1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

"""Machine limits for Float32 and Float64 and (long double) if available... 

 

""" 

from __future__ import division, absolute_import, print_function 

 

__all__ = ['finfo', 'iinfo'] 

 

import warnings 

 

from .machar import MachAr 

from .overrides import set_module 

from . import numeric 

from . import numerictypes as ntypes 

from .numeric import array, inf 

from .umath import log10, exp2 

from . import umath 

 

 

def _fr0(a): 

"""fix rank-0 --> rank-1""" 

if a.ndim == 0: 

a = a.copy() 

a.shape = (1,) 

return a 

 

 

def _fr1(a): 

"""fix rank > 0 --> rank-0""" 

if a.size == 1: 

a = a.copy() 

a.shape = () 

return a 

 

class MachArLike(object): 

""" Object to simulate MachAr instance """ 

 

def __init__(self, 

ftype, 

**kwargs): 

params = _MACHAR_PARAMS[ftype] 

float_conv = lambda v: array([v], ftype) 

float_to_float = lambda v : _fr1(float_conv(v)) 

float_to_str = lambda v: (params['fmt'] % array(_fr0(v)[0], ftype)) 

 

self.title = params['title'] 

# Parameter types same as for discovered MachAr object. 

self.epsilon = self.eps = float_to_float(kwargs.pop('eps')) 

self.epsneg = float_to_float(kwargs.pop('epsneg')) 

self.xmax = self.huge = float_to_float(kwargs.pop('huge')) 

self.xmin = self.tiny = float_to_float(kwargs.pop('tiny')) 

self.ibeta = params['itype'](kwargs.pop('ibeta')) 

self.__dict__.update(kwargs) 

self.precision = int(-log10(self.eps)) 

self.resolution = float_to_float(float_conv(10) ** (-self.precision)) 

self._str_eps = float_to_str(self.eps) 

self._str_epsneg = float_to_str(self.epsneg) 

self._str_xmin = float_to_str(self.xmin) 

self._str_xmax = float_to_str(self.xmax) 

self._str_resolution = float_to_str(self.resolution) 

 

_convert_to_float = { 

ntypes.csingle: ntypes.single, 

ntypes.complex_: ntypes.float_, 

ntypes.clongfloat: ntypes.longfloat 

} 

 

# Parameters for creating MachAr / MachAr-like objects 

_title_fmt = 'numpy {} precision floating point number' 

_MACHAR_PARAMS = { 

ntypes.double: dict( 

itype = ntypes.int64, 

fmt = '%24.16e', 

title = _title_fmt.format('double')), 

ntypes.single: dict( 

itype = ntypes.int32, 

fmt = '%15.7e', 

title = _title_fmt.format('single')), 

ntypes.longdouble: dict( 

itype = ntypes.longlong, 

fmt = '%s', 

title = _title_fmt.format('long double')), 

ntypes.half: dict( 

itype = ntypes.int16, 

fmt = '%12.5e', 

title = _title_fmt.format('half'))} 

 

# Key to identify the floating point type. Key is result of 

# ftype('-0.1').newbyteorder('<').tobytes() 

# See: 

# https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure 

_KNOWN_TYPES = {} 

def _register_type(machar, bytepat): 

_KNOWN_TYPES[bytepat] = machar 

_float_ma = {} 

 

def _register_known_types(): 

# Known parameters for float16 

# See docstring of MachAr class for description of parameters. 

f16 = ntypes.float16 

float16_ma = MachArLike(f16, 

machep=-10, 

negep=-11, 

minexp=-14, 

maxexp=16, 

it=10, 

iexp=5, 

ibeta=2, 

irnd=5, 

ngrd=0, 

eps=exp2(f16(-10)), 

epsneg=exp2(f16(-11)), 

huge=f16(65504), 

tiny=f16(2 ** -14)) 

_register_type(float16_ma, b'f\xae') 

_float_ma[16] = float16_ma 

 

# Known parameters for float32 

f32 = ntypes.float32 

float32_ma = MachArLike(f32, 

machep=-23, 

negep=-24, 

minexp=-126, 

maxexp=128, 

it=23, 

iexp=8, 

ibeta=2, 

irnd=5, 

ngrd=0, 

eps=exp2(f32(-23)), 

epsneg=exp2(f32(-24)), 

huge=f32((1 - 2 ** -24) * 2**128), 

tiny=exp2(f32(-126))) 

_register_type(float32_ma, b'\xcd\xcc\xcc\xbd') 

_float_ma[32] = float32_ma 

 

# Known parameters for float64 

f64 = ntypes.float64 

epsneg_f64 = 2.0 ** -53.0 

tiny_f64 = 2.0 ** -1022.0 

float64_ma = MachArLike(f64, 

machep=-52, 

negep=-53, 

minexp=-1022, 

maxexp=1024, 

it=52, 

iexp=11, 

ibeta=2, 

irnd=5, 

ngrd=0, 

eps=2.0 ** -52.0, 

epsneg=epsneg_f64, 

huge=(1.0 - epsneg_f64) / tiny_f64 * f64(4), 

tiny=tiny_f64) 

_register_type(float64_ma, b'\x9a\x99\x99\x99\x99\x99\xb9\xbf') 

_float_ma[64] = float64_ma 

 

# Known parameters for IEEE 754 128-bit binary float 

ld = ntypes.longdouble 

epsneg_f128 = exp2(ld(-113)) 

tiny_f128 = exp2(ld(-16382)) 

# Ignore runtime error when this is not f128 

with numeric.errstate(all='ignore'): 

huge_f128 = (ld(1) - epsneg_f128) / tiny_f128 * ld(4) 

float128_ma = MachArLike(ld, 

machep=-112, 

negep=-113, 

minexp=-16382, 

maxexp=16384, 

it=112, 

iexp=15, 

ibeta=2, 

irnd=5, 

ngrd=0, 

eps=exp2(ld(-112)), 

epsneg=epsneg_f128, 

huge=huge_f128, 

tiny=tiny_f128) 

# IEEE 754 128-bit binary float 

_register_type(float128_ma, 

b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf') 

_register_type(float128_ma, 

b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf') 

_float_ma[128] = float128_ma 

 

# Known parameters for float80 (Intel 80-bit extended precision) 

epsneg_f80 = exp2(ld(-64)) 

tiny_f80 = exp2(ld(-16382)) 

# Ignore runtime error when this is not f80 

with numeric.errstate(all='ignore'): 

huge_f80 = (ld(1) - epsneg_f80) / tiny_f80 * ld(4) 

float80_ma = MachArLike(ld, 

machep=-63, 

negep=-64, 

minexp=-16382, 

maxexp=16384, 

it=63, 

iexp=15, 

ibeta=2, 

irnd=5, 

ngrd=0, 

eps=exp2(ld(-63)), 

epsneg=epsneg_f80, 

huge=huge_f80, 

tiny=tiny_f80) 

# float80, first 10 bytes containing actual storage 

_register_type(float80_ma, b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf') 

_float_ma[80] = float80_ma 

 

# Guessed / known parameters for double double; see: 

# https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic 

# These numbers have the same exponent range as float64, but extended number of 

# digits in the significand. 

huge_dd = (umath.nextafter(ld(inf), ld(0)) 

if hasattr(umath, 'nextafter') # Missing on some platforms? 

else float64_ma.huge) 

float_dd_ma = MachArLike(ld, 

machep=-105, 

negep=-106, 

minexp=-1022, 

maxexp=1024, 

it=105, 

iexp=11, 

ibeta=2, 

irnd=5, 

ngrd=0, 

eps=exp2(ld(-105)), 

epsneg= exp2(ld(-106)), 

huge=huge_dd, 

tiny=exp2(ld(-1022))) 

# double double; low, high order (e.g. PPC 64) 

_register_type(float_dd_ma, 

b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf') 

# double double; high, low order (e.g. PPC 64 le) 

_register_type(float_dd_ma, 

b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<') 

_float_ma['dd'] = float_dd_ma 

 

 

def _get_machar(ftype): 

""" Get MachAr instance or MachAr-like instance 

 

Get parameters for floating point type, by first trying signatures of 

various known floating point types, then, if none match, attempting to 

identify parameters by analysis. 

 

Parameters 

---------- 

ftype : class 

Numpy floating point type class (e.g. ``np.float64``) 

 

Returns 

------- 

ma_like : instance of :class:`MachAr` or :class:`MachArLike` 

Object giving floating point parameters for `ftype`. 

 

Warns 

----- 

UserWarning 

If the binary signature of the float type is not in the dictionary of 

known float types. 

""" 

params = _MACHAR_PARAMS.get(ftype) 

if params is None: 

raise ValueError(repr(ftype)) 

# Detect known / suspected types 

key = ftype('-0.1').newbyteorder('<').tobytes() 

ma_like = _KNOWN_TYPES.get(key) 

# Could be 80 bit == 10 byte extended precision, where last bytes can be 

# random garbage. Try comparing first 10 bytes to pattern. 

if ma_like is None and ftype == ntypes.longdouble: 

ma_like = _KNOWN_TYPES.get(key[:10]) 

if ma_like is not None: 

return ma_like 

# Fall back to parameter discovery 

warnings.warn( 

'Signature {} for {} does not match any known type: ' 

'falling back to type probe function'.format(key, ftype), 

UserWarning, stacklevel=2) 

return _discovered_machar(ftype) 

 

 

def _discovered_machar(ftype): 

""" Create MachAr instance with found information on float types 

""" 

params = _MACHAR_PARAMS[ftype] 

return MachAr(lambda v: array([v], ftype), 

lambda v:_fr0(v.astype(params['itype']))[0], 

lambda v:array(_fr0(v)[0], ftype), 

lambda v: params['fmt'] % array(_fr0(v)[0], ftype), 

params['title']) 

 

 

@set_module('numpy') 

class finfo(object): 

""" 

finfo(dtype) 

 

Machine limits for floating point types. 

 

Attributes 

---------- 

bits : int 

The number of bits occupied by the type. 

eps : float 

The smallest representable positive number such that 

``1.0 + eps != 1.0``. Type of `eps` is an appropriate floating 

point type. 

epsneg : floating point number of the appropriate type 

The smallest representable positive number such that 

``1.0 - epsneg != 1.0``. 

iexp : int 

The number of bits in the exponent portion of the floating point 

representation. 

machar : MachAr 

The object which calculated these parameters and holds more 

detailed information. 

machep : int 

The exponent that yields `eps`. 

max : floating point number of the appropriate type 

The largest representable number. 

maxexp : int 

The smallest positive power of the base (2) that causes overflow. 

min : floating point number of the appropriate type 

The smallest representable number, typically ``-max``. 

minexp : int 

The most negative power of the base (2) consistent with there 

being no leading 0's in the mantissa. 

negep : int 

The exponent that yields `epsneg`. 

nexp : int 

The number of bits in the exponent including its sign and bias. 

nmant : int 

The number of bits in the mantissa. 

precision : int 

The approximate number of decimal digits to which this kind of 

float is precise. 

resolution : floating point number of the appropriate type 

The approximate decimal resolution of this type, i.e., 

``10**-precision``. 

tiny : float 

The smallest positive usable number. Type of `tiny` is an 

appropriate floating point type. 

 

Parameters 

---------- 

dtype : float, dtype, or instance 

Kind of floating point data-type about which to get information. 

 

See Also 

-------- 

MachAr : The implementation of the tests that produce this information. 

iinfo : The equivalent for integer data types. 

 

Notes 

----- 

For developers of NumPy: do not instantiate this at the module level. 

The initial calculation of these parameters is expensive and negatively 

impacts import times. These objects are cached, so calling ``finfo()`` 

repeatedly inside your functions is not a problem. 

 

""" 

 

_finfo_cache = {} 

 

def __new__(cls, dtype): 

try: 

dtype = numeric.dtype(dtype) 

except TypeError: 

# In case a float instance was given 

dtype = numeric.dtype(type(dtype)) 

 

obj = cls._finfo_cache.get(dtype, None) 

if obj is not None: 

return obj 

dtypes = [dtype] 

newdtype = numeric.obj2sctype(dtype) 

if newdtype is not dtype: 

dtypes.append(newdtype) 

dtype = newdtype 

if not issubclass(dtype, numeric.inexact): 

raise ValueError("data type %r not inexact" % (dtype)) 

obj = cls._finfo_cache.get(dtype, None) 

if obj is not None: 

return obj 

if not issubclass(dtype, numeric.floating): 

newdtype = _convert_to_float[dtype] 

if newdtype is not dtype: 

dtypes.append(newdtype) 

dtype = newdtype 

obj = cls._finfo_cache.get(dtype, None) 

if obj is not None: 

return obj 

obj = object.__new__(cls)._init(dtype) 

for dt in dtypes: 

cls._finfo_cache[dt] = obj 

return obj 

 

def _init(self, dtype): 

self.dtype = numeric.dtype(dtype) 

machar = _get_machar(dtype) 

 

for word in ['precision', 'iexp', 

'maxexp', 'minexp', 'negep', 

'machep']: 

setattr(self, word, getattr(machar, word)) 

for word in ['tiny', 'resolution', 'epsneg']: 

setattr(self, word, getattr(machar, word).flat[0]) 

self.bits = self.dtype.itemsize * 8 

self.max = machar.huge.flat[0] 

self.min = -self.max 

self.eps = machar.eps.flat[0] 

self.nexp = machar.iexp 

self.nmant = machar.it 

self.machar = machar 

self._str_tiny = machar._str_xmin.strip() 

self._str_max = machar._str_xmax.strip() 

self._str_epsneg = machar._str_epsneg.strip() 

self._str_eps = machar._str_eps.strip() 

self._str_resolution = machar._str_resolution.strip() 

return self 

 

def __str__(self): 

fmt = ( 

'Machine parameters for %(dtype)s\n' 

'---------------------------------------------------------------\n' 

'precision = %(precision)3s resolution = %(_str_resolution)s\n' 

'machep = %(machep)6s eps = %(_str_eps)s\n' 

'negep = %(negep)6s epsneg = %(_str_epsneg)s\n' 

'minexp = %(minexp)6s tiny = %(_str_tiny)s\n' 

'maxexp = %(maxexp)6s max = %(_str_max)s\n' 

'nexp = %(nexp)6s min = -max\n' 

'---------------------------------------------------------------\n' 

) 

return fmt % self.__dict__ 

 

def __repr__(self): 

c = self.__class__.__name__ 

d = self.__dict__.copy() 

d['klass'] = c 

return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s," 

" max=%(_str_max)s, dtype=%(dtype)s)") % d) 

 

 

@set_module('numpy') 

class iinfo(object): 

""" 

iinfo(type) 

 

Machine limits for integer types. 

 

Attributes 

---------- 

bits : int 

The number of bits occupied by the type. 

min : int 

The smallest integer expressible by the type. 

max : int 

The largest integer expressible by the type. 

 

Parameters 

---------- 

int_type : integer type, dtype, or instance 

The kind of integer data type to get information about. 

 

See Also 

-------- 

finfo : The equivalent for floating point data types. 

 

Examples 

-------- 

With types: 

 

>>> ii16 = np.iinfo(np.int16) 

>>> ii16.min 

-32768 

>>> ii16.max 

32767 

>>> ii32 = np.iinfo(np.int32) 

>>> ii32.min 

-2147483648 

>>> ii32.max 

2147483647 

 

With instances: 

 

>>> ii32 = np.iinfo(np.int32(10)) 

>>> ii32.min 

-2147483648 

>>> ii32.max 

2147483647 

 

""" 

 

_min_vals = {} 

_max_vals = {} 

 

def __init__(self, int_type): 

try: 

self.dtype = numeric.dtype(int_type) 

except TypeError: 

self.dtype = numeric.dtype(type(int_type)) 

self.kind = self.dtype.kind 

self.bits = self.dtype.itemsize * 8 

self.key = "%s%d" % (self.kind, self.bits) 

if self.kind not in 'iu': 

raise ValueError("Invalid integer data type %r." % (self.kind,)) 

 

def min(self): 

"""Minimum value of given dtype.""" 

if self.kind == 'u': 

return 0 

else: 

try: 

val = iinfo._min_vals[self.key] 

except KeyError: 

val = int(-(1 << (self.bits-1))) 

iinfo._min_vals[self.key] = val 

return val 

 

min = property(min) 

 

def max(self): 

"""Maximum value of given dtype.""" 

try: 

val = iinfo._max_vals[self.key] 

except KeyError: 

if self.kind == 'u': 

val = int((1 << self.bits) - 1) 

else: 

val = int((1 << (self.bits-1)) - 1) 

iinfo._max_vals[self.key] = val 

return val 

 

max = property(max) 

 

def __str__(self): 

"""String representation.""" 

fmt = ( 

'Machine parameters for %(dtype)s\n' 

'---------------------------------------------------------------\n' 

'min = %(min)s\n' 

'max = %(max)s\n' 

'---------------------------------------------------------------\n' 

) 

return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max} 

 

def __repr__(self): 

return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__, 

self.min, self.max, self.dtype)