1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

""" 

A module for converting numbers or color arguments to *RGB* or *RGBA* 

 

*RGB* and *RGBA* are sequences of, respectively, 3 or 4 floats in the 

range 0-1. 

 

This module includes functions and classes for color specification 

conversions, and for mapping numbers to colors in a 1-D array of colors called 

a colormap. 

 

Mapping data onto colors using a colormap typically involves two steps: 

a data array is first mapped onto the range 0-1 using a subclass of 

:class:`Normalize`, then this number is mapped to a color using 

a subclass of :class:`Colormap`. Two are provided here: 

:class:`LinearSegmentedColormap`, which uses piecewise-linear interpolation 

to define colormaps, and :class:`ListedColormap`, which makes a colormap 

from a list of colors. 

 

.. seealso:: 

 

:doc:`/tutorials/colors/colormap-manipulation` for examples of how to 

make colormaps and 

 

:doc:`/tutorials/colors/colormaps` for a list of built-in colormaps. 

 

:doc:`/tutorials/colors/colormapnorms` for more details about data 

normalization 

 

More colormaps are available at palettable_ 

 

The module also provides functions for checking whether an object can be 

interpreted as a color (:func:`is_color_like`), for converting such an object 

to an RGBA tuple (:func:`to_rgba`) or to an HTML-like hex string in the 

`#rrggbb` format (:func:`to_hex`), and a sequence of colors to an `(n, 4)` 

RGBA array (:func:`to_rgba_array`). Caching is used for efficiency. 

 

Matplotlib recognizes the following formats to specify a color: 

 

* an RGB or RGBA tuple of float values in ``[0, 1]`` (e.g., ``(0.1, 0.2, 0.5)`` 

or ``(0.1, 0.2, 0.5, 0.3)``); 

* a hex RGB or RGBA string (e.g., ``'#0F0F0F'`` or ``'#0F0F0F0F'``); 

* a string representation of a float value in ``[0, 1]`` inclusive for gray 

level (e.g., ``'0.5'``); 

* one of ``{'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'}``; 

* a X11/CSS4 color name; 

* a name from the `xkcd color survey <https://xkcd.com/color/rgb/>`__; 

prefixed with ``'xkcd:'`` (e.g., ``'xkcd:sky blue'``); 

* one of ``{'tab:blue', 'tab:orange', 'tab:green', 

'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 

'tab:gray', 'tab:olive', 'tab:cyan'}`` which are the Tableau Colors from the 

'T10' categorical palette (which is the default color cycle); 

* a "CN" color spec, i.e. `'C'` followed by a single digit, which is an index 

into the default property cycle (``matplotlib.rcParams['axes.prop_cycle']``); 

the indexing occurs at artist creation time and defaults to black if the 

cycle does not include color. 

 

All string specifications of color, other than "CN", are case-insensitive. 

 

.. _palettable: https://jiffyclub.github.io/palettable/ 

 

""" 

 

from collections.abc import Sized 

import itertools 

import re 

 

import numpy as np 

import matplotlib.cbook as cbook 

from ._color_data import BASE_COLORS, TABLEAU_COLORS, CSS4_COLORS, XKCD_COLORS 

 

 

class _ColorMapping(dict): 

def __init__(self, mapping): 

super().__init__(mapping) 

self.cache = {} 

 

def __setitem__(self, key, value): 

super().__setitem__(key, value) 

self.cache.clear() 

 

def __delitem__(self, key): 

super().__delitem__(key) 

self.cache.clear() 

 

 

_colors_full_map = {} 

# Set by reverse priority order. 

_colors_full_map.update(XKCD_COLORS) 

_colors_full_map.update({k.replace('grey', 'gray'): v 

for k, v in XKCD_COLORS.items() 

if 'grey' in k}) 

_colors_full_map.update(CSS4_COLORS) 

_colors_full_map.update(TABLEAU_COLORS) 

_colors_full_map.update({k.replace('gray', 'grey'): v 

for k, v in TABLEAU_COLORS.items() 

if 'gray' in k}) 

_colors_full_map.update(BASE_COLORS) 

_colors_full_map = _ColorMapping(_colors_full_map) 

 

 

def get_named_colors_mapping(): 

"""Return the global mapping of names to named colors.""" 

return _colors_full_map 

 

 

def _sanitize_extrema(ex): 

if ex is None: 

return ex 

try: 

ret = ex.item() 

except AttributeError: 

ret = float(ex) 

return ret 

 

 

def _is_nth_color(c): 

"""Return whether *c* can be interpreted as an item in the color cycle.""" 

return isinstance(c, str) and re.match(r"\AC[0-9]\Z", c) 

 

 

def is_color_like(c): 

"""Return whether *c* can be interpreted as an RGB(A) color.""" 

# Special-case nth color syntax because it cannot be parsed during setup. 

if _is_nth_color(c): 

return True 

try: 

to_rgba(c) 

except ValueError: 

return False 

else: 

return True 

 

 

def same_color(c1, c2): 

""" 

Compare two colors to see if they are the same. 

 

Parameters 

---------- 

c1, c2 : Matplotlib colors 

 

Returns 

------- 

bool 

``True`` if *c1* and *c2* are the same color, otherwise ``False``. 

""" 

return (to_rgba_array(c1) == to_rgba_array(c2)).all() 

 

 

def to_rgba(c, alpha=None): 

""" 

Convert *c* to an RGBA color. 

 

Parameters 

---------- 

c : Matplotlib color 

 

alpha : scalar, optional 

If *alpha* is not ``None``, it forces the alpha value, except if *c* is 

``"none"`` (case-insensitive), which always maps to ``(0, 0, 0, 0)``. 

 

Returns 

------- 

tuple 

Tuple of ``(r, g, b, a)`` scalars. 

""" 

# Special-case nth color syntax because it should not be cached. 

if _is_nth_color(c): 

from matplotlib import rcParams 

prop_cycler = rcParams['axes.prop_cycle'] 

colors = prop_cycler.by_key().get('color', ['k']) 

c = colors[int(c[1]) % len(colors)] 

try: 

rgba = _colors_full_map.cache[c, alpha] 

except (KeyError, TypeError): # Not in cache, or unhashable. 

rgba = _to_rgba_no_colorcycle(c, alpha) 

try: 

_colors_full_map.cache[c, alpha] = rgba 

except TypeError: 

pass 

return rgba 

 

 

def _to_rgba_no_colorcycle(c, alpha=None): 

"""Convert *c* to an RGBA color, with no support for color-cycle syntax. 

 

If *alpha* is not ``None``, it forces the alpha value, except if *c* is 

``"none"`` (case-insensitive), which always maps to ``(0, 0, 0, 0)``. 

""" 

orig_c = c 

if isinstance(c, str): 

if c.lower() == "none": 

return (0., 0., 0., 0.) 

# Named color. 

try: 

# This may turn c into a non-string, so we check again below. 

c = _colors_full_map[c.lower()] 

except KeyError: 

pass 

if isinstance(c, str): 

# hex color with no alpha. 

match = re.match(r"\A#[a-fA-F0-9]{6}\Z", c) 

if match: 

return (tuple(int(n, 16) / 255 

for n in [c[1:3], c[3:5], c[5:7]]) 

+ (alpha if alpha is not None else 1.,)) 

# hex color with alpha. 

match = re.match(r"\A#[a-fA-F0-9]{8}\Z", c) 

if match: 

color = [int(n, 16) / 255 

for n in [c[1:3], c[3:5], c[5:7], c[7:9]]] 

if alpha is not None: 

color[-1] = alpha 

return tuple(color) 

# string gray. 

try: 

return (float(c),) * 3 + (alpha if alpha is not None else 1.,) 

except ValueError: 

pass 

raise ValueError("Invalid RGBA argument: {!r}".format(orig_c)) 

# tuple color. 

c = np.array(c) 

if not np.can_cast(c.dtype, float, "same_kind") or c.ndim != 1: 

# Test the dtype explicitly as `map(float, ...)`, `np.array(..., 

# float)` and `np.array(...).astype(float)` all convert "0.5" to 0.5. 

# Test dimensionality to reject single floats. 

raise ValueError("Invalid RGBA argument: {!r}".format(orig_c)) 

# Return a tuple to prevent the cached value from being modified. 

c = tuple(c.astype(float)) 

if len(c) not in [3, 4]: 

raise ValueError("RGBA sequence should have length 3 or 4") 

if len(c) == 3 and alpha is None: 

alpha = 1 

if alpha is not None: 

c = c[:3] + (alpha,) 

if any(elem < 0 or elem > 1 for elem in c): 

raise ValueError("RGBA values should be within 0-1 range") 

return c 

 

 

def to_rgba_array(c, alpha=None): 

"""Convert *c* to a (n, 4) array of RGBA colors. 

 

If *alpha* is not ``None``, it forces the alpha value. If *c* is 

``"none"`` (case-insensitive) or an empty list, an empty array is returned. 

""" 

# Special-case inputs that are already arrays, for performance. (If the 

# array has the wrong kind or shape, raise the error during one-at-a-time 

# conversion.) 

if (isinstance(c, np.ndarray) and c.dtype.kind in "if" 

and c.ndim == 2 and c.shape[1] in [3, 4]): 

if c.shape[1] == 3: 

result = np.column_stack([c, np.zeros(len(c))]) 

result[:, -1] = alpha if alpha is not None else 1. 

elif c.shape[1] == 4: 

result = c.copy() 

if alpha is not None: 

result[:, -1] = alpha 

if np.any((result < 0) | (result > 1)): 

raise ValueError("RGBA values should be within 0-1 range") 

return result 

# Handle single values. 

# Note that this occurs *after* handling inputs that are already arrays, as 

# `to_rgba(c, alpha)` (below) is expensive for such inputs, due to the need 

# to format the array in the ValueError message(!). 

if cbook._str_lower_equal(c, "none"): 

return np.zeros((0, 4), float) 

try: 

return np.array([to_rgba(c, alpha)], float) 

except (ValueError, TypeError): 

pass 

# Convert one at a time. 

result = np.empty((len(c), 4), float) 

for i, cc in enumerate(c): 

result[i] = to_rgba(cc, alpha) 

return result 

 

 

def to_rgb(c): 

"""Convert *c* to an RGB color, silently dropping the alpha channel.""" 

return to_rgba(c)[:3] 

 

 

def to_hex(c, keep_alpha=False): 

"""Convert *c* to a hex color. 

 

Uses the ``#rrggbb`` format if *keep_alpha* is False (the default), 

``#rrggbbaa`` otherwise. 

""" 

c = to_rgba(c) 

if not keep_alpha: 

c = c[:3] 

return "#" + "".join(format(int(np.round(val * 255)), "02x") 

for val in c) 

 

 

### Backwards-compatible color-conversion API 

 

 

cnames = CSS4_COLORS 

hexColorPattern = re.compile(r"\A#[a-fA-F0-9]{6}\Z") 

rgb2hex = to_hex 

hex2color = to_rgb 

 

 

class ColorConverter(object): 

""" 

Provides methods for converting color specifications to *RGB* or *RGBA* 

 

Caching is used for more efficient conversion upon repeated calls 

with the same argument. 

 

Ordinarily only the single instance instantiated in this module, 

*colorConverter*, is needed. 

""" 

 

colors = _colors_full_map 

cache = _colors_full_map.cache 

 

@staticmethod 

def to_rgb(arg): 

""" 

Returns an *RGB* tuple of three floats from 0-1. 

 

*arg* can be an *RGB* or *RGBA* sequence or a string in any of 

several forms: 

 

1) a letter from the set 'rgbcmykw' 

2) a hex color string, like '#00FFFF' 

3) a standard name, like 'aqua' 

4) a string representation of a float, like '0.4', 

indicating gray on a 0-1 scale 

 

if *arg* is *RGBA*, the *A* will simply be discarded. 

""" 

return to_rgb(arg) 

 

@staticmethod 

def to_rgba(arg, alpha=None): 

""" 

Returns an *RGBA* tuple of four floats from 0-1. 

 

For acceptable values of *arg*, see :meth:`to_rgb`. 

In addition, if *arg* is "none" (case-insensitive), 

then (0,0,0,0) will be returned. 

If *arg* is an *RGBA* sequence and *alpha* is not *None*, 

*alpha* will replace the original *A*. 

""" 

return to_rgba(arg, alpha) 

 

@staticmethod 

def to_rgba_array(arg, alpha=None): 

""" 

Returns a numpy array of *RGBA* tuples. 

 

Accepts a single mpl color spec or a sequence of specs. 

 

Special case to handle "no color": if *c* is "none" (case-insensitive), 

then an empty array will be returned. Same for an empty list. 

""" 

return to_rgba_array(arg, alpha) 

 

 

colorConverter = ColorConverter() 

 

 

### End of backwards-compatible color-conversion API 

 

 

def makeMappingArray(N, data, gamma=1.0): 

"""Create an *N* -element 1-d lookup table 

 

*data* represented by a list of x,y0,y1 mapping correspondences. 

Each element in this list represents how a value between 0 and 1 

(inclusive) represented by x is mapped to a corresponding value 

between 0 and 1 (inclusive). The two values of y are to allow 

for discontinuous mapping functions (say as might be found in a 

sawtooth) where y0 represents the value of y for values of x 

<= to that given, and y1 is the value to be used for x > than 

that given). The list must start with x=0, end with x=1, and 

all values of x must be in increasing order. Values between 

the given mapping points are determined by simple linear interpolation. 

 

Alternatively, data can be a function mapping values between 0 - 1 

to 0 - 1. 

 

The function returns an array "result" where ``result[x*(N-1)]`` 

gives the closest value for values of x between 0 and 1. 

""" 

 

if callable(data): 

xind = np.linspace(0, 1, N) ** gamma 

lut = np.clip(np.array(data(xind), dtype=float), 0, 1) 

return lut 

 

try: 

adata = np.array(data) 

except Exception: 

raise TypeError("data must be convertible to an array") 

shape = adata.shape 

if len(shape) != 2 or shape[1] != 3: 

raise ValueError("data must be nx3 format") 

 

x = adata[:, 0] 

y0 = adata[:, 1] 

y1 = adata[:, 2] 

 

if x[0] != 0. or x[-1] != 1.0: 

raise ValueError( 

"data mapping points must start with x=0 and end with x=1") 

if (np.diff(x) < 0).any(): 

raise ValueError("data mapping points must have x in increasing order") 

# begin generation of lookup table 

x = x * (N - 1) 

lut = np.zeros((N,), float) 

xind = (N - 1) * np.linspace(0, 1, N) ** gamma 

ind = np.searchsorted(x, xind)[1:-1] 

 

distance = (xind[1:-1] - x[ind - 1]) / (x[ind] - x[ind - 1]) 

lut[1:-1] = distance * (y0[ind] - y1[ind - 1]) + y1[ind - 1] 

lut[0] = y1[0] 

lut[-1] = y0[-1] 

# ensure that the lut is confined to values between 0 and 1 by clipping it 

return np.clip(lut, 0.0, 1.0) 

 

 

class Colormap(object): 

""" 

Baseclass for all scalar to RGBA mappings. 

 

Typically Colormap instances are used to convert data values (floats) from 

the interval ``[0, 1]`` to the RGBA color that the respective Colormap 

represents. For scaling of data into the ``[0, 1]`` interval see 

:class:`matplotlib.colors.Normalize`. It is worth noting that 

:class:`matplotlib.cm.ScalarMappable` subclasses make heavy use of this 

``data->normalize->map-to-color`` processing chain. 

 

""" 

def __init__(self, name, N=256): 

""" 

Parameters 

---------- 

name : str 

The name of the colormap. 

N : int 

The number of rgb quantization levels. 

 

""" 

self.name = name 

self.N = int(N) # ensure that N is always int 

self._rgba_bad = (0.0, 0.0, 0.0, 0.0) # If bad, don't paint anything. 

self._rgba_under = None 

self._rgba_over = None 

self._i_under = self.N 

self._i_over = self.N + 1 

self._i_bad = self.N + 2 

self._isinit = False 

 

#: When this colormap exists on a scalar mappable and colorbar_extend 

#: is not False, colorbar creation will pick up ``colorbar_extend`` as 

#: the default value for the ``extend`` keyword in the 

#: :class:`matplotlib.colorbar.Colorbar` constructor. 

self.colorbar_extend = False 

 

def __call__(self, X, alpha=None, bytes=False): 

""" 

Parameters 

---------- 

X : scalar, ndarray 

The data value(s) to convert to RGBA. 

For floats, X should be in the interval ``[0.0, 1.0]`` to 

return the RGBA values ``X*100`` percent along the Colormap line. 

For integers, X should be in the interval ``[0, Colormap.N)`` to 

return RGBA values *indexed* from the Colormap with index ``X``. 

alpha : float, None 

Alpha must be a scalar between 0 and 1, or None. 

bytes : bool 

If False (default), the returned RGBA values will be floats in the 

interval ``[0, 1]`` otherwise they will be uint8s in the interval 

``[0, 255]``. 

 

Returns 

------- 

Tuple of RGBA values if X is scalar, otherwise an array of 

RGBA values with a shape of ``X.shape + (4, )``. 

 

""" 

# See class docstring for arg/kwarg documentation. 

if not self._isinit: 

self._init() 

mask_bad = None 

if not cbook.iterable(X): 

vtype = 'scalar' 

xa = np.array([X]) 

else: 

vtype = 'array' 

xma = np.ma.array(X, copy=True) # Copy here to avoid side effects. 

mask_bad = xma.mask # Mask will be used below. 

xa = xma.filled() # Fill to avoid infs, etc. 

del xma 

 

# Calculations with native byteorder are faster, and avoid a 

# bug that otherwise can occur with putmask when the last 

# argument is a numpy scalar. 

if not xa.dtype.isnative: 

xa = xa.byteswap().newbyteorder() 

 

if xa.dtype.kind == "f": 

xa *= self.N 

# Negative values are out of range, but astype(int) would truncate 

# them towards zero. 

xa[xa < 0] = -1 

# xa == 1 (== N after multiplication) is not out of range. 

xa[xa == self.N] = self.N - 1 

# Avoid converting large positive values to negative integers. 

np.clip(xa, -1, self.N, out=xa) 

xa = xa.astype(int) 

# Set the over-range indices before the under-range; 

# otherwise the under-range values get converted to over-range. 

xa[xa > self.N - 1] = self._i_over 

xa[xa < 0] = self._i_under 

if mask_bad is not None: 

if mask_bad.shape == xa.shape: 

np.copyto(xa, self._i_bad, where=mask_bad) 

elif mask_bad: 

xa.fill(self._i_bad) 

if bytes: 

lut = (self._lut * 255).astype(np.uint8) 

else: 

lut = self._lut.copy() # Don't let alpha modify original _lut. 

 

if alpha is not None: 

alpha = np.clip(alpha, 0, 1) 

if bytes: 

alpha = int(alpha * 255) 

if (lut[-1] == 0).all(): 

lut[:-1, -1] = alpha 

# All zeros is taken as a flag for the default bad 

# color, which is no color--fully transparent. We 

# don't want to override this. 

else: 

lut[:, -1] = alpha 

# If the bad value is set to have a color, then we 

# override its alpha just as for any other value. 

 

rgba = np.empty(shape=xa.shape + (4,), dtype=lut.dtype) 

lut.take(xa, axis=0, mode='clip', out=rgba) 

if vtype == 'scalar': 

rgba = tuple(rgba[0, :]) 

return rgba 

 

def __copy__(self): 

"""Create new object with the same class, update attributes 

""" 

cls = self.__class__ 

cmapobject = cls.__new__(cls) 

cmapobject.__dict__.update(self.__dict__) 

if self._isinit: 

cmapobject._lut = np.copy(self._lut) 

return cmapobject 

 

def set_bad(self, color='k', alpha=None): 

"""Set color to be used for masked values. 

""" 

self._rgba_bad = to_rgba(color, alpha) 

if self._isinit: 

self._set_extremes() 

 

def set_under(self, color='k', alpha=None): 

"""Set color to be used for low out-of-range values. 

Requires norm.clip = False 

""" 

self._rgba_under = to_rgba(color, alpha) 

if self._isinit: 

self._set_extremes() 

 

def set_over(self, color='k', alpha=None): 

"""Set color to be used for high out-of-range values. 

Requires norm.clip = False 

""" 

self._rgba_over = to_rgba(color, alpha) 

if self._isinit: 

self._set_extremes() 

 

def _set_extremes(self): 

if self._rgba_under: 

self._lut[self._i_under] = self._rgba_under 

else: 

self._lut[self._i_under] = self._lut[0] 

if self._rgba_over: 

self._lut[self._i_over] = self._rgba_over 

else: 

self._lut[self._i_over] = self._lut[self.N - 1] 

self._lut[self._i_bad] = self._rgba_bad 

 

def _init(self): 

"""Generate the lookup table, self._lut""" 

raise NotImplementedError("Abstract class only") 

 

def is_gray(self): 

if not self._isinit: 

self._init() 

return (np.all(self._lut[:, 0] == self._lut[:, 1]) and 

np.all(self._lut[:, 0] == self._lut[:, 2])) 

 

def _resample(self, lutsize): 

""" 

Return a new color map with *lutsize* entries. 

""" 

raise NotImplementedError() 

 

def reversed(self, name=None): 

""" 

Make a reversed instance of the Colormap. 

 

.. note :: Function not implemented for base class. 

 

Parameters 

---------- 

name : str, optional 

The name for the reversed colormap. If it's None the 

name will be the name of the parent colormap + "_r". 

 

Notes 

----- 

See :meth:`LinearSegmentedColormap.reversed` and 

:meth:`ListedColormap.reversed` 

""" 

raise NotImplementedError() 

 

 

class LinearSegmentedColormap(Colormap): 

"""Colormap objects based on lookup tables using linear segments. 

 

The lookup table is generated using linear interpolation for each 

primary color, with the 0-1 domain divided into any number of 

segments. 

""" 

def __init__(self, name, segmentdata, N=256, gamma=1.0): 

"""Create color map from linear mapping segments 

 

segmentdata argument is a dictionary with a red, green and blue 

entries. Each entry should be a list of *x*, *y0*, *y1* tuples, 

forming rows in a table. Entries for alpha are optional. 

 

Example: suppose you want red to increase from 0 to 1 over 

the bottom half, green to do the same over the middle half, 

and blue over the top half. Then you would use:: 

 

cdict = {'red': [(0.0, 0.0, 0.0), 

(0.5, 1.0, 1.0), 

(1.0, 1.0, 1.0)], 

 

'green': [(0.0, 0.0, 0.0), 

(0.25, 0.0, 0.0), 

(0.75, 1.0, 1.0), 

(1.0, 1.0, 1.0)], 

 

'blue': [(0.0, 0.0, 0.0), 

(0.5, 0.0, 0.0), 

(1.0, 1.0, 1.0)]} 

 

Each row in the table for a given color is a sequence of 

*x*, *y0*, *y1* tuples. In each sequence, *x* must increase 

monotonically from 0 to 1. For any input value *z* falling 

between *x[i]* and *x[i+1]*, the output value of a given color 

will be linearly interpolated between *y1[i]* and *y0[i+1]*:: 

 

row i: x y0 y1 

/ 

/ 

row i+1: x y0 y1 

 

Hence y0 in the first row and y1 in the last row are never used. 

 

 

.. seealso:: 

 

:meth:`LinearSegmentedColormap.from_list` 

Static method; factory function for generating a 

smoothly-varying LinearSegmentedColormap. 

 

:func:`makeMappingArray` 

For information about making a mapping array. 

""" 

# True only if all colors in map are identical; needed for contouring. 

self.monochrome = False 

Colormap.__init__(self, name, N) 

self._segmentdata = segmentdata 

self._gamma = gamma 

 

def _init(self): 

self._lut = np.ones((self.N + 3, 4), float) 

self._lut[:-3, 0] = makeMappingArray( 

self.N, self._segmentdata['red'], self._gamma) 

self._lut[:-3, 1] = makeMappingArray( 

self.N, self._segmentdata['green'], self._gamma) 

self._lut[:-3, 2] = makeMappingArray( 

self.N, self._segmentdata['blue'], self._gamma) 

if 'alpha' in self._segmentdata: 

self._lut[:-3, 3] = makeMappingArray( 

self.N, self._segmentdata['alpha'], 1) 

self._isinit = True 

self._set_extremes() 

 

def set_gamma(self, gamma): 

""" 

Set a new gamma value and regenerate color map. 

""" 

self._gamma = gamma 

self._init() 

 

@staticmethod 

def from_list(name, colors, N=256, gamma=1.0): 

""" 

Make a linear segmented colormap with *name* from a sequence 

of *colors* which evenly transitions from colors[0] at val=0 

to colors[-1] at val=1. *N* is the number of rgb quantization 

levels. 

Alternatively, a list of (value, color) tuples can be given 

to divide the range unevenly. 

""" 

 

if not cbook.iterable(colors): 

raise ValueError('colors must be iterable') 

 

if (isinstance(colors[0], Sized) and len(colors[0]) == 2 

and not isinstance(colors[0], str)): 

# List of value, color pairs 

vals, colors = zip(*colors) 

else: 

vals = np.linspace(0, 1, len(colors)) 

 

cdict = dict(red=[], green=[], blue=[], alpha=[]) 

for val, color in zip(vals, colors): 

r, g, b, a = to_rgba(color) 

cdict['red'].append((val, r, r)) 

cdict['green'].append((val, g, g)) 

cdict['blue'].append((val, b, b)) 

cdict['alpha'].append((val, a, a)) 

 

return LinearSegmentedColormap(name, cdict, N, gamma) 

 

def _resample(self, lutsize): 

""" 

Return a new color map with *lutsize* entries. 

""" 

return LinearSegmentedColormap(self.name, self._segmentdata, lutsize) 

 

def reversed(self, name=None): 

""" 

Make a reversed instance of the Colormap. 

 

Parameters 

---------- 

name : str, optional 

The name for the reversed colormap. If it's None the 

name will be the name of the parent colormap + "_r". 

 

Returns 

------- 

LinearSegmentedColormap 

The reversed colormap. 

""" 

if name is None: 

name = self.name + "_r" 

 

# Function factory needed to deal with 'late binding' issue. 

def factory(dat): 

def func_r(x): 

return dat(1.0 - x) 

return func_r 

 

data_r = {key: (factory(data) if callable(data) else 

[(1.0 - x, y1, y0) for x, y0, y1 in reversed(data)]) 

for key, data in self._segmentdata.items()} 

 

return LinearSegmentedColormap(name, data_r, self.N, self._gamma) 

 

 

class ListedColormap(Colormap): 

"""Colormap object generated from a list of colors. 

 

This may be most useful when indexing directly into a colormap, 

but it can also be used to generate special colormaps for ordinary 

mapping. 

""" 

def __init__(self, colors, name='from_list', N=None): 

""" 

Make a colormap from a list of colors. 

 

*colors* 

a list of matplotlib color specifications, 

or an equivalent Nx3 or Nx4 floating point array 

(*N* rgb or rgba values) 

*name* 

a string to identify the colormap 

*N* 

the number of entries in the map. The default is *None*, 

in which case there is one colormap entry for each 

element in the list of colors. If:: 

 

N < len(colors) 

 

the list will be truncated at *N*. If:: 

 

N > len(colors) 

 

the list will be extended by repetition. 

""" 

self.monochrome = False # True only if all colors in map are 

# identical; needed for contouring. 

if N is None: 

self.colors = colors 

N = len(colors) 

else: 

if isinstance(colors, str): 

self.colors = [colors] * N 

self.monochrome = True 

elif cbook.iterable(colors): 

if len(colors) == 1: 

self.monochrome = True 

self.colors = list( 

itertools.islice(itertools.cycle(colors), N)) 

else: 

try: 

gray = float(colors) 

except TypeError: 

pass 

else: 

self.colors = [gray] * N 

self.monochrome = True 

Colormap.__init__(self, name, N) 

 

def _init(self): 

self._lut = np.zeros((self.N + 3, 4), float) 

self._lut[:-3] = to_rgba_array(self.colors) 

self._isinit = True 

self._set_extremes() 

 

def _resample(self, lutsize): 

""" 

Return a new color map with *lutsize* entries. 

""" 

colors = self(np.linspace(0, 1, lutsize)) 

return ListedColormap(colors, name=self.name) 

 

def reversed(self, name=None): 

""" 

Make a reversed instance of the Colormap. 

 

Parameters 

---------- 

name : str, optional 

The name for the reversed colormap. If it's None the 

name will be the name of the parent colormap + "_r". 

 

Returns 

------- 

ListedColormap 

A reversed instance of the colormap. 

""" 

if name is None: 

name = self.name + "_r" 

 

colors_r = list(reversed(self.colors)) 

return ListedColormap(colors_r, name=name, N=self.N) 

 

 

class Normalize(object): 

""" 

A class which, when called, can normalize data into 

the ``[0.0, 1.0]`` interval. 

 

""" 

def __init__(self, vmin=None, vmax=None, clip=False): 

""" 

If *vmin* or *vmax* is not given, they are initialized from the 

minimum and maximum value respectively of the first input 

processed. That is, *__call__(A)* calls *autoscale_None(A)*. 

If *clip* is *True* and the given value falls outside the range, 

the returned value will be 0 or 1, whichever is closer. 

Returns 0 if:: 

 

vmin==vmax 

 

Works with scalars or arrays, including masked arrays. If 

*clip* is *True*, masked values are set to 1; otherwise they 

remain masked. Clipping silently defeats the purpose of setting 

the over, under, and masked colors in the colormap, so it is 

likely to lead to surprises; therefore the default is 

*clip* = *False*. 

""" 

self.vmin = _sanitize_extrema(vmin) 

self.vmax = _sanitize_extrema(vmax) 

self.clip = clip 

 

@staticmethod 

def process_value(value): 

""" 

Homogenize the input *value* for easy and efficient normalization. 

 

*value* can be a scalar or sequence. 

 

Returns *result*, *is_scalar*, where *result* is a 

masked array matching *value*. Float dtypes are preserved; 

integer types with two bytes or smaller are converted to 

np.float32, and larger types are converted to np.float64. 

Preserving float32 when possible, and using in-place operations, 

can greatly improve speed for large arrays. 

 

Experimental; we may want to add an option to force the 

use of float32. 

""" 

is_scalar = not cbook.iterable(value) 

if is_scalar: 

value = [value] 

dtype = np.min_scalar_type(value) 

if np.issubdtype(dtype, np.integer) or dtype.type is np.bool_: 

# bool_/int8/int16 -> float32; int32/int64 -> float64 

dtype = np.promote_types(dtype, np.float32) 

# ensure data passed in as an ndarray subclass are interpreted as 

# an ndarray. See issue #6622. 

mask = np.ma.getmask(value) 

data = np.asarray(np.ma.getdata(value)) 

result = np.ma.array(data, mask=mask, dtype=dtype, copy=True) 

return result, is_scalar 

 

def __call__(self, value, clip=None): 

""" 

Normalize *value* data in the ``[vmin, vmax]`` interval into 

the ``[0.0, 1.0]`` interval and return it. *clip* defaults 

to *self.clip* (which defaults to *False*). If not already 

initialized, *vmin* and *vmax* are initialized using 

*autoscale_None(value)*. 

""" 

if clip is None: 

clip = self.clip 

 

result, is_scalar = self.process_value(value) 

 

self.autoscale_None(result) 

# Convert at least to float, without losing precision. 

(vmin,), _ = self.process_value(self.vmin) 

(vmax,), _ = self.process_value(self.vmax) 

if vmin == vmax: 

result.fill(0) # Or should it be all masked? Or 0.5? 

elif vmin > vmax: 

raise ValueError("minvalue must be less than or equal to maxvalue") 

else: 

if clip: 

mask = np.ma.getmask(result) 

result = np.ma.array(np.clip(result.filled(vmax), vmin, vmax), 

mask=mask) 

# ma division is very slow; we can take a shortcut 

resdat = result.data 

resdat -= vmin 

resdat /= (vmax - vmin) 

result = np.ma.array(resdat, mask=result.mask, copy=False) 

if is_scalar: 

result = result[0] 

return result 

 

def inverse(self, value): 

if not self.scaled(): 

raise ValueError("Not invertible until scaled") 

(vmin,), _ = self.process_value(self.vmin) 

(vmax,), _ = self.process_value(self.vmax) 

 

if cbook.iterable(value): 

val = np.ma.asarray(value) 

return vmin + val * (vmax - vmin) 

else: 

return vmin + value * (vmax - vmin) 

 

def autoscale(self, A): 

""" 

Set *vmin*, *vmax* to min, max of *A*. 

""" 

A = np.asanyarray(A) 

self.vmin = A.min() 

self.vmax = A.max() 

 

def autoscale_None(self, A): 

"""autoscale only None-valued vmin or vmax.""" 

A = np.asanyarray(A) 

if self.vmin is None and A.size: 

self.vmin = A.min() 

if self.vmax is None and A.size: 

self.vmax = A.max() 

 

def scaled(self): 

'return true if vmin and vmax set' 

return (self.vmin is not None and self.vmax is not None) 

 

 

class LogNorm(Normalize): 

""" 

Normalize a given value to the 0-1 range on a log scale 

""" 

def __call__(self, value, clip=None): 

if clip is None: 

clip = self.clip 

 

result, is_scalar = self.process_value(value) 

 

result = np.ma.masked_less_equal(result, 0, copy=False) 

 

self.autoscale_None(result) 

vmin, vmax = self.vmin, self.vmax 

if vmin > vmax: 

raise ValueError("minvalue must be less than or equal to maxvalue") 

elif vmin <= 0: 

raise ValueError("values must all be positive") 

elif vmin == vmax: 

result.fill(0) 

else: 

if clip: 

mask = np.ma.getmask(result) 

result = np.ma.array(np.clip(result.filled(vmax), vmin, vmax), 

mask=mask) 

# in-place equivalent of above can be much faster 

resdat = result.data 

mask = result.mask 

if mask is np.ma.nomask: 

mask = (resdat <= 0) 

else: 

mask |= resdat <= 0 

np.copyto(resdat, 1, where=mask) 

np.log(resdat, resdat) 

resdat -= np.log(vmin) 

resdat /= (np.log(vmax) - np.log(vmin)) 

result = np.ma.array(resdat, mask=mask, copy=False) 

if is_scalar: 

result = result[0] 

return result 

 

def inverse(self, value): 

if not self.scaled(): 

raise ValueError("Not invertible until scaled") 

vmin, vmax = self.vmin, self.vmax 

 

if cbook.iterable(value): 

val = np.ma.asarray(value) 

return vmin * np.ma.power((vmax / vmin), val) 

else: 

return vmin * pow((vmax / vmin), value) 

 

def autoscale(self, A): 

""" 

Set *vmin*, *vmax* to min, max of *A*. 

""" 

A = np.ma.masked_less_equal(A, 0, copy=False) 

self.vmin = np.ma.min(A) 

self.vmax = np.ma.max(A) 

 

def autoscale_None(self, A): 

"""autoscale only None-valued vmin or vmax.""" 

if self.vmin is not None and self.vmax is not None: 

return 

A = np.ma.masked_less_equal(A, 0, copy=False) 

if self.vmin is None and A.size: 

self.vmin = A.min() 

if self.vmax is None and A.size: 

self.vmax = A.max() 

 

 

class SymLogNorm(Normalize): 

""" 

The symmetrical logarithmic scale is logarithmic in both the 

positive and negative directions from the origin. 

 

Since the values close to zero tend toward infinity, there is a 

need to have a range around zero that is linear. The parameter 

*linthresh* allows the user to specify the size of this range 

(-*linthresh*, *linthresh*). 

""" 

def __init__(self, linthresh, linscale=1.0, 

vmin=None, vmax=None, clip=False): 

""" 

*linthresh*: 

The range within which the plot is linear (to 

avoid having the plot go to infinity around zero). 

 

*linscale*: 

This allows the linear range (-*linthresh* to *linthresh*) 

to be stretched relative to the logarithmic range. Its 

value is the number of decades to use for each half of the 

linear range. For example, when *linscale* == 1.0 (the 

default), the space used for the positive and negative 

halves of the linear range will be equal to one decade in 

the logarithmic range. Defaults to 1. 

""" 

Normalize.__init__(self, vmin, vmax, clip) 

self.linthresh = float(linthresh) 

self._linscale_adj = (linscale / (1.0 - np.e ** -1)) 

if vmin is not None and vmax is not None: 

self._transform_vmin_vmax() 

 

def __call__(self, value, clip=None): 

if clip is None: 

clip = self.clip 

 

result, is_scalar = self.process_value(value) 

self.autoscale_None(result) 

vmin, vmax = self.vmin, self.vmax 

 

if vmin > vmax: 

raise ValueError("minvalue must be less than or equal to maxvalue") 

elif vmin == vmax: 

result.fill(0) 

else: 

if clip: 

mask = np.ma.getmask(result) 

result = np.ma.array(np.clip(result.filled(vmax), vmin, vmax), 

mask=mask) 

# in-place equivalent of above can be much faster 

resdat = self._transform(result.data) 

resdat -= self._lower 

resdat /= (self._upper - self._lower) 

 

if is_scalar: 

result = result[0] 

return result 

 

def _transform(self, a): 

""" 

Inplace transformation. 

""" 

with np.errstate(invalid="ignore"): 

masked = np.abs(a) > self.linthresh 

sign = np.sign(a[masked]) 

log = (self._linscale_adj + np.log(np.abs(a[masked]) / self.linthresh)) 

log *= sign * self.linthresh 

a[masked] = log 

a[~masked] *= self._linscale_adj 

return a 

 

def _inv_transform(self, a): 

""" 

Inverse inplace Transformation. 

""" 

masked = np.abs(a) > (self.linthresh * self._linscale_adj) 

sign = np.sign(a[masked]) 

exp = np.exp(sign * a[masked] / self.linthresh - self._linscale_adj) 

exp *= sign * self.linthresh 

a[masked] = exp 

a[~masked] /= self._linscale_adj 

return a 

 

def _transform_vmin_vmax(self): 

""" 

Calculates vmin and vmax in the transformed system. 

""" 

vmin, vmax = self.vmin, self.vmax 

arr = np.array([vmax, vmin]).astype(float) 

self._upper, self._lower = self._transform(arr) 

 

def inverse(self, value): 

if not self.scaled(): 

raise ValueError("Not invertible until scaled") 

val = np.ma.asarray(value) 

val = val * (self._upper - self._lower) + self._lower 

return self._inv_transform(val) 

 

def autoscale(self, A): 

""" 

Set *vmin*, *vmax* to min, max of *A*. 

""" 

self.vmin = np.ma.min(A) 

self.vmax = np.ma.max(A) 

self._transform_vmin_vmax() 

 

def autoscale_None(self, A): 

"""autoscale only None-valued vmin or vmax.""" 

if self.vmin is not None and self.vmax is not None: 

pass 

A = np.asanyarray(A) 

if self.vmin is None and A.size: 

self.vmin = A.min() 

if self.vmax is None and A.size: 

self.vmax = A.max() 

self._transform_vmin_vmax() 

 

 

class PowerNorm(Normalize): 

""" 

Linearly map a given value to the 0-1 range and then apply 

a power-law normalization over that range. 

""" 

def __init__(self, gamma, vmin=None, vmax=None, clip=False): 

Normalize.__init__(self, vmin, vmax, clip) 

self.gamma = gamma 

 

def __call__(self, value, clip=None): 

if clip is None: 

clip = self.clip 

 

result, is_scalar = self.process_value(value) 

 

self.autoscale_None(result) 

gamma = self.gamma 

vmin, vmax = self.vmin, self.vmax 

if vmin > vmax: 

raise ValueError("minvalue must be less than or equal to maxvalue") 

elif vmin == vmax: 

result.fill(0) 

else: 

if clip: 

mask = np.ma.getmask(result) 

result = np.ma.array(np.clip(result.filled(vmax), vmin, vmax), 

mask=mask) 

resdat = result.data 

resdat -= vmin 

resdat[resdat < 0] = 0 

np.power(resdat, gamma, resdat) 

resdat /= (vmax - vmin) ** gamma 

 

result = np.ma.array(resdat, mask=result.mask, copy=False) 

if is_scalar: 

result = result[0] 

return result 

 

def inverse(self, value): 

if not self.scaled(): 

raise ValueError("Not invertible until scaled") 

gamma = self.gamma 

vmin, vmax = self.vmin, self.vmax 

 

if cbook.iterable(value): 

val = np.ma.asarray(value) 

return np.ma.power(val, 1. / gamma) * (vmax - vmin) + vmin 

else: 

return pow(value, 1. / gamma) * (vmax - vmin) + vmin 

 

def autoscale(self, A): 

""" 

Set *vmin*, *vmax* to min, max of *A*. 

""" 

self.vmin = np.ma.min(A) 

self.vmax = np.ma.max(A) 

 

def autoscale_None(self, A): 

"""autoscale only None-valued vmin or vmax.""" 

A = np.asanyarray(A) 

if self.vmin is None and A.size: 

self.vmin = A.min() 

if self.vmax is None and A.size: 

self.vmax = A.max() 

 

 

class BoundaryNorm(Normalize): 

""" 

Generate a colormap index based on discrete intervals. 

 

Unlike :class:`Normalize` or :class:`LogNorm`, 

:class:`BoundaryNorm` maps values to integers instead of to the 

interval 0-1. 

 

Mapping to the 0-1 interval could have been done via 

piece-wise linear interpolation, but using integers seems 

simpler, and reduces the number of conversions back and forth 

between integer and floating point. 

""" 

def __init__(self, boundaries, ncolors, clip=False): 

""" 

Parameters 

---------- 

boundaries : array-like 

Monotonically increasing sequence of boundaries 

ncolors : int 

Number of colors in the colormap to be used 

clip : bool, optional 

If clip is ``True``, out of range values are mapped to 0 if they 

are below ``boundaries[0]`` or mapped to ncolors - 1 if they are 

above ``boundaries[-1]``. 

 

If clip is ``False``, out of range values are mapped to -1 if 

they are below ``boundaries[0]`` or mapped to ncolors if they are 

above ``boundaries[-1]``. These are then converted to valid indices 

by :meth:`Colormap.__call__`. 

 

Notes 

----- 

*boundaries* defines the edges of bins, and data falling within a bin 

is mapped to the color with the same index. 

 

If the number of bins doesn't equal *ncolors*, the color is chosen 

by linear interpolation of the bin number onto color numbers. 

""" 

self.clip = clip 

self.vmin = boundaries[0] 

self.vmax = boundaries[-1] 

self.boundaries = np.asarray(boundaries) 

self.N = len(self.boundaries) 

self.Ncmap = ncolors 

if self.N - 1 == self.Ncmap: 

self._interp = False 

else: 

self._interp = True 

 

def __call__(self, value, clip=None): 

if clip is None: 

clip = self.clip 

 

xx, is_scalar = self.process_value(value) 

mask = np.ma.getmaskarray(xx) 

xx = np.atleast_1d(xx.filled(self.vmax + 1)) 

if clip: 

np.clip(xx, self.vmin, self.vmax, out=xx) 

max_col = self.Ncmap - 1 

else: 

max_col = self.Ncmap 

iret = np.zeros(xx.shape, dtype=np.int16) 

for i, b in enumerate(self.boundaries): 

iret[xx >= b] = i 

if self._interp: 

scalefac = (self.Ncmap - 1) / (self.N - 2) 

iret = (iret * scalefac).astype(np.int16) 

iret[xx < self.vmin] = -1 

iret[xx >= self.vmax] = max_col 

ret = np.ma.array(iret, mask=mask) 

if is_scalar: 

ret = int(ret[0]) # assume python scalar 

return ret 

 

def inverse(self, value): 

""" 

Raises 

------ 

ValueError 

BoundaryNorm is not invertible, so calling this method will always 

raise an error 

""" 

return ValueError("BoundaryNorm is not invertible") 

 

 

class NoNorm(Normalize): 

""" 

Dummy replacement for Normalize, for the case where we 

want to use indices directly in a 

:class:`~matplotlib.cm.ScalarMappable` . 

""" 

def __call__(self, value, clip=None): 

return value 

 

def inverse(self, value): 

return value 

 

 

def rgb_to_hsv(arr): 

""" 

convert float rgb values (in the range [0, 1]), in a numpy array to hsv 

values. 

 

Parameters 

---------- 

arr : (..., 3) array-like 

All values must be in the range [0, 1] 

 

Returns 

------- 

hsv : (..., 3) ndarray 

Colors converted to hsv values in range [0, 1] 

""" 

# make sure it is an ndarray 

arr = np.asarray(arr) 

 

# check length of the last dimension, should be _some_ sort of rgb 

if arr.shape[-1] != 3: 

raise ValueError("Last dimension of input array must be 3; " 

"shape {} was found.".format(arr.shape)) 

 

in_ndim = arr.ndim 

if arr.ndim == 1: 

arr = np.array(arr, ndmin=2) 

 

# make sure we don't have an int image 

arr = arr.astype(np.promote_types(arr.dtype, np.float32)) 

 

out = np.zeros_like(arr) 

arr_max = arr.max(-1) 

ipos = arr_max > 0 

delta = arr.ptp(-1) 

s = np.zeros_like(delta) 

s[ipos] = delta[ipos] / arr_max[ipos] 

ipos = delta > 0 

# red is max 

idx = (arr[..., 0] == arr_max) & ipos 

out[idx, 0] = (arr[idx, 1] - arr[idx, 2]) / delta[idx] 

# green is max 

idx = (arr[..., 1] == arr_max) & ipos 

out[idx, 0] = 2. + (arr[idx, 2] - arr[idx, 0]) / delta[idx] 

# blue is max 

idx = (arr[..., 2] == arr_max) & ipos 

out[idx, 0] = 4. + (arr[idx, 0] - arr[idx, 1]) / delta[idx] 

 

out[..., 0] = (out[..., 0] / 6.0) % 1.0 

out[..., 1] = s 

out[..., 2] = arr_max 

 

if in_ndim == 1: 

out.shape = (3,) 

 

return out 

 

 

def hsv_to_rgb(hsv): 

""" 

convert hsv values in a numpy array to rgb values 

all values assumed to be in range [0, 1] 

 

Parameters 

---------- 

hsv : (..., 3) array-like 

All values assumed to be in range [0, 1] 

 

Returns 

------- 

rgb : (..., 3) ndarray 

Colors converted to RGB values in range [0, 1] 

""" 

hsv = np.asarray(hsv) 

 

# check length of the last dimension, should be _some_ sort of rgb 

if hsv.shape[-1] != 3: 

raise ValueError("Last dimension of input array must be 3; " 

"shape {shp} was found.".format(shp=hsv.shape)) 

 

# if we got passed a 1D array, try to treat as 

# a single color and reshape as needed 

in_ndim = hsv.ndim 

if in_ndim == 1: 

hsv = np.array(hsv, ndmin=2) 

 

# make sure we don't have an int image 

hsv = hsv.astype(np.promote_types(hsv.dtype, np.float32)) 

 

h = hsv[..., 0] 

s = hsv[..., 1] 

v = hsv[..., 2] 

 

r = np.empty_like(h) 

g = np.empty_like(h) 

b = np.empty_like(h) 

 

i = (h * 6.0).astype(int) 

f = (h * 6.0) - i 

p = v * (1.0 - s) 

q = v * (1.0 - s * f) 

t = v * (1.0 - s * (1.0 - f)) 

 

idx = i % 6 == 0 

r[idx] = v[idx] 

g[idx] = t[idx] 

b[idx] = p[idx] 

 

idx = i == 1 

r[idx] = q[idx] 

g[idx] = v[idx] 

b[idx] = p[idx] 

 

idx = i == 2 

r[idx] = p[idx] 

g[idx] = v[idx] 

b[idx] = t[idx] 

 

idx = i == 3 

r[idx] = p[idx] 

g[idx] = q[idx] 

b[idx] = v[idx] 

 

idx = i == 4 

r[idx] = t[idx] 

g[idx] = p[idx] 

b[idx] = v[idx] 

 

idx = i == 5 

r[idx] = v[idx] 

g[idx] = p[idx] 

b[idx] = q[idx] 

 

idx = s == 0 

r[idx] = v[idx] 

g[idx] = v[idx] 

b[idx] = v[idx] 

 

rgb = np.stack([r, g, b], axis=-1) 

 

if in_ndim == 1: 

rgb.shape = (3,) 

 

return rgb 

 

 

def _vector_magnitude(arr): 

# things that don't work here: 

# * np.linalg.norm 

# - doesn't broadcast in numpy 1.7 

# - drops the mask from ma.array 

# * using keepdims - broken on ma.array until 1.11.2 

# * using sum - discards mask on ma.array unless entire vector is masked 

 

sum_sq = 0 

for i in range(arr.shape[-1]): 

sum_sq += np.square(arr[..., i, np.newaxis]) 

return np.sqrt(sum_sq) 

 

 

class LightSource(object): 

""" 

Create a light source coming from the specified azimuth and elevation. 

Angles are in degrees, with the azimuth measured 

clockwise from north and elevation up from the zero plane of the surface. 

 

The :meth:`shade` is used to produce "shaded" rgb values for a data array. 

:meth:`shade_rgb` can be used to combine an rgb image with 

The :meth:`shade_rgb` 

The :meth:`hillshade` produces an illumination map of a surface. 

""" 

def __init__(self, azdeg=315, altdeg=45, hsv_min_val=0, hsv_max_val=1, 

hsv_min_sat=1, hsv_max_sat=0): 

""" 

Specify the azimuth (measured clockwise from south) and altitude 

(measured up from the plane of the surface) of the light source 

in degrees. 

 

Parameters 

---------- 

azdeg : number, optional 

The azimuth (0-360, degrees clockwise from North) of the light 

source. Defaults to 315 degrees (from the northwest). 

altdeg : number, optional 

The altitude (0-90, degrees up from horizontal) of the light 

source. Defaults to 45 degrees from horizontal. 

 

Notes 

----- 

For backwards compatibility, the parameters *hsv_min_val*, 

*hsv_max_val*, *hsv_min_sat*, and *hsv_max_sat* may be supplied at 

initialization as well. However, these parameters will only be used if 

"blend_mode='hsv'" is passed into :meth:`shade` or :meth:`shade_rgb`. 

See the documentation for :meth:`blend_hsv` for more details. 

""" 

self.azdeg = azdeg 

self.altdeg = altdeg 

self.hsv_min_val = hsv_min_val 

self.hsv_max_val = hsv_max_val 

self.hsv_min_sat = hsv_min_sat 

self.hsv_max_sat = hsv_max_sat 

 

@property 

def direction(self): 

""" The unit vector direction towards the light source """ 

 

# Azimuth is in degrees clockwise from North. Convert to radians 

# counterclockwise from East (mathematical notation). 

az = np.radians(90 - self.azdeg) 

alt = np.radians(self.altdeg) 

 

return np.array([ 

np.cos(az) * np.cos(alt), 

np.sin(az) * np.cos(alt), 

np.sin(alt) 

]) 

 

def hillshade(self, elevation, vert_exag=1, dx=1, dy=1, fraction=1.): 

""" 

Calculates the illumination intensity for a surface using the defined 

azimuth and elevation for the light source. 

 

This computes the normal vectors for the surface, and then passes them 

on to `shade_normals` 

 

Parameters 

---------- 

elevation : array-like 

A 2d array (or equivalent) of the height values used to generate an 

illumination map 

vert_exag : number, optional 

The amount to exaggerate the elevation values by when calculating 

illumination. This can be used either to correct for differences in 

units between the x-y coordinate system and the elevation 

coordinate system (e.g. decimal degrees vs meters) or to exaggerate 

or de-emphasize topographic effects. 

dx : number, optional 

The x-spacing (columns) of the input *elevation* grid. 

dy : number, optional 

The y-spacing (rows) of the input *elevation* grid. 

fraction : number, optional 

Increases or decreases the contrast of the hillshade. Values 

greater than one will cause intermediate values to move closer to 

full illumination or shadow (and clipping any values that move 

beyond 0 or 1). Note that this is not visually or mathematically 

the same as vertical exaggeration. 

Returns 

------- 

intensity : ndarray 

A 2d array of illumination values between 0-1, where 0 is 

completely in shadow and 1 is completely illuminated. 

""" 

 

# Because most image and raster GIS data has the first row in the array 

# as the "top" of the image, dy is implicitly negative. This is 

# consistent to what `imshow` assumes, as well. 

dy = -dy 

 

# compute the normal vectors from the partial derivatives 

e_dy, e_dx = np.gradient(vert_exag * elevation, dy, dx) 

 

# .view is to keep subclasses 

normal = np.empty(elevation.shape + (3,)).view(type(elevation)) 

normal[..., 0] = -e_dx 

normal[..., 1] = -e_dy 

normal[..., 2] = 1 

normal /= _vector_magnitude(normal) 

 

return self.shade_normals(normal, fraction) 

 

def shade_normals(self, normals, fraction=1.): 

""" 

Calculates the illumination intensity for the normal vectors of a 

surface using the defined azimuth and elevation for the light source. 

 

Imagine an artificial sun placed at infinity in some azimuth and 

elevation position illuminating our surface. The parts of the surface 

that slope toward the sun should brighten while those sides facing away 

should become darker. 

 

Parameters 

---------- 

fraction : number, optional 

Increases or decreases the contrast of the hillshade. Values 

greater than one will cause intermediate values to move closer to 

full illumination or shadow (and clipping any values that move 

beyond 0 or 1). Note that this is not visually or mathematically 

the same as vertical exaggeration. 

 

Returns 

------- 

intensity : ndarray 

A 2d array of illumination values between 0-1, where 0 is 

completely in shadow and 1 is completely illuminated. 

""" 

 

intensity = normals.dot(self.direction) 

 

# Apply contrast stretch 

imin, imax = intensity.min(), intensity.max() 

intensity *= fraction 

 

# Rescale to 0-1, keeping range before contrast stretch 

# If constant slope, keep relative scaling (i.e. flat should be 0.5, 

# fully occluded 0, etc.) 

if (imax - imin) > 1e-6: 

# Strictly speaking, this is incorrect. Negative values should be 

# clipped to 0 because they're fully occluded. However, rescaling 

# in this manner is consistent with the previous implementation and 

# visually appears better than a "hard" clip. 

intensity -= imin 

intensity /= (imax - imin) 

intensity = np.clip(intensity, 0, 1, intensity) 

 

return intensity 

 

def shade(self, data, cmap, norm=None, blend_mode='overlay', vmin=None, 

vmax=None, vert_exag=1, dx=1, dy=1, fraction=1, **kwargs): 

""" 

Combine colormapped data values with an illumination intensity map 

(a.k.a. "hillshade") of the values. 

 

Parameters 

---------- 

data : array-like 

A 2d array (or equivalent) of the height values used to generate a 

shaded map. 

cmap : `~matplotlib.colors.Colormap` instance 

The colormap used to color the *data* array. Note that this must be 

a `~matplotlib.colors.Colormap` instance. For example, rather than 

passing in `cmap='gist_earth'`, use 

`cmap=plt.get_cmap('gist_earth')` instead. 

norm : `~matplotlib.colors.Normalize` instance, optional 

The normalization used to scale values before colormapping. If 

None, the input will be linearly scaled between its min and max. 

blend_mode : {'hsv', 'overlay', 'soft'} or callable, optional 

The type of blending used to combine the colormapped data 

values with the illumination intensity. Default is 

"overlay". Note that for most topographic surfaces, 

"overlay" or "soft" appear more visually realistic. If a 

user-defined function is supplied, it is expected to 

combine an MxNx3 RGB array of floats (ranging 0 to 1) with 

an MxNx1 hillshade array (also 0 to 1). (Call signature 

`func(rgb, illum, **kwargs)`) Additional kwargs supplied 

to this function will be passed on to the *blend_mode* 

function. 

vmin : scalar or None, optional 

The minimum value used in colormapping *data*. If *None* the 

minimum value in *data* is used. If *norm* is specified, then this 

argument will be ignored. 

vmax : scalar or None, optional 

The maximum value used in colormapping *data*. If *None* the 

maximum value in *data* is used. If *norm* is specified, then this 

argument will be ignored. 

vert_exag : number, optional 

The amount to exaggerate the elevation values by when calculating 

illumination. This can be used either to correct for differences in 

units between the x-y coordinate system and the elevation 

coordinate system (e.g. decimal degrees vs meters) or to exaggerate 

or de-emphasize topography. 

dx : number, optional 

The x-spacing (columns) of the input *elevation* grid. 

dy : number, optional 

The y-spacing (rows) of the input *elevation* grid. 

fraction : number, optional 

Increases or decreases the contrast of the hillshade. Values 

greater than one will cause intermediate values to move closer to 

full illumination or shadow (and clipping any values that move 

beyond 0 or 1). Note that this is not visually or mathematically 

the same as vertical exaggeration. 

Additional kwargs are passed on to the *blend_mode* function. 

 

Returns 

------- 

rgba : ndarray 

An MxNx4 array of floats ranging between 0-1. 

""" 

if vmin is None: 

vmin = data.min() 

if vmax is None: 

vmax = data.max() 

if norm is None: 

norm = Normalize(vmin=vmin, vmax=vmax) 

 

rgb0 = cmap(norm(data)) 

rgb1 = self.shade_rgb(rgb0, elevation=data, blend_mode=blend_mode, 

vert_exag=vert_exag, dx=dx, dy=dy, 

fraction=fraction, **kwargs) 

# Don't overwrite the alpha channel, if present. 

rgb0[..., :3] = rgb1[..., :3] 

return rgb0 

 

def shade_rgb(self, rgb, elevation, fraction=1., blend_mode='hsv', 

vert_exag=1, dx=1, dy=1, **kwargs): 

""" 

Take the input RGB array (ny*nx*3) adjust their color values 

to given the impression of a shaded relief map with a 

specified light source using the elevation (ny*nx). 

A new RGB array ((ny*nx*3)) is returned. 

 

Parameters 

---------- 

rgb : array-like 

An MxNx3 RGB array, assumed to be in the range of 0 to 1. 

elevation : array-like 

A 2d array (or equivalent) of the height values used to generate a 

shaded map. 

fraction : number 

Increases or decreases the contrast of the hillshade. Values 

greater than one will cause intermediate values to move closer to 

full illumination or shadow (and clipping any values that move 

beyond 0 or 1). Note that this is not visually or mathematically 

the same as vertical exaggeration. 

blend_mode : {'hsv', 'overlay', 'soft'} or callable, optional 

The type of blending used to combine the colormapped data values 

with the illumination intensity. For backwards compatibility, this 

defaults to "hsv". Note that for most topographic surfaces, 

"overlay" or "soft" appear more visually realistic. If a 

user-defined function is supplied, it is expected to combine an 

MxNx3 RGB array of floats (ranging 0 to 1) with an MxNx1 hillshade 

array (also 0 to 1). (Call signature `func(rgb, illum, **kwargs)`) 

Additional kwargs supplied to this function will be passed on to 

the *blend_mode* function. 

vert_exag : number, optional 

The amount to exaggerate the elevation values by when calculating 

illumination. This can be used either to correct for differences in 

units between the x-y coordinate system and the elevation 

coordinate system (e.g. decimal degrees vs meters) or to exaggerate 

or de-emphasize topography. 

dx : number, optional 

The x-spacing (columns) of the input *elevation* grid. 

dy : number, optional 

The y-spacing (rows) of the input *elevation* grid. 

Additional kwargs are passed on to the *blend_mode* function. 

 

Returns 

------- 

shaded_rgb : ndarray 

An MxNx3 array of floats ranging between 0-1. 

""" 

# Calculate the "hillshade" intensity. 

intensity = self.hillshade(elevation, vert_exag, dx, dy, fraction) 

intensity = intensity[..., np.newaxis] 

 

# Blend the hillshade and rgb data using the specified mode 

lookup = { 

'hsv': self.blend_hsv, 

'soft': self.blend_soft_light, 

'overlay': self.blend_overlay, 

} 

if blend_mode in lookup: 

blend = lookup[blend_mode](rgb, intensity, **kwargs) 

else: 

try: 

blend = blend_mode(rgb, intensity, **kwargs) 

except TypeError: 

raise ValueError('"blend_mode" must be callable or one of {}' 

.format(lookup.keys)) 

 

# Only apply result where hillshade intensity isn't masked 

if hasattr(intensity, 'mask'): 

mask = intensity.mask[..., 0] 

for i in range(3): 

blend[..., i][mask] = rgb[..., i][mask] 

 

return blend 

 

def blend_hsv(self, rgb, intensity, hsv_max_sat=None, hsv_max_val=None, 

hsv_min_val=None, hsv_min_sat=None): 

""" 

Take the input data array, convert to HSV values in the given colormap, 

then adjust those color values to give the impression of a shaded 

relief map with a specified light source. RGBA values are returned, 

which can then be used to plot the shaded image with imshow. 

 

The color of the resulting image will be darkened by moving the (s,v) 

values (in hsv colorspace) toward (hsv_min_sat, hsv_min_val) in the 

shaded regions, or lightened by sliding (s,v) toward (hsv_max_sat 

hsv_max_val) in regions that are illuminated. The default extremes are 

chose so that completely shaded points are nearly black (s = 1, v = 0) 

and completely illuminated points are nearly white (s = 0, v = 1). 

 

Parameters 

---------- 

rgb : ndarray 

An MxNx3 RGB array of floats ranging from 0 to 1 (color image). 

intensity : ndarray 

An MxNx1 array of floats ranging from 0 to 1 (grayscale image). 

hsv_max_sat : number, optional 

The maximum saturation value that the *intensity* map can shift the 

output image to. Defaults to 1. 

hsv_min_sat : number, optional 

The minimum saturation value that the *intensity* map can shift the 

output image to. Defaults to 0. 

hsv_max_val : number, optional 

The maximum value ("v" in "hsv") that the *intensity* map can shift 

the output image to. Defaults to 1. 

hsv_min_val: number, optional 

The minimum value ("v" in "hsv") that the *intensity* map can shift 

the output image to. Defaults to 0. 

 

Returns 

------- 

rgb : ndarray 

An MxNx3 RGB array representing the combined images. 

""" 

# Backward compatibility... 

if hsv_max_sat is None: 

hsv_max_sat = self.hsv_max_sat 

if hsv_max_val is None: 

hsv_max_val = self.hsv_max_val 

if hsv_min_sat is None: 

hsv_min_sat = self.hsv_min_sat 

if hsv_min_val is None: 

hsv_min_val = self.hsv_min_val 

 

# Expects a 2D intensity array scaled between -1 to 1... 

intensity = intensity[..., 0] 

intensity = 2 * intensity - 1 

 

# convert to rgb, then rgb to hsv 

hsv = rgb_to_hsv(rgb[:, :, 0:3]) 

 

# modify hsv values to simulate illumination. 

hsv[:, :, 1] = np.where(np.logical_and(np.abs(hsv[:, :, 1]) > 1.e-10, 

intensity > 0), 

((1. - intensity) * hsv[:, :, 1] + 

intensity * hsv_max_sat), 

hsv[:, :, 1]) 

 

hsv[:, :, 2] = np.where(intensity > 0, 

((1. - intensity) * hsv[:, :, 2] + 

intensity * hsv_max_val), 

hsv[:, :, 2]) 

 

hsv[:, :, 1] = np.where(np.logical_and(np.abs(hsv[:, :, 1]) > 1.e-10, 

intensity < 0), 

((1. + intensity) * hsv[:, :, 1] - 

intensity * hsv_min_sat), 

hsv[:, :, 1]) 

hsv[:, :, 2] = np.where(intensity < 0, 

((1. + intensity) * hsv[:, :, 2] - 

intensity * hsv_min_val), 

hsv[:, :, 2]) 

hsv[:, :, 1:] = np.where(hsv[:, :, 1:] < 0., 0, hsv[:, :, 1:]) 

hsv[:, :, 1:] = np.where(hsv[:, :, 1:] > 1., 1, hsv[:, :, 1:]) 

# convert modified hsv back to rgb. 

return hsv_to_rgb(hsv) 

 

def blend_soft_light(self, rgb, intensity): 

""" 

Combines an rgb image with an intensity map using "soft light" 

blending. Uses the "pegtop" formula. 

 

Parameters 

---------- 

rgb : ndarray 

An MxNx3 RGB array of floats ranging from 0 to 1 (color image). 

intensity : ndarray 

An MxNx1 array of floats ranging from 0 to 1 (grayscale image). 

 

Returns 

------- 

rgb : ndarray 

An MxNx3 RGB array representing the combined images. 

""" 

return 2 * intensity * rgb + (1 - 2 * intensity) * rgb**2 

 

def blend_overlay(self, rgb, intensity): 

""" 

Combines an rgb image with an intensity map using "overlay" blending. 

 

Parameters 

---------- 

rgb : ndarray 

An MxNx3 RGB array of floats ranging from 0 to 1 (color image). 

intensity : ndarray 

An MxNx1 array of floats ranging from 0 to 1 (grayscale image). 

 

Returns 

------- 

rgb : ndarray 

An MxNx3 RGB array representing the combined images. 

""" 

low = 2 * intensity * rgb 

high = 1 - 2 * (1 - intensity) * (1 - rgb) 

return np.where(rgb <= 0.5, low, high) 

 

 

def from_levels_and_colors(levels, colors, extend='neither'): 

""" 

A helper routine to generate a cmap and a norm instance which 

behave similar to contourf's levels and colors arguments. 

 

Parameters 

---------- 

levels : sequence of numbers 

The quantization levels used to construct the :class:`BoundaryNorm`. 

Values ``v`` are quantizized to level ``i`` if 

``lev[i] <= v < lev[i+1]``. 

colors : sequence of colors 

The fill color to use for each level. If `extend` is "neither" there 

must be ``n_level - 1`` colors. For an `extend` of "min" or "max" add 

one extra color, and for an `extend` of "both" add two colors. 

extend : {'neither', 'min', 'max', 'both'}, optional 

The behaviour when a value falls out of range of the given levels. 

See :func:`~matplotlib.pyplot.contourf` for details. 

 

Returns 

------- 

(cmap, norm) : tuple containing a :class:`Colormap` and a \ 

:class:`Normalize` instance 

""" 

colors_i0 = 0 

colors_i1 = None 

 

if extend == 'both': 

colors_i0 = 1 

colors_i1 = -1 

extra_colors = 2 

elif extend == 'min': 

colors_i0 = 1 

extra_colors = 1 

elif extend == 'max': 

colors_i1 = -1 

extra_colors = 1 

elif extend == 'neither': 

extra_colors = 0 

else: 

raise ValueError('Unexpected value for extend: {0!r}'.format(extend)) 

 

n_data_colors = len(levels) - 1 

n_expected_colors = n_data_colors + extra_colors 

if len(colors) != n_expected_colors: 

raise ValueError('With extend == {0!r} and n_levels == {1!r} expected' 

' n_colors == {2!r}. Got {3!r}.' 

''.format(extend, len(levels), n_expected_colors, 

len(colors))) 

 

cmap = ListedColormap(colors[colors_i0:colors_i1], N=n_data_colors) 

 

if extend in ['min', 'both']: 

cmap.set_under(colors[0]) 

else: 

cmap.set_under('none') 

 

if extend in ['max', 'both']: 

cmap.set_over(colors[-1]) 

else: 

cmap.set_over('none') 

 

cmap.colorbar_extend = extend 

 

norm = BoundaryNorm(levels, ncolors=n_data_colors) 

return cmap, norm