1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

""" 

Implementation of optimized einsum. 

 

""" 

from __future__ import division, absolute_import, print_function 

 

import itertools 

 

from numpy.compat import basestring 

from numpy.core.multiarray import c_einsum 

from numpy.core.numeric import asanyarray, tensordot 

from numpy.core.overrides import array_function_dispatch 

 

__all__ = ['einsum', 'einsum_path'] 

 

einsum_symbols = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' 

einsum_symbols_set = set(einsum_symbols) 

 

 

def _flop_count(idx_contraction, inner, num_terms, size_dictionary): 

""" 

Computes the number of FLOPS in the contraction. 

 

Parameters 

---------- 

idx_contraction : iterable 

The indices involved in the contraction 

inner : bool 

Does this contraction require an inner product? 

num_terms : int 

The number of terms in a contraction 

size_dictionary : dict 

The size of each of the indices in idx_contraction 

 

Returns 

------- 

flop_count : int 

The total number of FLOPS required for the contraction. 

 

Examples 

-------- 

 

>>> _flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5}) 

90 

 

>>> _flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5}) 

270 

 

""" 

 

overall_size = _compute_size_by_dict(idx_contraction, size_dictionary) 

op_factor = max(1, num_terms - 1) 

if inner: 

op_factor += 1 

 

return overall_size * op_factor 

 

def _compute_size_by_dict(indices, idx_dict): 

""" 

Computes the product of the elements in indices based on the dictionary 

idx_dict. 

 

Parameters 

---------- 

indices : iterable 

Indices to base the product on. 

idx_dict : dictionary 

Dictionary of index sizes 

 

Returns 

------- 

ret : int 

The resulting product. 

 

Examples 

-------- 

>>> _compute_size_by_dict('abbc', {'a': 2, 'b':3, 'c':5}) 

90 

 

""" 

ret = 1 

for i in indices: 

ret *= idx_dict[i] 

return ret 

 

 

def _find_contraction(positions, input_sets, output_set): 

""" 

Finds the contraction for a given set of input and output sets. 

 

Parameters 

---------- 

positions : iterable 

Integer positions of terms used in the contraction. 

input_sets : list 

List of sets that represent the lhs side of the einsum subscript 

output_set : set 

Set that represents the rhs side of the overall einsum subscript 

 

Returns 

------- 

new_result : set 

The indices of the resulting contraction 

remaining : list 

List of sets that have not been contracted, the new set is appended to 

the end of this list 

idx_removed : set 

Indices removed from the entire contraction 

idx_contraction : set 

The indices used in the current contraction 

 

Examples 

-------- 

 

# A simple dot product test case 

>>> pos = (0, 1) 

>>> isets = [set('ab'), set('bc')] 

>>> oset = set('ac') 

>>> _find_contraction(pos, isets, oset) 

({'a', 'c'}, [{'a', 'c'}], {'b'}, {'a', 'b', 'c'}) 

 

# A more complex case with additional terms in the contraction 

>>> pos = (0, 2) 

>>> isets = [set('abd'), set('ac'), set('bdc')] 

>>> oset = set('ac') 

>>> _find_contraction(pos, isets, oset) 

({'a', 'c'}, [{'a', 'c'}, {'a', 'c'}], {'b', 'd'}, {'a', 'b', 'c', 'd'}) 

""" 

 

idx_contract = set() 

idx_remain = output_set.copy() 

remaining = [] 

for ind, value in enumerate(input_sets): 

if ind in positions: 

idx_contract |= value 

else: 

remaining.append(value) 

idx_remain |= value 

 

new_result = idx_remain & idx_contract 

idx_removed = (idx_contract - new_result) 

remaining.append(new_result) 

 

return (new_result, remaining, idx_removed, idx_contract) 

 

 

def _optimal_path(input_sets, output_set, idx_dict, memory_limit): 

""" 

Computes all possible pair contractions, sieves the results based 

on ``memory_limit`` and returns the lowest cost path. This algorithm 

scales factorial with respect to the elements in the list ``input_sets``. 

 

Parameters 

---------- 

input_sets : list 

List of sets that represent the lhs side of the einsum subscript 

output_set : set 

Set that represents the rhs side of the overall einsum subscript 

idx_dict : dictionary 

Dictionary of index sizes 

memory_limit : int 

The maximum number of elements in a temporary array 

 

Returns 

------- 

path : list 

The optimal contraction order within the memory limit constraint. 

 

Examples 

-------- 

>>> isets = [set('abd'), set('ac'), set('bdc')] 

>>> oset = set() 

>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4} 

>>> _path__optimal_path(isets, oset, idx_sizes, 5000) 

[(0, 2), (0, 1)] 

""" 

 

full_results = [(0, [], input_sets)] 

for iteration in range(len(input_sets) - 1): 

iter_results = [] 

 

# Compute all unique pairs 

for curr in full_results: 

cost, positions, remaining = curr 

for con in itertools.combinations(range(len(input_sets) - iteration), 2): 

 

# Find the contraction 

cont = _find_contraction(con, remaining, output_set) 

new_result, new_input_sets, idx_removed, idx_contract = cont 

 

# Sieve the results based on memory_limit 

new_size = _compute_size_by_dict(new_result, idx_dict) 

if new_size > memory_limit: 

continue 

 

# Build (total_cost, positions, indices_remaining) 

total_cost = cost + _flop_count(idx_contract, idx_removed, len(con), idx_dict) 

new_pos = positions + [con] 

iter_results.append((total_cost, new_pos, new_input_sets)) 

 

# Update combinatorial list, if we did not find anything return best 

# path + remaining contractions 

if iter_results: 

full_results = iter_results 

else: 

path = min(full_results, key=lambda x: x[0])[1] 

path += [tuple(range(len(input_sets) - iteration))] 

return path 

 

# If we have not found anything return single einsum contraction 

if len(full_results) == 0: 

return [tuple(range(len(input_sets)))] 

 

path = min(full_results, key=lambda x: x[0])[1] 

return path 

 

def _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost, naive_cost): 

"""Compute the cost (removed size + flops) and resultant indices for 

performing the contraction specified by ``positions``. 

 

Parameters 

---------- 

positions : tuple of int 

The locations of the proposed tensors to contract. 

input_sets : list of sets 

The indices found on each tensors. 

output_set : set 

The output indices of the expression. 

idx_dict : dict 

Mapping of each index to its size. 

memory_limit : int 

The total allowed size for an intermediary tensor. 

path_cost : int 

The contraction cost so far. 

naive_cost : int 

The cost of the unoptimized expression. 

 

Returns 

------- 

cost : (int, int) 

A tuple containing the size of any indices removed, and the flop cost. 

positions : tuple of int 

The locations of the proposed tensors to contract. 

new_input_sets : list of sets 

The resulting new list of indices if this proposed contraction is performed. 

 

""" 

 

# Find the contraction 

contract = _find_contraction(positions, input_sets, output_set) 

idx_result, new_input_sets, idx_removed, idx_contract = contract 

 

# Sieve the results based on memory_limit 

new_size = _compute_size_by_dict(idx_result, idx_dict) 

if new_size > memory_limit: 

return None 

 

# Build sort tuple 

old_sizes = (_compute_size_by_dict(input_sets[p], idx_dict) for p in positions) 

removed_size = sum(old_sizes) - new_size 

 

# NB: removed_size used to be just the size of any removed indices i.e.: 

# helpers.compute_size_by_dict(idx_removed, idx_dict) 

cost = _flop_count(idx_contract, idx_removed, len(positions), idx_dict) 

sort = (-removed_size, cost) 

 

# Sieve based on total cost as well 

if (path_cost + cost) > naive_cost: 

return None 

 

# Add contraction to possible choices 

return [sort, positions, new_input_sets] 

 

 

def _update_other_results(results, best): 

"""Update the positions and provisional input_sets of ``results`` based on 

performing the contraction result ``best``. Remove any involving the tensors 

contracted. 

 

Parameters 

---------- 

results : list 

List of contraction results produced by ``_parse_possible_contraction``. 

best : list 

The best contraction of ``results`` i.e. the one that will be performed. 

 

Returns 

------- 

mod_results : list 

The list of modifed results, updated with outcome of ``best`` contraction. 

""" 

 

best_con = best[1] 

bx, by = best_con 

mod_results = [] 

 

for cost, (x, y), con_sets in results: 

 

# Ignore results involving tensors just contracted 

if x in best_con or y in best_con: 

continue 

 

# Update the input_sets 

del con_sets[by - int(by > x) - int(by > y)] 

del con_sets[bx - int(bx > x) - int(bx > y)] 

con_sets.insert(-1, best[2][-1]) 

 

# Update the position indices 

mod_con = x - int(x > bx) - int(x > by), y - int(y > bx) - int(y > by) 

mod_results.append((cost, mod_con, con_sets)) 

 

return mod_results 

 

def _greedy_path(input_sets, output_set, idx_dict, memory_limit): 

""" 

Finds the path by contracting the best pair until the input list is 

exhausted. The best pair is found by minimizing the tuple 

``(-prod(indices_removed), cost)``. What this amounts to is prioritizing 

matrix multiplication or inner product operations, then Hadamard like 

operations, and finally outer operations. Outer products are limited by 

``memory_limit``. This algorithm scales cubically with respect to the 

number of elements in the list ``input_sets``. 

 

Parameters 

---------- 

input_sets : list 

List of sets that represent the lhs side of the einsum subscript 

output_set : set 

Set that represents the rhs side of the overall einsum subscript 

idx_dict : dictionary 

Dictionary of index sizes 

memory_limit_limit : int 

The maximum number of elements in a temporary array 

 

Returns 

------- 

path : list 

The greedy contraction order within the memory limit constraint. 

 

Examples 

-------- 

>>> isets = [set('abd'), set('ac'), set('bdc')] 

>>> oset = set() 

>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4} 

>>> _path__greedy_path(isets, oset, idx_sizes, 5000) 

[(0, 2), (0, 1)] 

""" 

 

# Handle trivial cases that leaked through 

if len(input_sets) == 1: 

return [(0,)] 

elif len(input_sets) == 2: 

return [(0, 1)] 

 

# Build up a naive cost 

contract = _find_contraction(range(len(input_sets)), input_sets, output_set) 

idx_result, new_input_sets, idx_removed, idx_contract = contract 

naive_cost = _flop_count(idx_contract, idx_removed, len(input_sets), idx_dict) 

 

# Initially iterate over all pairs 

comb_iter = itertools.combinations(range(len(input_sets)), 2) 

known_contractions = [] 

 

path_cost = 0 

path = [] 

 

for iteration in range(len(input_sets) - 1): 

 

# Iterate over all pairs on first step, only previously found pairs on subsequent steps 

for positions in comb_iter: 

 

# Always initially ignore outer products 

if input_sets[positions[0]].isdisjoint(input_sets[positions[1]]): 

continue 

 

result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost, 

naive_cost) 

if result is not None: 

known_contractions.append(result) 

 

# If we do not have a inner contraction, rescan pairs including outer products 

if len(known_contractions) == 0: 

 

# Then check the outer products 

for positions in itertools.combinations(range(len(input_sets)), 2): 

result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, 

path_cost, naive_cost) 

if result is not None: 

known_contractions.append(result) 

 

# If we still did not find any remaining contractions, default back to einsum like behavior 

if len(known_contractions) == 0: 

path.append(tuple(range(len(input_sets)))) 

break 

 

# Sort based on first index 

best = min(known_contractions, key=lambda x: x[0]) 

 

# Now propagate as many unused contractions as possible to next iteration 

known_contractions = _update_other_results(known_contractions, best) 

 

# Next iteration only compute contractions with the new tensor 

# All other contractions have been accounted for 

input_sets = best[2] 

new_tensor_pos = len(input_sets) - 1 

comb_iter = ((i, new_tensor_pos) for i in range(new_tensor_pos)) 

 

# Update path and total cost 

path.append(best[1]) 

path_cost += best[0][1] 

 

return path 

 

 

def _can_dot(inputs, result, idx_removed): 

""" 

Checks if we can use BLAS (np.tensordot) call and its beneficial to do so. 

 

Parameters 

---------- 

inputs : list of str 

Specifies the subscripts for summation. 

result : str 

Resulting summation. 

idx_removed : set 

Indices that are removed in the summation 

 

 

Returns 

------- 

type : bool 

Returns true if BLAS should and can be used, else False 

 

Notes 

----- 

If the operations is BLAS level 1 or 2 and is not already aligned 

we default back to einsum as the memory movement to copy is more 

costly than the operation itself. 

 

 

Examples 

-------- 

 

# Standard GEMM operation 

>>> _can_dot(['ij', 'jk'], 'ik', set('j')) 

True 

 

# Can use the standard BLAS, but requires odd data movement 

>>> _can_dot(['ijj', 'jk'], 'ik', set('j')) 

False 

 

# DDOT where the memory is not aligned 

>>> _can_dot(['ijk', 'ikj'], '', set('ijk')) 

False 

 

""" 

 

# All `dot` calls remove indices 

if len(idx_removed) == 0: 

return False 

 

# BLAS can only handle two operands 

if len(inputs) != 2: 

return False 

 

input_left, input_right = inputs 

 

for c in set(input_left + input_right): 

# can't deal with repeated indices on same input or more than 2 total 

nl, nr = input_left.count(c), input_right.count(c) 

if (nl > 1) or (nr > 1) or (nl + nr > 2): 

return False 

 

# can't do implicit summation or dimension collapse e.g. 

# "ab,bc->c" (implicitly sum over 'a') 

# "ab,ca->ca" (take diagonal of 'a') 

if nl + nr - 1 == int(c in result): 

return False 

 

# Build a few temporaries 

set_left = set(input_left) 

set_right = set(input_right) 

keep_left = set_left - idx_removed 

keep_right = set_right - idx_removed 

rs = len(idx_removed) 

 

# At this point we are a DOT, GEMV, or GEMM operation 

 

# Handle inner products 

 

# DDOT with aligned data 

if input_left == input_right: 

return True 

 

# DDOT without aligned data (better to use einsum) 

if set_left == set_right: 

return False 

 

# Handle the 4 possible (aligned) GEMV or GEMM cases 

 

# GEMM or GEMV no transpose 

if input_left[-rs:] == input_right[:rs]: 

return True 

 

# GEMM or GEMV transpose both 

if input_left[:rs] == input_right[-rs:]: 

return True 

 

# GEMM or GEMV transpose right 

if input_left[-rs:] == input_right[-rs:]: 

return True 

 

# GEMM or GEMV transpose left 

if input_left[:rs] == input_right[:rs]: 

return True 

 

# Einsum is faster than GEMV if we have to copy data 

if not keep_left or not keep_right: 

return False 

 

# We are a matrix-matrix product, but we need to copy data 

return True 

 

 

def _parse_einsum_input(operands): 

""" 

A reproduction of einsum c side einsum parsing in python. 

 

Returns 

------- 

input_strings : str 

Parsed input strings 

output_string : str 

Parsed output string 

operands : list of array_like 

The operands to use in the numpy contraction 

 

Examples 

-------- 

The operand list is simplified to reduce printing: 

 

>>> a = np.random.rand(4, 4) 

>>> b = np.random.rand(4, 4, 4) 

>>> __parse_einsum_input(('...a,...a->...', a, b)) 

('za,xza', 'xz', [a, b]) 

 

>>> __parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0])) 

('za,xza', 'xz', [a, b]) 

""" 

 

if len(operands) == 0: 

raise ValueError("No input operands") 

 

if isinstance(operands[0], basestring): 

subscripts = operands[0].replace(" ", "") 

operands = [asanyarray(v) for v in operands[1:]] 

 

# Ensure all characters are valid 

for s in subscripts: 

if s in '.,->': 

continue 

if s not in einsum_symbols: 

raise ValueError("Character %s is not a valid symbol." % s) 

 

else: 

tmp_operands = list(operands) 

operand_list = [] 

subscript_list = [] 

for p in range(len(operands) // 2): 

operand_list.append(tmp_operands.pop(0)) 

subscript_list.append(tmp_operands.pop(0)) 

 

output_list = tmp_operands[-1] if len(tmp_operands) else None 

operands = [asanyarray(v) for v in operand_list] 

subscripts = "" 

last = len(subscript_list) - 1 

for num, sub in enumerate(subscript_list): 

for s in sub: 

if s is Ellipsis: 

subscripts += "..." 

elif isinstance(s, int): 

subscripts += einsum_symbols[s] 

else: 

raise TypeError("For this input type lists must contain " 

"either int or Ellipsis") 

if num != last: 

subscripts += "," 

 

if output_list is not None: 

subscripts += "->" 

for s in output_list: 

if s is Ellipsis: 

subscripts += "..." 

elif isinstance(s, int): 

subscripts += einsum_symbols[s] 

else: 

raise TypeError("For this input type lists must contain " 

"either int or Ellipsis") 

# Check for proper "->" 

if ("-" in subscripts) or (">" in subscripts): 

invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1) 

if invalid or (subscripts.count("->") != 1): 

raise ValueError("Subscripts can only contain one '->'.") 

 

# Parse ellipses 

if "." in subscripts: 

used = subscripts.replace(".", "").replace(",", "").replace("->", "") 

unused = list(einsum_symbols_set - set(used)) 

ellipse_inds = "".join(unused) 

longest = 0 

 

if "->" in subscripts: 

input_tmp, output_sub = subscripts.split("->") 

split_subscripts = input_tmp.split(",") 

out_sub = True 

else: 

split_subscripts = subscripts.split(',') 

out_sub = False 

 

for num, sub in enumerate(split_subscripts): 

if "." in sub: 

if (sub.count(".") != 3) or (sub.count("...") != 1): 

raise ValueError("Invalid Ellipses.") 

 

# Take into account numerical values 

if operands[num].shape == (): 

ellipse_count = 0 

else: 

ellipse_count = max(operands[num].ndim, 1) 

ellipse_count -= (len(sub) - 3) 

 

if ellipse_count > longest: 

longest = ellipse_count 

 

if ellipse_count < 0: 

raise ValueError("Ellipses lengths do not match.") 

elif ellipse_count == 0: 

split_subscripts[num] = sub.replace('...', '') 

else: 

rep_inds = ellipse_inds[-ellipse_count:] 

split_subscripts[num] = sub.replace('...', rep_inds) 

 

subscripts = ",".join(split_subscripts) 

if longest == 0: 

out_ellipse = "" 

else: 

out_ellipse = ellipse_inds[-longest:] 

 

if out_sub: 

subscripts += "->" + output_sub.replace("...", out_ellipse) 

else: 

# Special care for outputless ellipses 

output_subscript = "" 

tmp_subscripts = subscripts.replace(",", "") 

for s in sorted(set(tmp_subscripts)): 

if s not in (einsum_symbols): 

raise ValueError("Character %s is not a valid symbol." % s) 

if tmp_subscripts.count(s) == 1: 

output_subscript += s 

normal_inds = ''.join(sorted(set(output_subscript) - 

set(out_ellipse))) 

 

subscripts += "->" + out_ellipse + normal_inds 

 

# Build output string if does not exist 

if "->" in subscripts: 

input_subscripts, output_subscript = subscripts.split("->") 

else: 

input_subscripts = subscripts 

# Build output subscripts 

tmp_subscripts = subscripts.replace(",", "") 

output_subscript = "" 

for s in sorted(set(tmp_subscripts)): 

if s not in einsum_symbols: 

raise ValueError("Character %s is not a valid symbol." % s) 

if tmp_subscripts.count(s) == 1: 

output_subscript += s 

 

# Make sure output subscripts are in the input 

for char in output_subscript: 

if char not in input_subscripts: 

raise ValueError("Output character %s did not appear in the input" 

% char) 

 

# Make sure number operands is equivalent to the number of terms 

if len(input_subscripts.split(',')) != len(operands): 

raise ValueError("Number of einsum subscripts must be equal to the " 

"number of operands.") 

 

return (input_subscripts, output_subscript, operands) 

 

 

def _einsum_path_dispatcher(*operands, **kwargs): 

# NOTE: technically, we should only dispatch on array-like arguments, not 

# subscripts (given as strings). But separating operands into 

# arrays/subscripts is a little tricky/slow (given einsum's two supported 

# signatures), so as a practical shortcut we dispatch on everything. 

# Strings will be ignored for dispatching since they don't define 

# __array_function__. 

return operands 

 

 

@array_function_dispatch(_einsum_path_dispatcher, module='numpy') 

def einsum_path(*operands, **kwargs): 

""" 

einsum_path(subscripts, *operands, optimize='greedy') 

 

Evaluates the lowest cost contraction order for an einsum expression by 

considering the creation of intermediate arrays. 

 

Parameters 

---------- 

subscripts : str 

Specifies the subscripts for summation. 

*operands : list of array_like 

These are the arrays for the operation. 

optimize : {bool, list, tuple, 'greedy', 'optimal'} 

Choose the type of path. If a tuple is provided, the second argument is 

assumed to be the maximum intermediate size created. If only a single 

argument is provided the largest input or output array size is used 

as a maximum intermediate size. 

 

* if a list is given that starts with ``einsum_path``, uses this as the 

contraction path 

* if False no optimization is taken 

* if True defaults to the 'greedy' algorithm 

* 'optimal' An algorithm that combinatorially explores all possible 

ways of contracting the listed tensors and choosest the least costly 

path. Scales exponentially with the number of terms in the 

contraction. 

* 'greedy' An algorithm that chooses the best pair contraction 

at each step. Effectively, this algorithm searches the largest inner, 

Hadamard, and then outer products at each step. Scales cubically with 

the number of terms in the contraction. Equivalent to the 'optimal' 

path for most contractions. 

 

Default is 'greedy'. 

 

Returns 

------- 

path : list of tuples 

A list representation of the einsum path. 

string_repr : str 

A printable representation of the einsum path. 

 

Notes 

----- 

The resulting path indicates which terms of the input contraction should be 

contracted first, the result of this contraction is then appended to the 

end of the contraction list. This list can then be iterated over until all 

intermediate contractions are complete. 

 

See Also 

-------- 

einsum, linalg.multi_dot 

 

Examples 

-------- 

 

We can begin with a chain dot example. In this case, it is optimal to 

contract the ``b`` and ``c`` tensors first as represented by the first 

element of the path ``(1, 2)``. The resulting tensor is added to the end 

of the contraction and the remaining contraction ``(0, 1)`` is then 

completed. 

 

>>> a = np.random.rand(2, 2) 

>>> b = np.random.rand(2, 5) 

>>> c = np.random.rand(5, 2) 

>>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy') 

>>> print(path_info[0]) 

['einsum_path', (1, 2), (0, 1)] 

>>> print(path_info[1]) 

Complete contraction: ij,jk,kl->il 

Naive scaling: 4 

Optimized scaling: 3 

Naive FLOP count: 1.600e+02 

Optimized FLOP count: 5.600e+01 

Theoretical speedup: 2.857 

Largest intermediate: 4.000e+00 elements 

------------------------------------------------------------------------- 

scaling current remaining 

------------------------------------------------------------------------- 

3 kl,jk->jl ij,jl->il 

3 jl,ij->il il->il 

 

 

A more complex index transformation example. 

 

>>> I = np.random.rand(10, 10, 10, 10) 

>>> C = np.random.rand(10, 10) 

>>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C, 

optimize='greedy') 

 

>>> print(path_info[0]) 

['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)] 

>>> print(path_info[1]) 

Complete contraction: ea,fb,abcd,gc,hd->efgh 

Naive scaling: 8 

Optimized scaling: 5 

Naive FLOP count: 8.000e+08 

Optimized FLOP count: 8.000e+05 

Theoretical speedup: 1000.000 

Largest intermediate: 1.000e+04 elements 

-------------------------------------------------------------------------- 

scaling current remaining 

-------------------------------------------------------------------------- 

5 abcd,ea->bcde fb,gc,hd,bcde->efgh 

5 bcde,fb->cdef gc,hd,cdef->efgh 

5 cdef,gc->defg hd,defg->efgh 

5 defg,hd->efgh efgh->efgh 

""" 

 

# Make sure all keywords are valid 

valid_contract_kwargs = ['optimize', 'einsum_call'] 

unknown_kwargs = [k for (k, v) in kwargs.items() if k 

not in valid_contract_kwargs] 

if len(unknown_kwargs): 

raise TypeError("Did not understand the following kwargs:" 

" %s" % unknown_kwargs) 

 

# Figure out what the path really is 

path_type = kwargs.pop('optimize', True) 

if path_type is True: 

path_type = 'greedy' 

if path_type is None: 

path_type = False 

 

memory_limit = None 

 

# No optimization or a named path algorithm 

if (path_type is False) or isinstance(path_type, basestring): 

pass 

 

# Given an explicit path 

elif len(path_type) and (path_type[0] == 'einsum_path'): 

pass 

 

# Path tuple with memory limit 

elif ((len(path_type) == 2) and isinstance(path_type[0], basestring) and 

isinstance(path_type[1], (int, float))): 

memory_limit = int(path_type[1]) 

path_type = path_type[0] 

 

else: 

raise TypeError("Did not understand the path: %s" % str(path_type)) 

 

# Hidden option, only einsum should call this 

einsum_call_arg = kwargs.pop("einsum_call", False) 

 

# Python side parsing 

input_subscripts, output_subscript, operands = _parse_einsum_input(operands) 

 

# Build a few useful list and sets 

input_list = input_subscripts.split(',') 

input_sets = [set(x) for x in input_list] 

output_set = set(output_subscript) 

indices = set(input_subscripts.replace(',', '')) 

 

# Get length of each unique dimension and ensure all dimensions are correct 

dimension_dict = {} 

broadcast_indices = [[] for x in range(len(input_list))] 

for tnum, term in enumerate(input_list): 

sh = operands[tnum].shape 

if len(sh) != len(term): 

raise ValueError("Einstein sum subscript %s does not contain the " 

"correct number of indices for operand %d." 

% (input_subscripts[tnum], tnum)) 

for cnum, char in enumerate(term): 

dim = sh[cnum] 

 

# Build out broadcast indices 

if dim == 1: 

broadcast_indices[tnum].append(char) 

 

if char in dimension_dict.keys(): 

# For broadcasting cases we always want the largest dim size 

if dimension_dict[char] == 1: 

dimension_dict[char] = dim 

elif dim not in (1, dimension_dict[char]): 

raise ValueError("Size of label '%s' for operand %d (%d) " 

"does not match previous terms (%d)." 

% (char, tnum, dimension_dict[char], dim)) 

else: 

dimension_dict[char] = dim 

 

# Convert broadcast inds to sets 

broadcast_indices = [set(x) for x in broadcast_indices] 

 

# Compute size of each input array plus the output array 

size_list = [_compute_size_by_dict(term, dimension_dict) 

for term in input_list + [output_subscript]] 

max_size = max(size_list) 

 

if memory_limit is None: 

memory_arg = max_size 

else: 

memory_arg = memory_limit 

 

# Compute naive cost 

# This isn't quite right, need to look into exactly how einsum does this 

inner_product = (sum(len(x) for x in input_sets) - len(indices)) > 0 

naive_cost = _flop_count(indices, inner_product, len(input_list), dimension_dict) 

 

# Compute the path 

if (path_type is False) or (len(input_list) in [1, 2]) or (indices == output_set): 

# Nothing to be optimized, leave it to einsum 

path = [tuple(range(len(input_list)))] 

elif path_type == "greedy": 

path = _greedy_path(input_sets, output_set, dimension_dict, memory_arg) 

elif path_type == "optimal": 

path = _optimal_path(input_sets, output_set, dimension_dict, memory_arg) 

elif path_type[0] == 'einsum_path': 

path = path_type[1:] 

else: 

raise KeyError("Path name %s not found", path_type) 

 

cost_list, scale_list, size_list, contraction_list = [], [], [], [] 

 

# Build contraction tuple (positions, gemm, einsum_str, remaining) 

for cnum, contract_inds in enumerate(path): 

# Make sure we remove inds from right to left 

contract_inds = tuple(sorted(list(contract_inds), reverse=True)) 

 

contract = _find_contraction(contract_inds, input_sets, output_set) 

out_inds, input_sets, idx_removed, idx_contract = contract 

 

cost = _flop_count(idx_contract, idx_removed, len(contract_inds), dimension_dict) 

cost_list.append(cost) 

scale_list.append(len(idx_contract)) 

size_list.append(_compute_size_by_dict(out_inds, dimension_dict)) 

 

bcast = set() 

tmp_inputs = [] 

for x in contract_inds: 

tmp_inputs.append(input_list.pop(x)) 

bcast |= broadcast_indices.pop(x) 

 

new_bcast_inds = bcast - idx_removed 

 

# If we're broadcasting, nix blas 

if not len(idx_removed & bcast): 

do_blas = _can_dot(tmp_inputs, out_inds, idx_removed) 

else: 

do_blas = False 

 

# Last contraction 

if (cnum - len(path)) == -1: 

idx_result = output_subscript 

else: 

sort_result = [(dimension_dict[ind], ind) for ind in out_inds] 

idx_result = "".join([x[1] for x in sorted(sort_result)]) 

 

input_list.append(idx_result) 

broadcast_indices.append(new_bcast_inds) 

einsum_str = ",".join(tmp_inputs) + "->" + idx_result 

 

contraction = (contract_inds, idx_removed, einsum_str, input_list[:], do_blas) 

contraction_list.append(contraction) 

 

opt_cost = sum(cost_list) + 1 

 

if einsum_call_arg: 

return (operands, contraction_list) 

 

# Return the path along with a nice string representation 

overall_contraction = input_subscripts + "->" + output_subscript 

header = ("scaling", "current", "remaining") 

 

speedup = naive_cost / opt_cost 

max_i = max(size_list) 

 

path_print = " Complete contraction: %s\n" % overall_contraction 

path_print += " Naive scaling: %d\n" % len(indices) 

path_print += " Optimized scaling: %d\n" % max(scale_list) 

path_print += " Naive FLOP count: %.3e\n" % naive_cost 

path_print += " Optimized FLOP count: %.3e\n" % opt_cost 

path_print += " Theoretical speedup: %3.3f\n" % speedup 

path_print += " Largest intermediate: %.3e elements\n" % max_i 

path_print += "-" * 74 + "\n" 

path_print += "%6s %24s %40s\n" % header 

path_print += "-" * 74 

 

for n, contraction in enumerate(contraction_list): 

inds, idx_rm, einsum_str, remaining, blas = contraction 

remaining_str = ",".join(remaining) + "->" + output_subscript 

path_run = (scale_list[n], einsum_str, remaining_str) 

path_print += "\n%4d %24s %40s" % path_run 

 

path = ['einsum_path'] + path 

return (path, path_print) 

 

 

def _einsum_dispatcher(*operands, **kwargs): 

# Arguably we dispatch on more arguments that we really should; see note in 

# _einsum_path_dispatcher for why. 

for op in operands: 

yield op 

yield kwargs.get('out') 

 

 

# Rewrite einsum to handle different cases 

@array_function_dispatch(_einsum_dispatcher, module='numpy') 

def einsum(*operands, **kwargs): 

""" 

einsum(subscripts, *operands, out=None, dtype=None, order='K', 

casting='safe', optimize=False) 

 

Evaluates the Einstein summation convention on the operands. 

 

Using the Einstein summation convention, many common multi-dimensional, 

linear algebraic array operations can be represented in a simple fashion. 

In *implicit* mode `einsum` computes these values. 

 

In *explicit* mode, `einsum` provides further flexibility to compute 

other array operations that might not be considered classical Einstein 

summation operations, by disabling, or forcing summation over specified 

subscript labels. 

 

See the notes and examples for clarification. 

 

Parameters 

---------- 

subscripts : str 

Specifies the subscripts for summation as comma separated list of 

subscript labels. An implicit (classical Einstein summation) 

calculation is performed unless the explicit indicator '->' is 

included as well as subscript labels of the precise output form. 

operands : list of array_like 

These are the arrays for the operation. 

out : ndarray, optional 

If provided, the calculation is done into this array. 

dtype : {data-type, None}, optional 

If provided, forces the calculation to use the data type specified. 

Note that you may have to also give a more liberal `casting` 

parameter to allow the conversions. Default is None. 

order : {'C', 'F', 'A', 'K'}, optional 

Controls the memory layout of the output. 'C' means it should 

be C contiguous. 'F' means it should be Fortran contiguous, 

'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise. 

'K' means it should be as close to the layout as the inputs as 

is possible, including arbitrarily permuted axes. 

Default is 'K'. 

casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

Controls what kind of data casting may occur. Setting this to 

'unsafe' is not recommended, as it can adversely affect accumulations. 

 

* 'no' means the data types should not be cast at all. 

* 'equiv' means only byte-order changes are allowed. 

* 'safe' means only casts which can preserve values are allowed. 

* 'same_kind' means only safe casts or casts within a kind, 

like float64 to float32, are allowed. 

* 'unsafe' means any data conversions may be done. 

 

Default is 'safe'. 

optimize : {False, True, 'greedy', 'optimal'}, optional 

Controls if intermediate optimization should occur. No optimization 

will occur if False and True will default to the 'greedy' algorithm. 

Also accepts an explicit contraction list from the ``np.einsum_path`` 

function. See ``np.einsum_path`` for more details. Defaults to False. 

 

Returns 

------- 

output : ndarray 

The calculation based on the Einstein summation convention. 

 

See Also 

-------- 

einsum_path, dot, inner, outer, tensordot, linalg.multi_dot 

 

Notes 

----- 

.. versionadded:: 1.6.0 

 

The Einstein summation convention can be used to compute 

many multi-dimensional, linear algebraic array operations. `einsum` 

provides a succinct way of representing these. 

 

A non-exhaustive list of these operations, 

which can be computed by `einsum`, is shown below along with examples: 

 

* Trace of an array, :py:func:`numpy.trace`. 

* Return a diagonal, :py:func:`numpy.diag`. 

* Array axis summations, :py:func:`numpy.sum`. 

* Transpositions and permutations, :py:func:`numpy.transpose`. 

* Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`. 

* Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`. 

* Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`. 

* Tensor contractions, :py:func:`numpy.tensordot`. 

* Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`. 

 

The subscripts string is a comma-separated list of subscript labels, 

where each label refers to a dimension of the corresponding operand. 

Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)`` 

is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label 

appears only once, it is not summed, so ``np.einsum('i', a)`` produces a 

view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)`` 

describes traditional matrix multiplication and is equivalent to 

:py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one 

operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent 

to :py:func:`np.trace(a) <numpy.trace>`. 

 

In *implicit mode*, the chosen subscripts are important 

since the axes of the output are reordered alphabetically. This 

means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while 

``np.einsum('ji', a)`` takes its transpose. Additionally, 

``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while, 

``np.einsum('ij,jh', a, b)`` returns the transpose of the 

multiplication since subscript 'h' precedes subscript 'i'. 

 

In *explicit mode* the output can be directly controlled by 

specifying output subscript labels. This requires the 

identifier '->' as well as the list of output subscript labels. 

This feature increases the flexibility of the function since 

summing can be disabled or forced when required. The call 

``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <numpy.sum>`, 

and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <numpy.diag>`. 

The difference is that `einsum` does not allow broadcasting by default. 

Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the 

order of the output subscript labels and therefore returns matrix 

multiplication, unlike the example above in implicit mode. 

 

To enable and control broadcasting, use an ellipsis. Default 

NumPy-style broadcasting is done by adding an ellipsis 

to the left of each term, like ``np.einsum('...ii->...i', a)``. 

To take the trace along the first and last axes, 

you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix 

product with the left-most indices instead of rightmost, one can do 

``np.einsum('ij...,jk...->ik...', a, b)``. 

 

When there is only one operand, no axes are summed, and no output 

parameter is provided, a view into the operand is returned instead 

of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)`` 

produces a view (changed in version 1.10.0). 

 

`einsum` also provides an alternative way to provide the subscripts 

and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. 

If the output shape is not provided in this format `einsum` will be 

calculated in implicit mode, otherwise it will be performed explicitly. 

The examples below have corresponding `einsum` calls with the two 

parameter methods. 

 

.. versionadded:: 1.10.0 

 

Views returned from einsum are now writeable whenever the input array 

is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now 

have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>` 

and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal 

of a 2D array. 

 

.. versionadded:: 1.12.0 

 

Added the ``optimize`` argument which will optimize the contraction order 

of an einsum expression. For a contraction with three or more operands this 

can greatly increase the computational efficiency at the cost of a larger 

memory footprint during computation. 

 

Typically a 'greedy' algorithm is applied which empirical tests have shown 

returns the optimal path in the majority of cases. In some cases 'optimal' 

will return the superlative path through a more expensive, exhaustive search. 

For iterative calculations it may be advisable to calculate the optimal path 

once and reuse that path by supplying it as an argument. An example is given 

below. 

 

See :py:func:`numpy.einsum_path` for more details. 

 

Examples 

-------- 

>>> a = np.arange(25).reshape(5,5) 

>>> b = np.arange(5) 

>>> c = np.arange(6).reshape(2,3) 

 

Trace of a matrix: 

 

>>> np.einsum('ii', a) 

60 

>>> np.einsum(a, [0,0]) 

60 

>>> np.trace(a) 

60 

 

Extract the diagonal (requires explicit form): 

 

>>> np.einsum('ii->i', a) 

array([ 0, 6, 12, 18, 24]) 

>>> np.einsum(a, [0,0], [0]) 

array([ 0, 6, 12, 18, 24]) 

>>> np.diag(a) 

array([ 0, 6, 12, 18, 24]) 

 

Sum over an axis (requires explicit form): 

 

>>> np.einsum('ij->i', a) 

array([ 10, 35, 60, 85, 110]) 

>>> np.einsum(a, [0,1], [0]) 

array([ 10, 35, 60, 85, 110]) 

>>> np.sum(a, axis=1) 

array([ 10, 35, 60, 85, 110]) 

 

For higher dimensional arrays summing a single axis can be done with ellipsis: 

 

>>> np.einsum('...j->...', a) 

array([ 10, 35, 60, 85, 110]) 

>>> np.einsum(a, [Ellipsis,1], [Ellipsis]) 

array([ 10, 35, 60, 85, 110]) 

 

Compute a matrix transpose, or reorder any number of axes: 

 

>>> np.einsum('ji', c) 

array([[0, 3], 

[1, 4], 

[2, 5]]) 

>>> np.einsum('ij->ji', c) 

array([[0, 3], 

[1, 4], 

[2, 5]]) 

>>> np.einsum(c, [1,0]) 

array([[0, 3], 

[1, 4], 

[2, 5]]) 

>>> np.transpose(c) 

array([[0, 3], 

[1, 4], 

[2, 5]]) 

 

Vector inner products: 

 

>>> np.einsum('i,i', b, b) 

30 

>>> np.einsum(b, [0], b, [0]) 

30 

>>> np.inner(b,b) 

30 

 

Matrix vector multiplication: 

 

>>> np.einsum('ij,j', a, b) 

array([ 30, 80, 130, 180, 230]) 

>>> np.einsum(a, [0,1], b, [1]) 

array([ 30, 80, 130, 180, 230]) 

>>> np.dot(a, b) 

array([ 30, 80, 130, 180, 230]) 

>>> np.einsum('...j,j', a, b) 

array([ 30, 80, 130, 180, 230]) 

 

Broadcasting and scalar multiplication: 

 

>>> np.einsum('..., ...', 3, c) 

array([[ 0, 3, 6], 

[ 9, 12, 15]]) 

>>> np.einsum(',ij', 3, c) 

array([[ 0, 3, 6], 

[ 9, 12, 15]]) 

>>> np.einsum(3, [Ellipsis], c, [Ellipsis]) 

array([[ 0, 3, 6], 

[ 9, 12, 15]]) 

>>> np.multiply(3, c) 

array([[ 0, 3, 6], 

[ 9, 12, 15]]) 

 

Vector outer product: 

 

>>> np.einsum('i,j', np.arange(2)+1, b) 

array([[0, 1, 2, 3, 4], 

[0, 2, 4, 6, 8]]) 

>>> np.einsum(np.arange(2)+1, [0], b, [1]) 

array([[0, 1, 2, 3, 4], 

[0, 2, 4, 6, 8]]) 

>>> np.outer(np.arange(2)+1, b) 

array([[0, 1, 2, 3, 4], 

[0, 2, 4, 6, 8]]) 

 

Tensor contraction: 

 

>>> a = np.arange(60.).reshape(3,4,5) 

>>> b = np.arange(24.).reshape(4,3,2) 

>>> np.einsum('ijk,jil->kl', a, b) 

array([[ 4400., 4730.], 

[ 4532., 4874.], 

[ 4664., 5018.], 

[ 4796., 5162.], 

[ 4928., 5306.]]) 

>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3]) 

array([[ 4400., 4730.], 

[ 4532., 4874.], 

[ 4664., 5018.], 

[ 4796., 5162.], 

[ 4928., 5306.]]) 

>>> np.tensordot(a,b, axes=([1,0],[0,1])) 

array([[ 4400., 4730.], 

[ 4532., 4874.], 

[ 4664., 5018.], 

[ 4796., 5162.], 

[ 4928., 5306.]]) 

 

Writeable returned arrays (since version 1.10.0): 

 

>>> a = np.zeros((3, 3)) 

>>> np.einsum('ii->i', a)[:] = 1 

>>> a 

array([[ 1., 0., 0.], 

[ 0., 1., 0.], 

[ 0., 0., 1.]]) 

 

Example of ellipsis use: 

 

>>> a = np.arange(6).reshape((3,2)) 

>>> b = np.arange(12).reshape((4,3)) 

>>> np.einsum('ki,jk->ij', a, b) 

array([[10, 28, 46, 64], 

[13, 40, 67, 94]]) 

>>> np.einsum('ki,...k->i...', a, b) 

array([[10, 28, 46, 64], 

[13, 40, 67, 94]]) 

>>> np.einsum('k...,jk', a, b) 

array([[10, 28, 46, 64], 

[13, 40, 67, 94]]) 

 

Chained array operations. For more complicated contractions, speed ups 

might be achieved by repeatedly computing a 'greedy' path or pre-computing the 

'optimal' path and repeatedly applying it, using an 

`einsum_path` insertion (since version 1.12.0). Performance improvements can be 

particularly significant with larger arrays: 

 

>>> a = np.ones(64).reshape(2,4,8) 

# Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.) 

>>> for iteration in range(500): 

... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a) 

# Sub-optimal `einsum` (due to repeated path calculation time): ~330ms 

>>> for iteration in range(500): 

... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal') 

# Greedy `einsum` (faster optimal path approximation): ~160ms 

>>> for iteration in range(500): 

... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy') 

# Optimal `einsum` (best usage pattern in some use cases): ~110ms 

>>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0] 

>>> for iteration in range(500): 

... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path) 

 

""" 

 

# Grab non-einsum kwargs; do not optimize by default. 

optimize_arg = kwargs.pop('optimize', False) 

 

# If no optimization, run pure einsum 

if optimize_arg is False: 

return c_einsum(*operands, **kwargs) 

 

valid_einsum_kwargs = ['out', 'dtype', 'order', 'casting'] 

einsum_kwargs = {k: v for (k, v) in kwargs.items() if 

k in valid_einsum_kwargs} 

 

# Make sure all keywords are valid 

valid_contract_kwargs = ['optimize'] + valid_einsum_kwargs 

unknown_kwargs = [k for (k, v) in kwargs.items() if 

k not in valid_contract_kwargs] 

 

if len(unknown_kwargs): 

raise TypeError("Did not understand the following kwargs: %s" 

% unknown_kwargs) 

 

# Special handeling if out is specified 

specified_out = False 

out_array = einsum_kwargs.pop('out', None) 

if out_array is not None: 

specified_out = True 

 

# Build the contraction list and operand 

operands, contraction_list = einsum_path(*operands, optimize=optimize_arg, 

einsum_call=True) 

 

handle_out = False 

 

# Start contraction loop 

for num, contraction in enumerate(contraction_list): 

inds, idx_rm, einsum_str, remaining, blas = contraction 

tmp_operands = [operands.pop(x) for x in inds] 

 

# Do we need to deal with the output? 

handle_out = specified_out and ((num + 1) == len(contraction_list)) 

 

# Call tensordot if still possible 

if blas: 

# Checks have already been handled 

input_str, results_index = einsum_str.split('->') 

input_left, input_right = input_str.split(',') 

 

tensor_result = input_left + input_right 

for s in idx_rm: 

tensor_result = tensor_result.replace(s, "") 

 

# Find indices to contract over 

left_pos, right_pos = [], [] 

for s in sorted(idx_rm): 

left_pos.append(input_left.find(s)) 

right_pos.append(input_right.find(s)) 

 

# Contract! 

new_view = tensordot(*tmp_operands, axes=(tuple(left_pos), tuple(right_pos))) 

 

# Build a new view if needed 

if (tensor_result != results_index) or handle_out: 

if handle_out: 

einsum_kwargs["out"] = out_array 

new_view = c_einsum(tensor_result + '->' + results_index, new_view, **einsum_kwargs) 

 

# Call einsum 

else: 

# If out was specified 

if handle_out: 

einsum_kwargs["out"] = out_array 

 

# Do the contraction 

new_view = c_einsum(einsum_str, *tmp_operands, **einsum_kwargs) 

 

# Append new items and dereference what we can 

operands.append(new_view) 

del tmp_operands, new_view 

 

if specified_out: 

return out_array 

else: 

return operands[0]