1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

"""Array printing function 

 

$Id: arrayprint.py,v 1.9 2005/09/13 13:58:44 teoliphant Exp $ 

 

""" 

from __future__ import division, absolute_import, print_function 

 

__all__ = ["array2string", "array_str", "array_repr", "set_string_function", 

"set_printoptions", "get_printoptions", "printoptions", 

"format_float_positional", "format_float_scientific"] 

__docformat__ = 'restructuredtext' 

 

# 

# Written by Konrad Hinsen <hinsenk@ere.umontreal.ca> 

# last revision: 1996-3-13 

# modified by Jim Hugunin 1997-3-3 for repr's and str's (and other details) 

# and by Perry Greenfield 2000-4-1 for numarray 

# and by Travis Oliphant 2005-8-22 for numpy 

 

 

# Note: Both scalartypes.c.src and arrayprint.py implement strs for numpy 

# scalars but for different purposes. scalartypes.c.src has str/reprs for when 

# the scalar is printed on its own, while arrayprint.py has strs for when 

# scalars are printed inside an ndarray. Only the latter strs are currently 

# user-customizable. 

 

import sys 

import functools 

import numbers 

if sys.version_info[0] >= 3: 

try: 

from _thread import get_ident 

except ImportError: 

from _dummy_thread import get_ident 

else: 

try: 

from thread import get_ident 

except ImportError: 

from dummy_thread import get_ident 

 

import numpy as np 

from . import numerictypes as _nt 

from .umath import absolute, not_equal, isnan, isinf, isfinite, isnat 

from . import multiarray 

from .multiarray import (array, dragon4_positional, dragon4_scientific, 

datetime_as_string, datetime_data, ndarray, 

set_legacy_print_mode) 

from .fromnumeric import ravel, any 

from .numeric import concatenate, asarray, errstate 

from .numerictypes import (longlong, intc, int_, float_, complex_, bool_, 

flexible) 

from .overrides import array_function_dispatch, set_module 

import warnings 

import contextlib 

 

_format_options = { 

'edgeitems': 3, # repr N leading and trailing items of each dimension 

'threshold': 1000, # total items > triggers array summarization 

'floatmode': 'maxprec', 

'precision': 8, # precision of floating point representations 

'suppress': False, # suppress printing small floating values in exp format 

'linewidth': 75, 

'nanstr': 'nan', 

'infstr': 'inf', 

'sign': '-', 

'formatter': None, 

'legacy': False} 

 

def _make_options_dict(precision=None, threshold=None, edgeitems=None, 

linewidth=None, suppress=None, nanstr=None, infstr=None, 

sign=None, formatter=None, floatmode=None, legacy=None): 

""" make a dictionary out of the non-None arguments, plus sanity checks """ 

 

options = {k: v for k, v in locals().items() if v is not None} 

 

if suppress is not None: 

options['suppress'] = bool(suppress) 

 

modes = ['fixed', 'unique', 'maxprec', 'maxprec_equal'] 

if floatmode not in modes + [None]: 

raise ValueError("floatmode option must be one of " + 

", ".join('"{}"'.format(m) for m in modes)) 

 

if sign not in [None, '-', '+', ' ']: 

raise ValueError("sign option must be one of ' ', '+', or '-'") 

 

if legacy not in [None, False, '1.13']: 

warnings.warn("legacy printing option can currently only be '1.13' or " 

"`False`", stacklevel=3) 

if threshold is not None: 

# forbid the bad threshold arg suggested by stack overflow, gh-12351 

if not isinstance(threshold, numbers.Number) or np.isnan(threshold): 

raise ValueError("threshold must be numeric and non-NAN, try " 

"sys.maxsize for untruncated representation") 

return options 

 

 

@set_module('numpy') 

def set_printoptions(precision=None, threshold=None, edgeitems=None, 

linewidth=None, suppress=None, nanstr=None, infstr=None, 

formatter=None, sign=None, floatmode=None, **kwarg): 

""" 

Set printing options. 

 

These options determine the way floating point numbers, arrays and 

other NumPy objects are displayed. 

 

Parameters 

---------- 

precision : int or None, optional 

Number of digits of precision for floating point output (default 8). 

May be `None` if `floatmode` is not `fixed`, to print as many digits as 

necessary to uniquely specify the value. 

threshold : int, optional 

Total number of array elements which trigger summarization 

rather than full repr (default 1000). 

edgeitems : int, optional 

Number of array items in summary at beginning and end of 

each dimension (default 3). 

linewidth : int, optional 

The number of characters per line for the purpose of inserting 

line breaks (default 75). 

suppress : bool, optional 

If True, always print floating point numbers using fixed point 

notation, in which case numbers equal to zero in the current precision 

will print as zero. If False, then scientific notation is used when 

absolute value of the smallest number is < 1e-4 or the ratio of the 

maximum absolute value to the minimum is > 1e3. The default is False. 

nanstr : str, optional 

String representation of floating point not-a-number (default nan). 

infstr : str, optional 

String representation of floating point infinity (default inf). 

sign : string, either '-', '+', or ' ', optional 

Controls printing of the sign of floating-point types. If '+', always 

print the sign of positive values. If ' ', always prints a space 

(whitespace character) in the sign position of positive values. If 

'-', omit the sign character of positive values. (default '-') 

formatter : dict of callables, optional 

If not None, the keys should indicate the type(s) that the respective 

formatting function applies to. Callables should return a string. 

Types that are not specified (by their corresponding keys) are handled 

by the default formatters. Individual types for which a formatter 

can be set are: 

 

- 'bool' 

- 'int' 

- 'timedelta' : a `numpy.timedelta64` 

- 'datetime' : a `numpy.datetime64` 

- 'float' 

- 'longfloat' : 128-bit floats 

- 'complexfloat' 

- 'longcomplexfloat' : composed of two 128-bit floats 

- 'numpystr' : types `numpy.string_` and `numpy.unicode_` 

- 'object' : `np.object_` arrays 

- 'str' : all other strings 

 

Other keys that can be used to set a group of types at once are: 

 

- 'all' : sets all types 

- 'int_kind' : sets 'int' 

- 'float_kind' : sets 'float' and 'longfloat' 

- 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat' 

- 'str_kind' : sets 'str' and 'numpystr' 

floatmode : str, optional 

Controls the interpretation of the `precision` option for 

floating-point types. Can take the following values: 

 

* 'fixed': Always print exactly `precision` fractional digits, 

even if this would print more or fewer digits than 

necessary to specify the value uniquely. 

* 'unique': Print the minimum number of fractional digits necessary 

to represent each value uniquely. Different elements may 

have a different number of digits. The value of the 

`precision` option is ignored. 

* 'maxprec': Print at most `precision` fractional digits, but if 

an element can be uniquely represented with fewer digits 

only print it with that many. 

* 'maxprec_equal': Print at most `precision` fractional digits, 

but if every element in the array can be uniquely 

represented with an equal number of fewer digits, use that 

many digits for all elements. 

legacy : string or `False`, optional 

If set to the string `'1.13'` enables 1.13 legacy printing mode. This 

approximates numpy 1.13 print output by including a space in the sign 

position of floats and different behavior for 0d arrays. If set to 

`False`, disables legacy mode. Unrecognized strings will be ignored 

with a warning for forward compatibility. 

 

.. versionadded:: 1.14.0 

 

See Also 

-------- 

get_printoptions, set_string_function, array2string 

 

Notes 

----- 

`formatter` is always reset with a call to `set_printoptions`. 

 

Examples 

-------- 

Floating point precision can be set: 

 

>>> np.set_printoptions(precision=4) 

>>> print(np.array([1.123456789])) 

[ 1.1235] 

 

Long arrays can be summarised: 

 

>>> np.set_printoptions(threshold=5) 

>>> print(np.arange(10)) 

[0 1 2 ..., 7 8 9] 

 

Small results can be suppressed: 

 

>>> eps = np.finfo(float).eps 

>>> x = np.arange(4.) 

>>> x**2 - (x + eps)**2 

array([ -4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00]) 

>>> np.set_printoptions(suppress=True) 

>>> x**2 - (x + eps)**2 

array([-0., -0., 0., 0.]) 

 

A custom formatter can be used to display array elements as desired: 

 

>>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)}) 

>>> x = np.arange(3) 

>>> x 

array([int: 0, int: -1, int: -2]) 

>>> np.set_printoptions() # formatter gets reset 

>>> x 

array([0, 1, 2]) 

 

To put back the default options, you can use: 

 

>>> np.set_printoptions(edgeitems=3,infstr='inf', 

... linewidth=75, nanstr='nan', precision=8, 

... suppress=False, threshold=1000, formatter=None) 

""" 

legacy = kwarg.pop('legacy', None) 

if kwarg: 

msg = "set_printoptions() got unexpected keyword argument '{}'" 

raise TypeError(msg.format(kwarg.popitem()[0])) 

 

opt = _make_options_dict(precision, threshold, edgeitems, linewidth, 

suppress, nanstr, infstr, sign, formatter, 

floatmode, legacy) 

# formatter is always reset 

opt['formatter'] = formatter 

_format_options.update(opt) 

 

# set the C variable for legacy mode 

if _format_options['legacy'] == '1.13': 

set_legacy_print_mode(113) 

# reset the sign option in legacy mode to avoid confusion 

_format_options['sign'] = '-' 

elif _format_options['legacy'] is False: 

set_legacy_print_mode(0) 

 

 

@set_module('numpy') 

def get_printoptions(): 

""" 

Return the current print options. 

 

Returns 

------- 

print_opts : dict 

Dictionary of current print options with keys 

 

- precision : int 

- threshold : int 

- edgeitems : int 

- linewidth : int 

- suppress : bool 

- nanstr : str 

- infstr : str 

- formatter : dict of callables 

- sign : str 

 

For a full description of these options, see `set_printoptions`. 

 

See Also 

-------- 

set_printoptions, set_string_function 

 

""" 

return _format_options.copy() 

 

 

@set_module('numpy') 

@contextlib.contextmanager 

def printoptions(*args, **kwargs): 

"""Context manager for setting print options. 

 

Set print options for the scope of the `with` block, and restore the old 

options at the end. See `set_printoptions` for the full description of 

available options. 

 

Examples 

-------- 

 

>>> with np.printoptions(precision=2): 

... print(np.array([2.0])) / 3 

[0.67] 

 

The `as`-clause of the `with`-statement gives the current print options: 

 

>>> with np.printoptions(precision=2) as opts: 

... assert_equal(opts, np.get_printoptions()) 

 

See Also 

-------- 

set_printoptions, get_printoptions 

 

""" 

opts = np.get_printoptions() 

try: 

np.set_printoptions(*args, **kwargs) 

yield np.get_printoptions() 

finally: 

np.set_printoptions(**opts) 

 

 

def _leading_trailing(a, edgeitems, index=()): 

""" 

Keep only the N-D corners (leading and trailing edges) of an array. 

 

Should be passed a base-class ndarray, since it makes no guarantees about 

preserving subclasses. 

""" 

axis = len(index) 

if axis == a.ndim: 

return a[index] 

 

if a.shape[axis] > 2*edgeitems: 

return concatenate(( 

_leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), 

_leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) 

), axis=axis) 

else: 

return _leading_trailing(a, edgeitems, index + np.index_exp[:]) 

 

 

def _object_format(o): 

""" Object arrays containing lists should be printed unambiguously """ 

if type(o) is list: 

fmt = 'list({!r})' 

else: 

fmt = '{!r}' 

return fmt.format(o) 

 

def repr_format(x): 

return repr(x) 

 

def str_format(x): 

return str(x) 

 

def _get_formatdict(data, **opt): 

prec, fmode = opt['precision'], opt['floatmode'] 

supp, sign = opt['suppress'], opt['sign'] 

legacy = opt['legacy'] 

 

# wrapped in lambdas to avoid taking a code path with the wrong type of data 

formatdict = { 

'bool': lambda: BoolFormat(data), 

'int': lambda: IntegerFormat(data), 

'float': lambda: 

FloatingFormat(data, prec, fmode, supp, sign, legacy=legacy), 

'longfloat': lambda: 

FloatingFormat(data, prec, fmode, supp, sign, legacy=legacy), 

'complexfloat': lambda: 

ComplexFloatingFormat(data, prec, fmode, supp, sign, legacy=legacy), 

'longcomplexfloat': lambda: 

ComplexFloatingFormat(data, prec, fmode, supp, sign, legacy=legacy), 

'datetime': lambda: DatetimeFormat(data, legacy=legacy), 

'timedelta': lambda: TimedeltaFormat(data), 

'object': lambda: _object_format, 

'void': lambda: str_format, 

'numpystr': lambda: repr_format, 

'str': lambda: str} 

 

# we need to wrap values in `formatter` in a lambda, so that the interface 

# is the same as the above values. 

def indirect(x): 

return lambda: x 

 

formatter = opt['formatter'] 

if formatter is not None: 

fkeys = [k for k in formatter.keys() if formatter[k] is not None] 

if 'all' in fkeys: 

for key in formatdict.keys(): 

formatdict[key] = indirect(formatter['all']) 

if 'int_kind' in fkeys: 

for key in ['int']: 

formatdict[key] = indirect(formatter['int_kind']) 

if 'float_kind' in fkeys: 

for key in ['float', 'longfloat']: 

formatdict[key] = indirect(formatter['float_kind']) 

if 'complex_kind' in fkeys: 

for key in ['complexfloat', 'longcomplexfloat']: 

formatdict[key] = indirect(formatter['complex_kind']) 

if 'str_kind' in fkeys: 

for key in ['numpystr', 'str']: 

formatdict[key] = indirect(formatter['str_kind']) 

for key in formatdict.keys(): 

if key in fkeys: 

formatdict[key] = indirect(formatter[key]) 

 

return formatdict 

 

def _get_format_function(data, **options): 

""" 

find the right formatting function for the dtype_ 

""" 

dtype_ = data.dtype 

dtypeobj = dtype_.type 

formatdict = _get_formatdict(data, **options) 

if issubclass(dtypeobj, _nt.bool_): 

return formatdict['bool']() 

elif issubclass(dtypeobj, _nt.integer): 

if issubclass(dtypeobj, _nt.timedelta64): 

return formatdict['timedelta']() 

else: 

return formatdict['int']() 

elif issubclass(dtypeobj, _nt.floating): 

if issubclass(dtypeobj, _nt.longfloat): 

return formatdict['longfloat']() 

else: 

return formatdict['float']() 

elif issubclass(dtypeobj, _nt.complexfloating): 

if issubclass(dtypeobj, _nt.clongfloat): 

return formatdict['longcomplexfloat']() 

else: 

return formatdict['complexfloat']() 

elif issubclass(dtypeobj, (_nt.unicode_, _nt.string_)): 

return formatdict['numpystr']() 

elif issubclass(dtypeobj, _nt.datetime64): 

return formatdict['datetime']() 

elif issubclass(dtypeobj, _nt.object_): 

return formatdict['object']() 

elif issubclass(dtypeobj, _nt.void): 

if dtype_.names is not None: 

return StructuredVoidFormat.from_data(data, **options) 

else: 

return formatdict['void']() 

else: 

return formatdict['numpystr']() 

 

 

def _recursive_guard(fillvalue='...'): 

""" 

Like the python 3.2 reprlib.recursive_repr, but forwards *args and **kwargs 

 

Decorates a function such that if it calls itself with the same first 

argument, it returns `fillvalue` instead of recursing. 

 

Largely copied from reprlib.recursive_repr 

""" 

 

def decorating_function(f): 

repr_running = set() 

 

@functools.wraps(f) 

def wrapper(self, *args, **kwargs): 

key = id(self), get_ident() 

if key in repr_running: 

return fillvalue 

repr_running.add(key) 

try: 

return f(self, *args, **kwargs) 

finally: 

repr_running.discard(key) 

 

return wrapper 

 

return decorating_function 

 

 

# gracefully handle recursive calls, when object arrays contain themselves 

@_recursive_guard() 

def _array2string(a, options, separator=' ', prefix=""): 

# The formatter __init__s in _get_format_function cannot deal with 

# subclasses yet, and we also need to avoid recursion issues in 

# _formatArray with subclasses which return 0d arrays in place of scalars 

data = asarray(a) 

if a.shape == (): 

a = data 

 

if a.size > options['threshold']: 

summary_insert = "..." 

data = _leading_trailing(data, options['edgeitems']) 

else: 

summary_insert = "" 

 

# find the right formatting function for the array 

format_function = _get_format_function(data, **options) 

 

# skip over "[" 

next_line_prefix = " " 

# skip over array( 

next_line_prefix += " "*len(prefix) 

 

lst = _formatArray(a, format_function, options['linewidth'], 

next_line_prefix, separator, options['edgeitems'], 

summary_insert, options['legacy']) 

return lst 

 

 

def _array2string_dispatcher( 

a, max_line_width=None, precision=None, 

suppress_small=None, separator=None, prefix=None, 

style=None, formatter=None, threshold=None, 

edgeitems=None, sign=None, floatmode=None, suffix=None, 

**kwarg): 

return (a,) 

 

 

@array_function_dispatch(_array2string_dispatcher, module='numpy') 

def array2string(a, max_line_width=None, precision=None, 

suppress_small=None, separator=' ', prefix="", 

style=np._NoValue, formatter=None, threshold=None, 

edgeitems=None, sign=None, floatmode=None, suffix="", 

**kwarg): 

""" 

Return a string representation of an array. 

 

Parameters 

---------- 

a : array_like 

Input array. 

max_line_width : int, optional 

The maximum number of columns the string should span. Newline 

characters splits the string appropriately after array elements. 

precision : int or None, optional 

Floating point precision. Default is the current printing 

precision (usually 8), which can be altered using `set_printoptions`. 

suppress_small : bool, optional 

Represent very small numbers as zero. A number is "very small" if it 

is smaller than the current printing precision. 

separator : str, optional 

Inserted between elements. 

prefix : str, optional 

suffix: str, optional 

The length of the prefix and suffix strings are used to respectively 

align and wrap the output. An array is typically printed as:: 

 

prefix + array2string(a) + suffix 

 

The output is left-padded by the length of the prefix string, and 

wrapping is forced at the column ``max_line_width - len(suffix)``. 

It should be noted that the content of prefix and suffix strings are 

not included in the output. 

style : _NoValue, optional 

Has no effect, do not use. 

 

.. deprecated:: 1.14.0 

formatter : dict of callables, optional 

If not None, the keys should indicate the type(s) that the respective 

formatting function applies to. Callables should return a string. 

Types that are not specified (by their corresponding keys) are handled 

by the default formatters. Individual types for which a formatter 

can be set are: 

 

- 'bool' 

- 'int' 

- 'timedelta' : a `numpy.timedelta64` 

- 'datetime' : a `numpy.datetime64` 

- 'float' 

- 'longfloat' : 128-bit floats 

- 'complexfloat' 

- 'longcomplexfloat' : composed of two 128-bit floats 

- 'void' : type `numpy.void` 

- 'numpystr' : types `numpy.string_` and `numpy.unicode_` 

- 'str' : all other strings 

 

Other keys that can be used to set a group of types at once are: 

 

- 'all' : sets all types 

- 'int_kind' : sets 'int' 

- 'float_kind' : sets 'float' and 'longfloat' 

- 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat' 

- 'str_kind' : sets 'str' and 'numpystr' 

threshold : int, optional 

Total number of array elements which trigger summarization 

rather than full repr. 

edgeitems : int, optional 

Number of array items in summary at beginning and end of 

each dimension. 

sign : string, either '-', '+', or ' ', optional 

Controls printing of the sign of floating-point types. If '+', always 

print the sign of positive values. If ' ', always prints a space 

(whitespace character) in the sign position of positive values. If 

'-', omit the sign character of positive values. 

floatmode : str, optional 

Controls the interpretation of the `precision` option for 

floating-point types. Can take the following values: 

 

- 'fixed': Always print exactly `precision` fractional digits, 

even if this would print more or fewer digits than 

necessary to specify the value uniquely. 

- 'unique': Print the minimum number of fractional digits necessary 

to represent each value uniquely. Different elements may 

have a different number of digits. The value of the 

`precision` option is ignored. 

- 'maxprec': Print at most `precision` fractional digits, but if 

an element can be uniquely represented with fewer digits 

only print it with that many. 

- 'maxprec_equal': Print at most `precision` fractional digits, 

but if every element in the array can be uniquely 

represented with an equal number of fewer digits, use that 

many digits for all elements. 

legacy : string or `False`, optional 

If set to the string `'1.13'` enables 1.13 legacy printing mode. This 

approximates numpy 1.13 print output by including a space in the sign 

position of floats and different behavior for 0d arrays. If set to 

`False`, disables legacy mode. Unrecognized strings will be ignored 

with a warning for forward compatibility. 

 

.. versionadded:: 1.14.0 

 

Returns 

------- 

array_str : str 

String representation of the array. 

 

Raises 

------ 

TypeError 

if a callable in `formatter` does not return a string. 

 

See Also 

-------- 

array_str, array_repr, set_printoptions, get_printoptions 

 

Notes 

----- 

If a formatter is specified for a certain type, the `precision` keyword is 

ignored for that type. 

 

This is a very flexible function; `array_repr` and `array_str` are using 

`array2string` internally so keywords with the same name should work 

identically in all three functions. 

 

Examples 

-------- 

>>> x = np.array([1e-16,1,2,3]) 

>>> print(np.array2string(x, precision=2, separator=',', 

... suppress_small=True)) 

[ 0., 1., 2., 3.] 

 

>>> x = np.arange(3.) 

>>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) 

'[0.00 1.00 2.00]' 

 

>>> x = np.arange(3) 

>>> np.array2string(x, formatter={'int':lambda x: hex(x)}) 

'[0x0L 0x1L 0x2L]' 

 

""" 

legacy = kwarg.pop('legacy', None) 

if kwarg: 

msg = "array2string() got unexpected keyword argument '{}'" 

raise TypeError(msg.format(kwarg.popitem()[0])) 

 

overrides = _make_options_dict(precision, threshold, edgeitems, 

max_line_width, suppress_small, None, None, 

sign, formatter, floatmode, legacy) 

options = _format_options.copy() 

options.update(overrides) 

 

if options['legacy'] == '1.13': 

if style is np._NoValue: 

style = repr 

 

if a.shape == () and not a.dtype.names: 

return style(a.item()) 

elif style is not np._NoValue: 

# Deprecation 11-9-2017 v1.14 

warnings.warn("'style' argument is deprecated and no longer functional" 

" except in 1.13 'legacy' mode", 

DeprecationWarning, stacklevel=3) 

 

if options['legacy'] != '1.13': 

options['linewidth'] -= len(suffix) 

 

# treat as a null array if any of shape elements == 0 

if a.size == 0: 

return "[]" 

 

return _array2string(a, options, separator, prefix) 

 

 

def _extendLine(s, line, word, line_width, next_line_prefix, legacy): 

needs_wrap = len(line) + len(word) > line_width 

if legacy != '1.13': 

s# don't wrap lines if it won't help 

if len(line) <= len(next_line_prefix): 

needs_wrap = False 

 

if needs_wrap: 

s += line.rstrip() + "\n" 

line = next_line_prefix 

line += word 

return s, line 

 

 

def _formatArray(a, format_function, line_width, next_line_prefix, 

separator, edge_items, summary_insert, legacy): 

"""formatArray is designed for two modes of operation: 

 

1. Full output 

 

2. Summarized output 

 

""" 

def recurser(index, hanging_indent, curr_width): 

""" 

By using this local function, we don't need to recurse with all the 

arguments. Since this function is not created recursively, the cost is 

not significant 

""" 

axis = len(index) 

axes_left = a.ndim - axis 

 

if axes_left == 0: 

return format_function(a[index]) 

 

# when recursing, add a space to align with the [ added, and reduce the 

# length of the line by 1 

next_hanging_indent = hanging_indent + ' ' 

if legacy == '1.13': 

next_width = curr_width 

else: 

next_width = curr_width - len(']') 

 

a_len = a.shape[axis] 

show_summary = summary_insert and 2*edge_items < a_len 

if show_summary: 

leading_items = edge_items 

trailing_items = edge_items 

else: 

leading_items = 0 

trailing_items = a_len 

 

# stringify the array with the hanging indent on the first line too 

s = '' 

 

# last axis (rows) - wrap elements if they would not fit on one line 

if axes_left == 1: 

# the length up until the beginning of the separator / bracket 

if legacy == '1.13': 

elem_width = curr_width - len(separator.rstrip()) 

else: 

elem_width = curr_width - max(len(separator.rstrip()), len(']')) 

 

line = hanging_indent 

for i in range(leading_items): 

word = recurser(index + (i,), next_hanging_indent, next_width) 

s, line = _extendLine( 

s, line, word, elem_width, hanging_indent, legacy) 

line += separator 

 

if show_summary: 

s, line = _extendLine( 

s, line, summary_insert, elem_width, hanging_indent, legacy) 

if legacy == '1.13': 

line += ", " 

else: 

line += separator 

 

for i in range(trailing_items, 1, -1): 

word = recurser(index + (-i,), next_hanging_indent, next_width) 

s, line = _extendLine( 

s, line, word, elem_width, hanging_indent, legacy) 

line += separator 

 

if legacy == '1.13': 

# width of the separator is not considered on 1.13 

elem_width = curr_width 

word = recurser(index + (-1,), next_hanging_indent, next_width) 

s, line = _extendLine( 

s, line, word, elem_width, hanging_indent, legacy) 

 

s += line 

 

# other axes - insert newlines between rows 

else: 

s = '' 

line_sep = separator.rstrip() + '\n'*(axes_left - 1) 

 

for i in range(leading_items): 

nested = recurser(index + (i,), next_hanging_indent, next_width) 

s += hanging_indent + nested + line_sep 

 

if show_summary: 

if legacy == '1.13': 

# trailing space, fixed nbr of newlines, and fixed separator 

s += hanging_indent + summary_insert + ", \n" 

else: 

s += hanging_indent + summary_insert + line_sep 

 

for i in range(trailing_items, 1, -1): 

nested = recurser(index + (-i,), next_hanging_indent, 

next_width) 

s += hanging_indent + nested + line_sep 

 

nested = recurser(index + (-1,), next_hanging_indent, next_width) 

s += hanging_indent + nested 

 

# remove the hanging indent, and wrap in [] 

s = '[' + s[len(hanging_indent):] + ']' 

return s 

 

try: 

# invoke the recursive part with an initial index and prefix 

return recurser(index=(), 

hanging_indent=next_line_prefix, 

curr_width=line_width) 

finally: 

# recursive closures have a cyclic reference to themselves, which 

# requires gc to collect (gh-10620). To avoid this problem, for 

# performance and PyPy friendliness, we break the cycle: 

recurser = None 

 

def _none_or_positive_arg(x, name): 

if x is None: 

return -1 

if x < 0: 

raise ValueError("{} must be >= 0".format(name)) 

return x 

 

class FloatingFormat(object): 

""" Formatter for subtypes of np.floating """ 

def __init__(self, data, precision, floatmode, suppress_small, sign=False, 

**kwarg): 

# for backcompatibility, accept bools 

if isinstance(sign, bool): 

sign = '+' if sign else '-' 

 

self._legacy = kwarg.get('legacy', False) 

if self._legacy == '1.13': 

# when not 0d, legacy does not support '-' 

if data.shape != () and sign == '-': 

sign = ' ' 

 

self.floatmode = floatmode 

if floatmode == 'unique': 

self.precision = None 

else: 

self.precision = precision 

 

self.precision = _none_or_positive_arg(self.precision, 'precision') 

 

self.suppress_small = suppress_small 

self.sign = sign 

self.exp_format = False 

self.large_exponent = False 

 

self.fillFormat(data) 

 

def fillFormat(self, data): 

# only the finite values are used to compute the number of digits 

finite_vals = data[isfinite(data)] 

 

# choose exponential mode based on the non-zero finite values: 

abs_non_zero = absolute(finite_vals[finite_vals != 0]) 

if len(abs_non_zero) != 0: 

max_val = np.max(abs_non_zero) 

min_val = np.min(abs_non_zero) 

with errstate(over='ignore'): # division can overflow 

if max_val >= 1.e8 or (not self.suppress_small and 

(min_val < 0.0001 or max_val/min_val > 1000.)): 

self.exp_format = True 

 

# do a first pass of printing all the numbers, to determine sizes 

if len(finite_vals) == 0: 

self.pad_left = 0 

self.pad_right = 0 

self.trim = '.' 

self.exp_size = -1 

self.unique = True 

elif self.exp_format: 

trim, unique = '.', True 

if self.floatmode == 'fixed' or self._legacy == '1.13': 

trim, unique = 'k', False 

strs = (dragon4_scientific(x, precision=self.precision, 

unique=unique, trim=trim, sign=self.sign == '+') 

for x in finite_vals) 

frac_strs, _, exp_strs = zip(*(s.partition('e') for s in strs)) 

int_part, frac_part = zip(*(s.split('.') for s in frac_strs)) 

self.exp_size = max(len(s) for s in exp_strs) - 1 

 

self.trim = 'k' 

self.precision = max(len(s) for s in frac_part) 

 

# for back-compat with np 1.13, use 2 spaces & sign and full prec 

if self._legacy == '1.13': 

self.pad_left = 3 

else: 

# this should be only 1 or 2. Can be calculated from sign. 

self.pad_left = max(len(s) for s in int_part) 

# pad_right is only needed for nan length calculation 

self.pad_right = self.exp_size + 2 + self.precision 

 

self.unique = False 

else: 

# first pass printing to determine sizes 

trim, unique = '.', True 

if self.floatmode == 'fixed': 

trim, unique = 'k', False 

strs = (dragon4_positional(x, precision=self.precision, 

fractional=True, 

unique=unique, trim=trim, 

sign=self.sign == '+') 

for x in finite_vals) 

int_part, frac_part = zip(*(s.split('.') for s in strs)) 

if self._legacy == '1.13': 

self.pad_left = 1 + max(len(s.lstrip('-+')) for s in int_part) 

else: 

self.pad_left = max(len(s) for s in int_part) 

self.pad_right = max(len(s) for s in frac_part) 

self.exp_size = -1 

 

if self.floatmode in ['fixed', 'maxprec_equal']: 

self.precision = self.pad_right 

self.unique = False 

self.trim = 'k' 

else: 

self.unique = True 

self.trim = '.' 

 

if self._legacy != '1.13': 

# account for sign = ' ' by adding one to pad_left 

if self.sign == ' ' and not any(np.signbit(finite_vals)): 

self.pad_left += 1 

 

# if there are non-finite values, may need to increase pad_left 

if data.size != finite_vals.size: 

neginf = self.sign != '-' or any(data[isinf(data)] < 0) 

nanlen = len(_format_options['nanstr']) 

inflen = len(_format_options['infstr']) + neginf 

offset = self.pad_right + 1 # +1 for decimal pt 

self.pad_left = max(self.pad_left, nanlen - offset, inflen - offset) 

 

def __call__(self, x): 

if not np.isfinite(x): 

with errstate(invalid='ignore'): 

if np.isnan(x): 

sign = '+' if self.sign == '+' else '' 

ret = sign + _format_options['nanstr'] 

else: # isinf 

sign = '-' if x < 0 else '+' if self.sign == '+' else '' 

ret = sign + _format_options['infstr'] 

return ' '*(self.pad_left + self.pad_right + 1 - len(ret)) + ret 

 

if self.exp_format: 

return dragon4_scientific(x, 

precision=self.precision, 

unique=self.unique, 

trim=self.trim, 

sign=self.sign == '+', 

pad_left=self.pad_left, 

exp_digits=self.exp_size) 

else: 

return dragon4_positional(x, 

precision=self.precision, 

unique=self.unique, 

fractional=True, 

trim=self.trim, 

sign=self.sign == '+', 

pad_left=self.pad_left, 

pad_right=self.pad_right) 

 

# for back-compatibility, we keep the classes for each float type too 

class FloatFormat(FloatingFormat): 

def __init__(self, *args, **kwargs): 

warnings.warn("FloatFormat has been replaced by FloatingFormat", 

DeprecationWarning, stacklevel=2) 

super(FloatFormat, self).__init__(*args, **kwargs) 

 

 

class LongFloatFormat(FloatingFormat): 

def __init__(self, *args, **kwargs): 

warnings.warn("LongFloatFormat has been replaced by FloatingFormat", 

DeprecationWarning, stacklevel=2) 

super(LongFloatFormat, self).__init__(*args, **kwargs) 

 

 

@set_module('numpy') 

def format_float_scientific(x, precision=None, unique=True, trim='k', 

sign=False, pad_left=None, exp_digits=None): 

""" 

Format a floating-point scalar as a decimal string in scientific notation. 

 

Provides control over rounding, trimming and padding. Uses and assumes 

IEEE unbiased rounding. Uses the "Dragon4" algorithm. 

 

Parameters 

---------- 

x : python float or numpy floating scalar 

Value to format. 

precision : non-negative integer or None, optional 

Maximum number of digits to print. May be None if `unique` is 

`True`, but must be an integer if unique is `False`. 

unique : boolean, optional 

If `True`, use a digit-generation strategy which gives the shortest 

representation which uniquely identifies the floating-point number from 

other values of the same type, by judicious rounding. If `precision` 

was omitted, print all necessary digits, otherwise digit generation is 

cut off after `precision` digits and the remaining value is rounded. 

If `False`, digits are generated as if printing an infinite-precision 

value and stopping after `precision` digits, rounding the remaining 

value. 

trim : one of 'k', '.', '0', '-', optional 

Controls post-processing trimming of trailing digits, as follows: 

 

* 'k' : keep trailing zeros, keep decimal point (no trimming) 

* '.' : trim all trailing zeros, leave decimal point 

* '0' : trim all but the zero before the decimal point. Insert the 

zero if it is missing. 

* '-' : trim trailing zeros and any trailing decimal point 

sign : boolean, optional 

Whether to show the sign for positive values. 

pad_left : non-negative integer, optional 

Pad the left side of the string with whitespace until at least that 

many characters are to the left of the decimal point. 

exp_digits : non-negative integer, optional 

Pad the exponent with zeros until it contains at least this many digits. 

If omitted, the exponent will be at least 2 digits. 

 

Returns 

------- 

rep : string 

The string representation of the floating point value 

 

See Also 

-------- 

format_float_positional 

 

Examples 

-------- 

>>> np.format_float_scientific(np.float32(np.pi)) 

'3.1415927e+00' 

>>> s = np.float32(1.23e24) 

>>> np.format_float_scientific(s, unique=False, precision=15) 

'1.230000071797338e+24' 

>>> np.format_float_scientific(s, exp_digits=4) 

'1.23e+0024' 

""" 

precision = _none_or_positive_arg(precision, 'precision') 

pad_left = _none_or_positive_arg(pad_left, 'pad_left') 

exp_digits = _none_or_positive_arg(exp_digits, 'exp_digits') 

return dragon4_scientific(x, precision=precision, unique=unique, 

trim=trim, sign=sign, pad_left=pad_left, 

exp_digits=exp_digits) 

 

 

@set_module('numpy') 

def format_float_positional(x, precision=None, unique=True, 

fractional=True, trim='k', sign=False, 

pad_left=None, pad_right=None): 

""" 

Format a floating-point scalar as a decimal string in positional notation. 

 

Provides control over rounding, trimming and padding. Uses and assumes 

IEEE unbiased rounding. Uses the "Dragon4" algorithm. 

 

Parameters 

---------- 

x : python float or numpy floating scalar 

Value to format. 

precision : non-negative integer or None, optional 

Maximum number of digits to print. May be None if `unique` is 

`True`, but must be an integer if unique is `False`. 

unique : boolean, optional 

If `True`, use a digit-generation strategy which gives the shortest 

representation which uniquely identifies the floating-point number from 

other values of the same type, by judicious rounding. If `precision` 

was omitted, print out all necessary digits, otherwise digit generation 

is cut off after `precision` digits and the remaining value is rounded. 

If `False`, digits are generated as if printing an infinite-precision 

value and stopping after `precision` digits, rounding the remaining 

value. 

fractional : boolean, optional 

If `True`, the cutoff of `precision` digits refers to the total number 

of digits after the decimal point, including leading zeros. 

If `False`, `precision` refers to the total number of significant 

digits, before or after the decimal point, ignoring leading zeros. 

trim : one of 'k', '.', '0', '-', optional 

Controls post-processing trimming of trailing digits, as follows: 

 

* 'k' : keep trailing zeros, keep decimal point (no trimming) 

* '.' : trim all trailing zeros, leave decimal point 

* '0' : trim all but the zero before the decimal point. Insert the 

zero if it is missing. 

* '-' : trim trailing zeros and any trailing decimal point 

sign : boolean, optional 

Whether to show the sign for positive values. 

pad_left : non-negative integer, optional 

Pad the left side of the string with whitespace until at least that 

many characters are to the left of the decimal point. 

pad_right : non-negative integer, optional 

Pad the right side of the string with whitespace until at least that 

many characters are to the right of the decimal point. 

 

Returns 

------- 

rep : string 

The string representation of the floating point value 

 

See Also 

-------- 

format_float_scientific 

 

Examples 

-------- 

>>> np.format_float_positional(np.float32(np.pi)) 

'3.1415927' 

>>> np.format_float_positional(np.float16(np.pi)) 

'3.14' 

>>> np.format_float_positional(np.float16(0.3)) 

'0.3' 

>>> np.format_float_positional(np.float16(0.3), unique=False, precision=10) 

'0.3000488281' 

""" 

precision = _none_or_positive_arg(precision, 'precision') 

pad_left = _none_or_positive_arg(pad_left, 'pad_left') 

pad_right = _none_or_positive_arg(pad_right, 'pad_right') 

return dragon4_positional(x, precision=precision, unique=unique, 

fractional=fractional, trim=trim, 

sign=sign, pad_left=pad_left, 

pad_right=pad_right) 

 

 

class IntegerFormat(object): 

def __init__(self, data): 

if data.size > 0: 

max_str_len = max(len(str(np.max(data))), 

len(str(np.min(data)))) 

else: 

max_str_len = 0 

self.format = '%{}d'.format(max_str_len) 

 

def __call__(self, x): 

return self.format % x 

 

 

class BoolFormat(object): 

def __init__(self, data, **kwargs): 

# add an extra space so " True" and "False" have the same length and 

# array elements align nicely when printed, except in 0d arrays 

self.truestr = ' True' if data.shape != () else 'True' 

 

def __call__(self, x): 

return self.truestr if x else "False" 

 

 

class ComplexFloatingFormat(object): 

""" Formatter for subtypes of np.complexfloating """ 

def __init__(self, x, precision, floatmode, suppress_small, 

sign=False, **kwarg): 

# for backcompatibility, accept bools 

if isinstance(sign, bool): 

sign = '+' if sign else '-' 

 

floatmode_real = floatmode_imag = floatmode 

if kwarg.get('legacy', False) == '1.13': 

floatmode_real = 'maxprec_equal' 

floatmode_imag = 'maxprec' 

 

self.real_format = FloatingFormat(x.real, precision, floatmode_real, 

suppress_small, sign=sign, **kwarg) 

self.imag_format = FloatingFormat(x.imag, precision, floatmode_imag, 

suppress_small, sign='+', **kwarg) 

 

def __call__(self, x): 

r = self.real_format(x.real) 

i = self.imag_format(x.imag) 

 

# add the 'j' before the terminal whitespace in i 

sp = len(i.rstrip()) 

i = i[:sp] + 'j' + i[sp:] 

 

return r + i 

 

# for back-compatibility, we keep the classes for each complex type too 

class ComplexFormat(ComplexFloatingFormat): 

def __init__(self, *args, **kwargs): 

warnings.warn( 

"ComplexFormat has been replaced by ComplexFloatingFormat", 

DeprecationWarning, stacklevel=2) 

super(ComplexFormat, self).__init__(*args, **kwargs) 

 

class LongComplexFormat(ComplexFloatingFormat): 

def __init__(self, *args, **kwargs): 

warnings.warn( 

"LongComplexFormat has been replaced by ComplexFloatingFormat", 

DeprecationWarning, stacklevel=2) 

super(LongComplexFormat, self).__init__(*args, **kwargs) 

 

 

class _TimelikeFormat(object): 

def __init__(self, data): 

non_nat = data[~isnat(data)] 

if len(non_nat) > 0: 

# Max str length of non-NaT elements 

max_str_len = max(len(self._format_non_nat(np.max(non_nat))), 

len(self._format_non_nat(np.min(non_nat)))) 

else: 

max_str_len = 0 

if len(non_nat) < data.size: 

# data contains a NaT 

max_str_len = max(max_str_len, 5) 

self._format = '%{}s'.format(max_str_len) 

self._nat = "'NaT'".rjust(max_str_len) 

 

def _format_non_nat(self, x): 

# override in subclass 

raise NotImplementedError 

 

def __call__(self, x): 

if isnat(x): 

return self._nat 

else: 

return self._format % self._format_non_nat(x) 

 

 

class DatetimeFormat(_TimelikeFormat): 

def __init__(self, x, unit=None, timezone=None, casting='same_kind', 

legacy=False): 

# Get the unit from the dtype 

if unit is None: 

if x.dtype.kind == 'M': 

unit = datetime_data(x.dtype)[0] 

else: 

unit = 's' 

 

if timezone is None: 

timezone = 'naive' 

self.timezone = timezone 

self.unit = unit 

self.casting = casting 

self.legacy = legacy 

 

# must be called after the above are configured 

super(DatetimeFormat, self).__init__(x) 

 

def __call__(self, x): 

if self.legacy == '1.13': 

return self._format_non_nat(x) 

return super(DatetimeFormat, self).__call__(x) 

 

def _format_non_nat(self, x): 

return "'%s'" % datetime_as_string(x, 

unit=self.unit, 

timezone=self.timezone, 

casting=self.casting) 

 

 

class TimedeltaFormat(_TimelikeFormat): 

def _format_non_nat(self, x): 

return str(x.astype('i8')) 

 

 

class SubArrayFormat(object): 

def __init__(self, format_function): 

self.format_function = format_function 

 

def __call__(self, arr): 

if arr.ndim <= 1: 

return "[" + ", ".join(self.format_function(a) for a in arr) + "]" 

return "[" + ", ".join(self.__call__(a) for a in arr) + "]" 

 

 

class StructuredVoidFormat(object): 

""" 

Formatter for structured np.void objects. 

 

This does not work on structured alias types like np.dtype(('i4', 'i2,i2')), 

as alias scalars lose their field information, and the implementation 

relies upon np.void.__getitem__. 

""" 

def __init__(self, format_functions): 

self.format_functions = format_functions 

 

@classmethod 

def from_data(cls, data, **options): 

""" 

This is a second way to initialize StructuredVoidFormat, using the raw data 

as input. Added to avoid changing the signature of __init__. 

""" 

format_functions = [] 

for field_name in data.dtype.names: 

format_function = _get_format_function(data[field_name], **options) 

if data.dtype[field_name].shape != (): 

format_function = SubArrayFormat(format_function) 

format_functions.append(format_function) 

return cls(format_functions) 

 

def __call__(self, x): 

str_fields = [ 

format_function(field) 

for field, format_function in zip(x, self.format_functions) 

] 

if len(str_fields) == 1: 

return "({},)".format(str_fields[0]) 

else: 

return "({})".format(", ".join(str_fields)) 

 

 

# for backwards compatibility 

class StructureFormat(StructuredVoidFormat): 

def __init__(self, *args, **kwargs): 

# NumPy 1.14, 2018-02-14 

warnings.warn( 

"StructureFormat has been replaced by StructuredVoidFormat", 

DeprecationWarning, stacklevel=2) 

super(StructureFormat, self).__init__(*args, **kwargs) 

 

 

def _void_scalar_repr(x): 

""" 

Implements the repr for structured-void scalars. It is called from the 

scalartypes.c.src code, and is placed here because it uses the elementwise 

formatters defined above. 

""" 

return StructuredVoidFormat.from_data(array(x), **_format_options)(x) 

 

 

_typelessdata = [int_, float_, complex_, bool_] 

if issubclass(intc, int): 

_typelessdata.append(intc) 

if issubclass(longlong, int): 

_typelessdata.append(longlong) 

 

 

def dtype_is_implied(dtype): 

""" 

Determine if the given dtype is implied by the representation of its values. 

 

Parameters 

---------- 

dtype : dtype 

Data type 

 

Returns 

------- 

implied : bool 

True if the dtype is implied by the representation of its values. 

 

Examples 

-------- 

>>> np.core.arrayprint.dtype_is_implied(int) 

True 

>>> np.array([1, 2, 3], int) 

array([1, 2, 3]) 

>>> np.core.arrayprint.dtype_is_implied(np.int8) 

False 

>>> np.array([1, 2, 3], np.int8) 

array([1, 2, 3], dtype=np.int8) 

""" 

dtype = np.dtype(dtype) 

if _format_options['legacy'] == '1.13' and dtype.type == bool_: 

return False 

 

# not just void types can be structured, and names are not part of the repr 

if dtype.names is not None: 

return False 

 

return dtype.type in _typelessdata 

 

 

def dtype_short_repr(dtype): 

""" 

Convert a dtype to a short form which evaluates to the same dtype. 

 

The intent is roughly that the following holds 

 

>>> from numpy import * 

>>> assert eval(dtype_short_repr(dt)) == dt 

""" 

if dtype.names is not None: 

# structured dtypes give a list or tuple repr 

return str(dtype) 

elif issubclass(dtype.type, flexible): 

# handle these separately so they don't give garbage like str256 

return "'%s'" % str(dtype) 

 

typename = dtype.name 

# quote typenames which can't be represented as python variable names 

if typename and not (typename[0].isalpha() and typename.isalnum()): 

typename = repr(typename) 

 

return typename 

 

 

def _array_repr_implementation( 

arr, max_line_width=None, precision=None, suppress_small=None, 

array2string=array2string): 

"""Internal version of array_repr() that allows overriding array2string.""" 

if max_line_width is None: 

max_line_width = _format_options['linewidth'] 

 

if type(arr) is not ndarray: 

class_name = type(arr).__name__ 

else: 

class_name = "array" 

 

skipdtype = dtype_is_implied(arr.dtype) and arr.size > 0 

 

prefix = class_name + "(" 

suffix = ")" if skipdtype else "," 

 

if (_format_options['legacy'] == '1.13' and 

arr.shape == () and not arr.dtype.names): 

lst = repr(arr.item()) 

elif arr.size > 0 or arr.shape == (0,): 

lst = array2string(arr, max_line_width, precision, suppress_small, 

', ', prefix, suffix=suffix) 

else: # show zero-length shape unless it is (0,) 

lst = "[], shape=%s" % (repr(arr.shape),) 

 

arr_str = prefix + lst + suffix 

 

if skipdtype: 

return arr_str 

 

dtype_str = "dtype={})".format(dtype_short_repr(arr.dtype)) 

 

# compute whether we should put dtype on a new line: Do so if adding the 

# dtype would extend the last line past max_line_width. 

# Note: This line gives the correct result even when rfind returns -1. 

last_line_len = len(arr_str) - (arr_str.rfind('\n') + 1) 

spacer = " " 

if _format_options['legacy'] == '1.13': 

if issubclass(arr.dtype.type, flexible): 

spacer = '\n' + ' '*len(class_name + "(") 

elif last_line_len + len(dtype_str) + 1 > max_line_width: 

spacer = '\n' + ' '*len(class_name + "(") 

 

return arr_str + spacer + dtype_str 

 

 

def _array_repr_dispatcher( 

arr, max_line_width=None, precision=None, suppress_small=None): 

return (arr,) 

 

 

@array_function_dispatch(_array_repr_dispatcher, module='numpy') 

def array_repr(arr, max_line_width=None, precision=None, suppress_small=None): 

""" 

Return the string representation of an array. 

 

Parameters 

---------- 

arr : ndarray 

Input array. 

max_line_width : int, optional 

The maximum number of columns the string should span. Newline 

characters split the string appropriately after array elements. 

precision : int, optional 

Floating point precision. Default is the current printing precision 

(usually 8), which can be altered using `set_printoptions`. 

suppress_small : bool, optional 

Represent very small numbers as zero, default is False. Very small 

is defined by `precision`, if the precision is 8 then 

numbers smaller than 5e-9 are represented as zero. 

 

Returns 

------- 

string : str 

The string representation of an array. 

 

See Also 

-------- 

array_str, array2string, set_printoptions 

 

Examples 

-------- 

>>> np.array_repr(np.array([1,2])) 

'array([1, 2])' 

>>> np.array_repr(np.ma.array([0.])) 

'MaskedArray([ 0.])' 

>>> np.array_repr(np.array([], np.int32)) 

'array([], dtype=int32)' 

 

>>> x = np.array([1e-6, 4e-7, 2, 3]) 

>>> np.array_repr(x, precision=6, suppress_small=True) 

'array([ 0.000001, 0. , 2. , 3. ])' 

 

""" 

return _array_repr_implementation( 

arr, max_line_width, precision, suppress_small) 

 

 

_guarded_str = _recursive_guard()(str) 

 

 

def _array_str_implementation( 

a, max_line_width=None, precision=None, suppress_small=None, 

array2string=array2string): 

"""Internal version of array_str() that allows overriding array2string.""" 

if (_format_options['legacy'] == '1.13' and 

a.shape == () and not a.dtype.names): 

return str(a.item()) 

 

# the str of 0d arrays is a special case: It should appear like a scalar, 

# so floats are not truncated by `precision`, and strings are not wrapped 

# in quotes. So we return the str of the scalar value. 

if a.shape == (): 

# obtain a scalar and call str on it, avoiding problems for subclasses 

# for which indexing with () returns a 0d instead of a scalar by using 

# ndarray's getindex. Also guard against recursive 0d object arrays. 

return _guarded_str(np.ndarray.__getitem__(a, ())) 

 

return array2string(a, max_line_width, precision, suppress_small, ' ', "") 

 

 

def _array_str_dispatcher( 

a, max_line_width=None, precision=None, suppress_small=None): 

return (a,) 

 

 

@array_function_dispatch(_array_str_dispatcher, module='numpy') 

def array_str(a, max_line_width=None, precision=None, suppress_small=None): 

""" 

Return a string representation of the data in an array. 

 

The data in the array is returned as a single string. This function is 

similar to `array_repr`, the difference being that `array_repr` also 

returns information on the kind of array and its data type. 

 

Parameters 

---------- 

a : ndarray 

Input array. 

max_line_width : int, optional 

Inserts newlines if text is longer than `max_line_width`. The 

default is, indirectly, 75. 

precision : int, optional 

Floating point precision. Default is the current printing precision 

(usually 8), which can be altered using `set_printoptions`. 

suppress_small : bool, optional 

Represent numbers "very close" to zero as zero; default is False. 

Very close is defined by precision: if the precision is 8, e.g., 

numbers smaller (in absolute value) than 5e-9 are represented as 

zero. 

 

See Also 

-------- 

array2string, array_repr, set_printoptions 

 

Examples 

-------- 

>>> np.array_str(np.arange(3)) 

'[0 1 2]' 

 

""" 

return _array_str_implementation( 

a, max_line_width, precision, suppress_small) 

 

 

# needed if __array_function__ is disabled 

_array2string_impl = getattr(array2string, '__wrapped__', array2string) 

_default_array_str = functools.partial(_array_str_implementation, 

array2string=_array2string_impl) 

_default_array_repr = functools.partial(_array_repr_implementation, 

array2string=_array2string_impl) 

 

 

def set_string_function(f, repr=True): 

""" 

Set a Python function to be used when pretty printing arrays. 

 

Parameters 

---------- 

f : function or None 

Function to be used to pretty print arrays. The function should expect 

a single array argument and return a string of the representation of 

the array. If None, the function is reset to the default NumPy function 

to print arrays. 

repr : bool, optional 

If True (default), the function for pretty printing (``__repr__``) 

is set, if False the function that returns the default string 

representation (``__str__``) is set. 

 

See Also 

-------- 

set_printoptions, get_printoptions 

 

Examples 

-------- 

>>> def pprint(arr): 

... return 'HA! - What are you going to do now?' 

... 

>>> np.set_string_function(pprint) 

>>> a = np.arange(10) 

>>> a 

HA! - What are you going to do now? 

>>> print(a) 

[0 1 2 3 4 5 6 7 8 9] 

 

We can reset the function to the default: 

 

>>> np.set_string_function(None) 

>>> a 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

 

`repr` affects either pretty printing or normal string representation. 

Note that ``__repr__`` is still affected by setting ``__str__`` 

because the width of each array element in the returned string becomes 

equal to the length of the result of ``__str__()``. 

 

>>> x = np.arange(4) 

>>> np.set_string_function(lambda x:'random', repr=False) 

>>> x.__str__() 

'random' 

>>> x.__repr__() 

'array([ 0, 1, 2, 3])' 

 

""" 

if f is None: 

if repr: 

return multiarray.set_string_function(_default_array_repr, 1) 

else: 

return multiarray.set_string_function(_default_array_str, 0) 

else: 

return multiarray.set_string_function(f, repr) 

 

set_string_function(_default_array_str, 0) 

set_string_function(_default_array_repr, 1)