to 0,0,1,1. Need to constrain 

# relative to parent. 

 

width = figRight - figLeft 

height = figTop - figBottom 

parent = self.parent 

cs = [self.left == parent.left + parent.width * figLeft, 

self.bottom == parent.bottom + parent.height * figBottom, 

self.width == parent.width * width, 

self.height == parent.height * height] 

for c in cs: 

self.solver.addConstraint((c | 'required')) 

 

return lb 

 

def __repr__(self): 

args = (self.name, self.left.value(), self.bottom.value(), 

self.right.value(), self.top.value()) 

return ('LayoutBox: %25s, (left: %1.3f) (bot: %1.3f) ' 

'(right: %1.3f) (top: %1.3f) ') % args 

 

 

# Utility functions that act on layoutboxes... 

def hstack(boxes, padding=0, strength='strong'): 

''' 

Stack LayoutBox instances from left to right. 

`padding` is in figure-relative units. 

''' 

 

for i in range(1, len(boxes)): 

c = (boxes[i-1].right + padding <= boxes[i].left) 

boxes[i].solver.addConstraint(c | strength) 

 

 

def hpack(boxes, padding=0, strength='strong'): 

''' 

Stack LayoutBox instances from left to right. 

''' 

 

for i in range(1, len(boxes)): 

c = (boxes[i-1].right + padding == boxes[i].left) 

boxes[i].solver.addConstraint(c | strength) 

 

 

def vstack(boxes, padding=0, strength='strong'): 

''' 

Stack LayoutBox instances from top to bottom 

''' 

 

for i in range(1, len(boxes)): 

c = (boxes[i-1].bottom - padding >= boxes[i].top) 

boxes[i].solver.addConstraint(c | strength) 

 

 

def vpack(boxes, padding=0, strength='strong'): 

''' 

Stack LayoutBox instances from top to bottom 

''' 

 

for i in range(1, len(boxes)): 

c = (boxes[i-1].bottom - padding >= boxes[i].top) 

boxes[i].solver.addConstraint(c | strength) 

 

 

def match_heights(boxes, height_ratios=None, strength='medium'): 

''' 

Stack LayoutBox instances from top to bottom 

''' 

 

if height_ratios is None: 

height_ratios = np.ones(len(boxes)) 

for i in range(1, len(boxes)): 

c = (boxes[i-1].height == 

boxes[i].height*height_ratios[i-1]/height_ratios[i]) 

boxes[i].solver.addConstraint(c | strength) 

 

 

def match_widths(boxes, width_ratios=None, strength='medium'): 

''' 

Stack LayoutBox instances from top to bottom 

''' 

 

if width_ratios is None: 

width_ratios = np.ones(len(boxes)) 

for i in range(1, len(boxes)): 

c = (boxes[i-1].width == 

boxes[i].width*width_ratios[i-1]/width_ratios[i]) 

boxes[i].solver.addConstraint(c | strength) 

 

 

def vstackeq(boxes, padding=0, height_ratios=None): 

vstack(boxes, padding=padding) 

match_heights(boxes, height_ratios=height_ratios) 

 

 

def hstackeq(boxes, padding=0, width_ratios=None): 

hstack(boxes, padding=padding) 

match_widths(boxes, width_ratios=width_ratios) 

 

 

def align(boxes, attr, strength='strong'): 

cons = [] 

for box in boxes[1:]: 

cons = (getattr(boxes[0], attr) == getattr(box, attr)) 

boxes[0].solver.addConstraint(cons | strength) 

 

 

def match_top_margins(boxes, levels=1): 

box0 = boxes[0] 

top0 = box0 

for n in range(levels): 

top0 = top0.parent 

for box in boxes[1:]: 

topb = box 

for n in range(levels): 

topb = topb.parent 

c = (box0.top-top0.top == box.top-topb.top) 

box0.solver.addConstraint(c | 'strong') 

 

 

def match_bottom_margins(boxes, levels=1): 

box0 = boxes[0] 

top0 = box0 

for n in range(levels): 

top0 = top0.parent 

for box in boxes[1:]: 

topb = box 

for n in range(levels): 

topb = topb.parent 

c = (box0.bottom-top0.bottom == box.bottom-topb.bottom) 

box0.solver.addConstraint(c | 'strong') 

 

 

def match_left_margins(boxes, levels=1): 

box0 = boxes[0] 

top0 = box0 

for n in range(levels): 

top0 = top0.parent 

for box in boxes[1:]: 

topb = box 

for n in range(levels): 

topb = topb.parent 

c = (box0.left-top0.left == box.left-topb.left) 

box0.solver.addConstraint(c | 'strong') 

 

 

def match_right_margins(boxes, levels=1): 

box0 = boxes[0] 

top0 = box0 

for n in range(levels): 

top0 = top0.parent 

for box in boxes[1:]: 

topb = box 

for n in range(levels): 

topb = topb.parent 

c = (box0.right-top0.right == box.right-topb.right) 

box0.solver.addConstraint(c | 'strong') 

 

 

def match_width_margins(boxes, levels=1): 

match_left_margins(boxes, levels=levels) 

match_right_margins(boxes, levels=levels) 

 

 

def match_height_margins(boxes, levels=1): 

match_top_margins(boxes, levels=levels) 

match_bottom_margins(boxes, levels=levels) 

 

 

def match_margins(boxes, levels=1): 

match_width_margins(boxes, levels=levels) 

match_height_margins(boxes, levels=levels) 

 

 

_layoutboxobjnum = itertools.count() 

 

 

def seq_id(): 

''' 

Generate a short sequential id for layoutbox objects... 

''' 

 

global _layoutboxobjnum 

 

return ('%06d' % (next(_layoutboxobjnum))) 

 

 

def print_children(lb): 

''' 

Print the children of the layoutbox 

''' 

print(lb) 

for child in lb.children: 

print_children(child) 

 

 

def nonetree(lb): 

''' 

Make all elements in this tree none... This signals not to do any more 

layout. 

''' 

if lb is not None: 

if lb.parent is None: 

# Clear the solver. Hopefully this garbage collects. 

lb.solver.reset() 

nonechildren(lb) 

else: 

nonetree(lb.parent) 

 

 

def nonechildren(lb): 

for child in lb.children: 

nonechildren(child) 

lb.artist._layoutbox = None 

lb = None 

 

 

def print_tree(lb): 

''' 

Print the tree of layoutboxes 

''' 

 

if lb.parent is None: 

print('LayoutBox Tree\n') 

print('==============\n') 

print_children(lb) 

print('\n') 

else: 

print_tree(lb.parent) 

 

 

def plot_children(fig, box, level=0, printit=True): 

''' 

Simple plotting to show where boxes are 

''' 

import matplotlib 

import matplotlib.pyplot as plt 

 

if isinstance(fig, matplotlib.figure.Figure): 

ax = fig.add_axes([0., 0., 1., 1.]) 

ax.set_facecolor([1., 1., 1., 0.7]) 

ax.set_alpha(0.3) 

fig.draw(fig.canvas.get_renderer()) 

else: 

ax = fig 

 

import matplotlib.patches as patches 

colors = plt.rcParams["axes.prop_cycle"].by_key()["color"] 

if printit: 

print("Level:", level) 

for child in box.children: 

rect = child.get_rect() 

if printit: 

print(child) 

ax.add_patch( 

patches.Rectangle( 

(child.left.value(), child.bottom.value()), # (x,y) 

child.width.value(), # width 

child.height.value(), # height 

fc='none', 

alpha=0.8, 

ec=colors[level] 

) 

) 

if level > 0: 

name = child.name.split('.')[-1] 

if level % 2 == 0: 

ax.text(child.left.value(), child.bottom.value(), name, 

size=12-level, color=colors[level]) 

else: 

ax.text(child.right.value(), child.top.value(), name, 

ha='right', va='top', size=12-level, 

color=colors[level]) 

 

plot_children(ax, child, level=level+1, printit=printit)