1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

"""Automatically adapted for numpy Sep 19, 2005 by convertcode.py 

 

""" 

from __future__ import division, absolute_import, print_function 

import functools 

import warnings 

 

__all__ = ['iscomplexobj', 'isrealobj', 'imag', 'iscomplex', 

'isreal', 'nan_to_num', 'real', 'real_if_close', 

'typename', 'asfarray', 'mintypecode', 'asscalar', 

'common_type'] 

 

import numpy.core.numeric as _nx 

from numpy.core.numeric import asarray, asanyarray, isnan, zeros 

from numpy.core.overrides import set_module 

from numpy.core import overrides 

from .ufunclike import isneginf, isposinf 

 

 

array_function_dispatch = functools.partial( 

overrides.array_function_dispatch, module='numpy') 

 

 

_typecodes_by_elsize = 'GDFgdfQqLlIiHhBb?' 

 

 

@set_module('numpy') 

def mintypecode(typechars, typeset='GDFgdf', default='d'): 

""" 

Return the character for the minimum-size type to which given types can 

be safely cast. 

 

The returned type character must represent the smallest size dtype such 

that an array of the returned type can handle the data from an array of 

all types in `typechars` (or if `typechars` is an array, then its 

dtype.char). 

 

Parameters 

---------- 

typechars : list of str or array_like 

If a list of strings, each string should represent a dtype. 

If array_like, the character representation of the array dtype is used. 

typeset : str or list of str, optional 

The set of characters that the returned character is chosen from. 

The default set is 'GDFgdf'. 

default : str, optional 

The default character, this is returned if none of the characters in 

`typechars` matches a character in `typeset`. 

 

Returns 

------- 

typechar : str 

The character representing the minimum-size type that was found. 

 

See Also 

-------- 

dtype, sctype2char, maximum_sctype 

 

Examples 

-------- 

>>> np.mintypecode(['d', 'f', 'S']) 

'd' 

>>> x = np.array([1.1, 2-3.j]) 

>>> np.mintypecode(x) 

'D' 

 

>>> np.mintypecode('abceh', default='G') 

'G' 

 

""" 

typecodes = [(isinstance(t, str) and t) or asarray(t).dtype.char 

for t in typechars] 

intersection = [t for t in typecodes if t in typeset] 

if not intersection: 

return default 

if 'F' in intersection and 'd' in intersection: 

return 'D' 

l = [(_typecodes_by_elsize.index(t), t) for t in intersection] 

l.sort() 

return l[0][1] 

 

 

def _asfarray_dispatcher(a, dtype=None): 

return (a,) 

 

 

@array_function_dispatch(_asfarray_dispatcher) 

def asfarray(a, dtype=_nx.float_): 

""" 

Return an array converted to a float type. 

 

Parameters 

---------- 

a : array_like 

The input array. 

dtype : str or dtype object, optional 

Float type code to coerce input array `a`. If `dtype` is one of the 

'int' dtypes, it is replaced with float64. 

 

Returns 

------- 

out : ndarray 

The input `a` as a float ndarray. 

 

Examples 

-------- 

>>> np.asfarray([2, 3]) 

array([ 2., 3.]) 

>>> np.asfarray([2, 3], dtype='float') 

array([ 2., 3.]) 

>>> np.asfarray([2, 3], dtype='int8') 

array([ 2., 3.]) 

 

""" 

if not _nx.issubdtype(dtype, _nx.inexact): 

dtype = _nx.float_ 

return asarray(a, dtype=dtype) 

 

 

def _real_dispatcher(val): 

return (val,) 

 

 

@array_function_dispatch(_real_dispatcher) 

def real(val): 

""" 

Return the real part of the complex argument. 

 

Parameters 

---------- 

val : array_like 

Input array. 

 

Returns 

------- 

out : ndarray or scalar 

The real component of the complex argument. If `val` is real, the type 

of `val` is used for the output. If `val` has complex elements, the 

returned type is float. 

 

See Also 

-------- 

real_if_close, imag, angle 

 

Examples 

-------- 

>>> a = np.array([1+2j, 3+4j, 5+6j]) 

>>> a.real 

array([ 1., 3., 5.]) 

>>> a.real = 9 

>>> a 

array([ 9.+2.j, 9.+4.j, 9.+6.j]) 

>>> a.real = np.array([9, 8, 7]) 

>>> a 

array([ 9.+2.j, 8.+4.j, 7.+6.j]) 

>>> np.real(1 + 1j) 

1.0 

 

""" 

try: 

return val.real 

except AttributeError: 

return asanyarray(val).real 

 

 

def _imag_dispatcher(val): 

return (val,) 

 

 

@array_function_dispatch(_imag_dispatcher) 

def imag(val): 

""" 

Return the imaginary part of the complex argument. 

 

Parameters 

---------- 

val : array_like 

Input array. 

 

Returns 

------- 

out : ndarray or scalar 

The imaginary component of the complex argument. If `val` is real, 

the type of `val` is used for the output. If `val` has complex 

elements, the returned type is float. 

 

See Also 

-------- 

real, angle, real_if_close 

 

Examples 

-------- 

>>> a = np.array([1+2j, 3+4j, 5+6j]) 

>>> a.imag 

array([ 2., 4., 6.]) 

>>> a.imag = np.array([8, 10, 12]) 

>>> a 

array([ 1. +8.j, 3.+10.j, 5.+12.j]) 

>>> np.imag(1 + 1j) 

1.0 

 

""" 

try: 

return val.imag 

except AttributeError: 

return asanyarray(val).imag 

 

 

def _is_type_dispatcher(x): 

return (x,) 

 

 

@array_function_dispatch(_is_type_dispatcher) 

def iscomplex(x): 

""" 

Returns a bool array, where True if input element is complex. 

 

What is tested is whether the input has a non-zero imaginary part, not if 

the input type is complex. 

 

Parameters 

---------- 

x : array_like 

Input array. 

 

Returns 

------- 

out : ndarray of bools 

Output array. 

 

See Also 

-------- 

isreal 

iscomplexobj : Return True if x is a complex type or an array of complex 

numbers. 

 

Examples 

-------- 

>>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j]) 

array([ True, False, False, False, False, True]) 

 

""" 

ax = asanyarray(x) 

if issubclass(ax.dtype.type, _nx.complexfloating): 

return ax.imag != 0 

res = zeros(ax.shape, bool) 

return res[()] # convert to scalar if needed 

 

 

@array_function_dispatch(_is_type_dispatcher) 

def isreal(x): 

""" 

Returns a bool array, where True if input element is real. 

 

If element has complex type with zero complex part, the return value 

for that element is True. 

 

Parameters 

---------- 

x : array_like 

Input array. 

 

Returns 

------- 

out : ndarray, bool 

Boolean array of same shape as `x`. 

 

See Also 

-------- 

iscomplex 

isrealobj : Return True if x is not a complex type. 

 

Examples 

-------- 

>>> np.isreal([1+1j, 1+0j, 4.5, 3, 2, 2j]) 

array([False, True, True, True, True, False]) 

 

""" 

return imag(x) == 0 

 

 

@array_function_dispatch(_is_type_dispatcher) 

def iscomplexobj(x): 

""" 

Check for a complex type or an array of complex numbers. 

 

The type of the input is checked, not the value. Even if the input 

has an imaginary part equal to zero, `iscomplexobj` evaluates to True. 

 

Parameters 

---------- 

x : any 

The input can be of any type and shape. 

 

Returns 

------- 

iscomplexobj : bool 

The return value, True if `x` is of a complex type or has at least 

one complex element. 

 

See Also 

-------- 

isrealobj, iscomplex 

 

Examples 

-------- 

>>> np.iscomplexobj(1) 

False 

>>> np.iscomplexobj(1+0j) 

True 

>>> np.iscomplexobj([3, 1+0j, True]) 

True 

 

""" 

try: 

dtype = x.dtype 

type_ = dtype.type 

except AttributeError: 

type_ = asarray(x).dtype.type 

return issubclass(type_, _nx.complexfloating) 

 

 

@array_function_dispatch(_is_type_dispatcher) 

def isrealobj(x): 

""" 

Return True if x is a not complex type or an array of complex numbers. 

 

The type of the input is checked, not the value. So even if the input 

has an imaginary part equal to zero, `isrealobj` evaluates to False 

if the data type is complex. 

 

Parameters 

---------- 

x : any 

The input can be of any type and shape. 

 

Returns 

------- 

y : bool 

The return value, False if `x` is of a complex type. 

 

See Also 

-------- 

iscomplexobj, isreal 

 

Examples 

-------- 

>>> np.isrealobj(1) 

True 

>>> np.isrealobj(1+0j) 

False 

>>> np.isrealobj([3, 1+0j, True]) 

False 

 

""" 

return not iscomplexobj(x) 

 

#----------------------------------------------------------------------------- 

 

def _getmaxmin(t): 

from numpy.core import getlimits 

f = getlimits.finfo(t) 

return f.max, f.min 

 

 

def _nan_to_num_dispatcher(x, copy=None): 

return (x,) 

 

 

@array_function_dispatch(_nan_to_num_dispatcher) 

def nan_to_num(x, copy=True): 

""" 

Replace NaN with zero and infinity with large finite numbers. 

 

If `x` is inexact, NaN is replaced by zero, and infinity and -infinity 

replaced by the respectively largest and most negative finite floating 

point values representable by ``x.dtype``. 

 

For complex dtypes, the above is applied to each of the real and 

imaginary components of `x` separately. 

 

If `x` is not inexact, then no replacements are made. 

 

Parameters 

---------- 

x : scalar or array_like 

Input data. 

copy : bool, optional 

Whether to create a copy of `x` (True) or to replace values 

in-place (False). The in-place operation only occurs if 

casting to an array does not require a copy. 

Default is True. 

 

.. versionadded:: 1.13 

 

Returns 

------- 

out : ndarray 

`x`, with the non-finite values replaced. If `copy` is False, this may 

be `x` itself. 

 

See Also 

-------- 

isinf : Shows which elements are positive or negative infinity. 

isneginf : Shows which elements are negative infinity. 

isposinf : Shows which elements are positive infinity. 

isnan : Shows which elements are Not a Number (NaN). 

isfinite : Shows which elements are finite (not NaN, not infinity) 

 

Notes 

----- 

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic 

(IEEE 754). This means that Not a Number is not equivalent to infinity. 

 

Examples 

-------- 

>>> np.nan_to_num(np.inf) 

1.7976931348623157e+308 

>>> np.nan_to_num(-np.inf) 

-1.7976931348623157e+308 

>>> np.nan_to_num(np.nan) 

0.0 

>>> x = np.array([np.inf, -np.inf, np.nan, -128, 128]) 

>>> np.nan_to_num(x) 

array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, 

-1.28000000e+002, 1.28000000e+002]) 

>>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)]) 

>>> np.nan_to_num(y) 

array([ 1.79769313e+308 +0.00000000e+000j, 

0.00000000e+000 +0.00000000e+000j, 

0.00000000e+000 +1.79769313e+308j]) 

""" 

x = _nx.array(x, subok=True, copy=copy) 

xtype = x.dtype.type 

 

isscalar = (x.ndim == 0) 

 

if not issubclass(xtype, _nx.inexact): 

return x[()] if isscalar else x 

 

iscomplex = issubclass(xtype, _nx.complexfloating) 

 

dest = (x.real, x.imag) if iscomplex else (x,) 

maxf, minf = _getmaxmin(x.real.dtype) 

for d in dest: 

_nx.copyto(d, 0.0, where=isnan(d)) 

_nx.copyto(d, maxf, where=isposinf(d)) 

_nx.copyto(d, minf, where=isneginf(d)) 

return x[()] if isscalar else x 

 

#----------------------------------------------------------------------------- 

 

def _real_if_close_dispatcher(a, tol=None): 

return (a,) 

 

 

@array_function_dispatch(_real_if_close_dispatcher) 

def real_if_close(a, tol=100): 

""" 

If complex input returns a real array if complex parts are close to zero. 

 

"Close to zero" is defined as `tol` * (machine epsilon of the type for 

`a`). 

 

Parameters 

---------- 

a : array_like 

Input array. 

tol : float 

Tolerance in machine epsilons for the complex part of the elements 

in the array. 

 

Returns 

------- 

out : ndarray 

If `a` is real, the type of `a` is used for the output. If `a` 

has complex elements, the returned type is float. 

 

See Also 

-------- 

real, imag, angle 

 

Notes 

----- 

Machine epsilon varies from machine to machine and between data types 

but Python floats on most platforms have a machine epsilon equal to 

2.2204460492503131e-16. You can use 'np.finfo(float).eps' to print 

out the machine epsilon for floats. 

 

Examples 

-------- 

>>> np.finfo(float).eps 

2.2204460492503131e-16 

 

>>> np.real_if_close([2.1 + 4e-14j], tol=1000) 

array([ 2.1]) 

>>> np.real_if_close([2.1 + 4e-13j], tol=1000) 

array([ 2.1 +4.00000000e-13j]) 

 

""" 

a = asanyarray(a) 

if not issubclass(a.dtype.type, _nx.complexfloating): 

return a 

if tol > 1: 

from numpy.core import getlimits 

f = getlimits.finfo(a.dtype.type) 

tol = f.eps * tol 

if _nx.all(_nx.absolute(a.imag) < tol): 

a = a.real 

return a 

 

 

def _asscalar_dispatcher(a): 

return (a,) 

 

 

@array_function_dispatch(_asscalar_dispatcher) 

def asscalar(a): 

""" 

Convert an array of size 1 to its scalar equivalent. 

 

.. deprecated:: 1.16 

 

Deprecated, use `numpy.ndarray.item()` instead. 

 

Parameters 

---------- 

a : ndarray 

Input array of size 1. 

 

Returns 

------- 

out : scalar 

Scalar representation of `a`. The output data type is the same type 

returned by the input's `item` method. 

 

Examples 

-------- 

>>> np.asscalar(np.array([24])) 

24 

 

""" 

 

# 2018-10-10, 1.16 

warnings.warn('np.asscalar(a) is deprecated since NumPy v1.16, use ' 

'a.item() instead', DeprecationWarning, stacklevel=1) 

return a.item() 

 

#----------------------------------------------------------------------------- 

 

_namefromtype = {'S1': 'character', 

'?': 'bool', 

'b': 'signed char', 

'B': 'unsigned char', 

'h': 'short', 

'H': 'unsigned short', 

'i': 'integer', 

'I': 'unsigned integer', 

'l': 'long integer', 

'L': 'unsigned long integer', 

'q': 'long long integer', 

'Q': 'unsigned long long integer', 

'f': 'single precision', 

'd': 'double precision', 

'g': 'long precision', 

'F': 'complex single precision', 

'D': 'complex double precision', 

'G': 'complex long double precision', 

'S': 'string', 

'U': 'unicode', 

'V': 'void', 

'O': 'object' 

} 

 

@set_module('numpy') 

def typename(char): 

""" 

Return a description for the given data type code. 

 

Parameters 

---------- 

char : str 

Data type code. 

 

Returns 

------- 

out : str 

Description of the input data type code. 

 

See Also 

-------- 

dtype, typecodes 

 

Examples 

-------- 

>>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q', 

... 'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q'] 

>>> for typechar in typechars: 

... print(typechar, ' : ', np.typename(typechar)) 

... 

S1 : character 

? : bool 

B : unsigned char 

D : complex double precision 

G : complex long double precision 

F : complex single precision 

I : unsigned integer 

H : unsigned short 

L : unsigned long integer 

O : object 

Q : unsigned long long integer 

S : string 

U : unicode 

V : void 

b : signed char 

d : double precision 

g : long precision 

f : single precision 

i : integer 

h : short 

l : long integer 

q : long long integer 

 

""" 

return _namefromtype[char] 

 

#----------------------------------------------------------------------------- 

 

#determine the "minimum common type" for a group of arrays. 

array_type = [[_nx.half, _nx.single, _nx.double, _nx.longdouble], 

[None, _nx.csingle, _nx.cdouble, _nx.clongdouble]] 

array_precision = {_nx.half: 0, 

_nx.single: 1, 

_nx.double: 2, 

_nx.longdouble: 3, 

_nx.csingle: 1, 

_nx.cdouble: 2, 

_nx.clongdouble: 3} 

 

 

def _common_type_dispatcher(*arrays): 

return arrays 

 

 

@array_function_dispatch(_common_type_dispatcher) 

def common_type(*arrays): 

""" 

Return a scalar type which is common to the input arrays. 

 

The return type will always be an inexact (i.e. floating point) scalar 

type, even if all the arrays are integer arrays. If one of the inputs is 

an integer array, the minimum precision type that is returned is a 

64-bit floating point dtype. 

 

All input arrays except int64 and uint64 can be safely cast to the 

returned dtype without loss of information. 

 

Parameters 

---------- 

array1, array2, ... : ndarrays 

Input arrays. 

 

Returns 

------- 

out : data type code 

Data type code. 

 

See Also 

-------- 

dtype, mintypecode 

 

Examples 

-------- 

>>> np.common_type(np.arange(2, dtype=np.float32)) 

<type 'numpy.float32'> 

>>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) 

<type 'numpy.float64'> 

>>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) 

<type 'numpy.complex128'> 

 

""" 

is_complex = False 

precision = 0 

for a in arrays: 

t = a.dtype.type 

if iscomplexobj(a): 

is_complex = True 

if issubclass(t, _nx.integer): 

p = 2 # array_precision[_nx.double] 

else: 

p = array_precision.get(t, None) 

if p is None: 

raise TypeError("can't get common type for non-numeric array") 

precision = max(precision, p) 

if is_complex: 

return array_type[1][precision] 

else: 

return array_type[0][precision]