1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

# Copyright (C) 2003-2005 Peter J. Verveer 

# 

# Redistribution and use in source and binary forms, with or without 

# modification, are permitted provided that the following conditions 

# are met: 

# 

# 1. Redistributions of source code must retain the above copyright 

# notice, this list of conditions and the following disclaimer. 

# 

# 2. Redistributions in binary form must reproduce the above 

# copyright notice, this list of conditions and the following 

# disclaimer in the documentation and/or other materials provided 

# with the distribution. 

# 

# 3. The name of the author may not be used to endorse or promote 

# products derived from this software without specific prior 

# written permission. 

# 

# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 

# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 

# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 

# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 

# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 

# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 

# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 

# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 

# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 

# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 

# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

 

from __future__ import division, print_function, absolute_import 

import warnings 

 

import math 

import numpy 

from . import _ni_support 

from . import _nd_image 

from . import _ni_docstrings 

from scipy.misc import doccer 

from scipy._lib._version import NumpyVersion 

 

__all__ = ['correlate1d', 'convolve1d', 'gaussian_filter1d', 'gaussian_filter', 

'prewitt', 'sobel', 'generic_laplace', 'laplace', 

'gaussian_laplace', 'generic_gradient_magnitude', 

'gaussian_gradient_magnitude', 'correlate', 'convolve', 

'uniform_filter1d', 'uniform_filter', 'minimum_filter1d', 

'maximum_filter1d', 'minimum_filter', 'maximum_filter', 

'rank_filter', 'median_filter', 'percentile_filter', 

'generic_filter1d', 'generic_filter'] 

 

 

@_ni_docstrings.docfiller 

def correlate1d(input, weights, axis=-1, output=None, mode="reflect", 

cval=0.0, origin=0): 

"""Calculate a one-dimensional correlation along the given axis. 

 

The lines of the array along the given axis are correlated with the 

given weights. 

 

Parameters 

---------- 

%(input)s 

weights : array 

One-dimensional sequence of numbers. 

%(axis)s 

%(output)s 

%(mode)s 

%(cval)s 

%(origin)s 

 

Examples 

-------- 

>>> from scipy.ndimage import correlate1d 

>>> correlate1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3]) 

array([ 8, 26, 8, 12, 7, 28, 36, 9]) 

""" 

input = numpy.asarray(input) 

if numpy.iscomplexobj(input): 

raise TypeError('Complex type not supported') 

output = _ni_support._get_output(output, input) 

weights = numpy.asarray(weights, dtype=numpy.float64) 

if weights.ndim != 1 or weights.shape[0] < 1: 

raise RuntimeError('no filter weights given') 

if not weights.flags.contiguous: 

weights = weights.copy() 

axis = _ni_support._check_axis(axis, input.ndim) 

if (len(weights) // 2 + origin < 0) or (len(weights) // 2 + 

origin > len(weights)): 

raise ValueError('invalid origin') 

mode = _ni_support._extend_mode_to_code(mode) 

_nd_image.correlate1d(input, weights, axis, output, mode, cval, 

origin) 

return output 

 

 

@_ni_docstrings.docfiller 

def convolve1d(input, weights, axis=-1, output=None, mode="reflect", 

cval=0.0, origin=0): 

"""Calculate a one-dimensional convolution along the given axis. 

 

The lines of the array along the given axis are convolved with the 

given weights. 

 

Parameters 

---------- 

%(input)s 

weights : ndarray 

One-dimensional sequence of numbers. 

%(axis)s 

%(output)s 

%(mode)s 

%(cval)s 

%(origin)s 

 

Returns 

------- 

convolve1d : ndarray 

Convolved array with same shape as input 

 

Examples 

-------- 

>>> from scipy.ndimage import convolve1d 

>>> convolve1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3]) 

array([14, 24, 4, 13, 12, 36, 27, 0]) 

""" 

weights = weights[::-1] 

origin = -origin 

if not len(weights) & 1: 

origin -= 1 

return correlate1d(input, weights, axis, output, mode, cval, origin) 

 

 

def _gaussian_kernel1d(sigma, order, radius): 

""" 

Computes a 1D Gaussian convolution kernel. 

""" 

if order < 0: 

raise ValueError('order must be non-negative') 

p = numpy.polynomial.Polynomial([0, 0, -0.5 / (sigma * sigma)]) 

x = numpy.arange(-radius, radius + 1) 

phi_x = numpy.exp(p(x), dtype=numpy.double) 

phi_x /= phi_x.sum() 

if order > 0: 

q = numpy.polynomial.Polynomial([1]) 

p_deriv = p.deriv() 

for _ in range(order): 

# f(x) = q(x) * phi(x) = q(x) * exp(p(x)) 

# f'(x) = (q'(x) + q(x) * p'(x)) * phi(x) 

q = q.deriv() + q * p_deriv 

phi_x *= q(x) 

return phi_x 

 

 

@_ni_docstrings.docfiller 

def gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, 

mode="reflect", cval=0.0, truncate=4.0): 

"""One-dimensional Gaussian filter. 

 

Parameters 

---------- 

%(input)s 

sigma : scalar 

standard deviation for Gaussian kernel 

%(axis)s 

order : int, optional 

An order of 0 corresponds to convolution with a Gaussian 

kernel. A positive order corresponds to convolution with 

that derivative of a Gaussian. 

%(output)s 

%(mode)s 

%(cval)s 

truncate : float, optional 

Truncate the filter at this many standard deviations. 

Default is 4.0. 

 

Returns 

------- 

gaussian_filter1d : ndarray 

 

Examples 

-------- 

>>> from scipy.ndimage import gaussian_filter1d 

>>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 1) 

array([ 1.42704095, 2.06782203, 3. , 3.93217797, 4.57295905]) 

>>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 4) 

array([ 2.91948343, 2.95023502, 3. , 3.04976498, 3.08051657]) 

>>> import matplotlib.pyplot as plt 

>>> np.random.seed(280490) 

>>> x = np.random.randn(101).cumsum() 

>>> y3 = gaussian_filter1d(x, 3) 

>>> y6 = gaussian_filter1d(x, 6) 

>>> plt.plot(x, 'k', label='original data') 

>>> plt.plot(y3, '--', label='filtered, sigma=3') 

>>> plt.plot(y6, ':', label='filtered, sigma=6') 

>>> plt.legend() 

>>> plt.grid() 

>>> plt.show() 

""" 

sd = float(sigma) 

# make the radius of the filter equal to truncate standard deviations 

lw = int(truncate * sd + 0.5) 

# Since we are calling correlate, not convolve, revert the kernel 

weights = _gaussian_kernel1d(sigma, order, lw)[::-1] 

return correlate1d(input, weights, axis, output, mode, cval, 0) 

 

 

@_ni_docstrings.docfiller 

def gaussian_filter(input, sigma, order=0, output=None, 

mode="reflect", cval=0.0, truncate=4.0): 

"""Multidimensional Gaussian filter. 

 

Parameters 

---------- 

%(input)s 

sigma : scalar or sequence of scalars 

Standard deviation for Gaussian kernel. The standard 

deviations of the Gaussian filter are given for each axis as a 

sequence, or as a single number, in which case it is equal for 

all axes. 

order : int or sequence of ints, optional 

The order of the filter along each axis is given as a sequence 

of integers, or as a single number. An order of 0 corresponds 

to convolution with a Gaussian kernel. A positive order 

corresponds to convolution with that derivative of a Gaussian. 

%(output)s 

%(mode_multiple)s 

%(cval)s 

truncate : float 

Truncate the filter at this many standard deviations. 

Default is 4.0. 

 

Returns 

------- 

gaussian_filter : ndarray 

Returned array of same shape as `input`. 

 

Notes 

----- 

The multidimensional filter is implemented as a sequence of 

one-dimensional convolution filters. The intermediate arrays are 

stored in the same data type as the output. Therefore, for output 

types with a limited precision, the results may be imprecise 

because intermediate results may be stored with insufficient 

precision. 

 

Examples 

-------- 

>>> from scipy.ndimage import gaussian_filter 

>>> a = np.arange(50, step=2).reshape((5,5)) 

>>> a 

array([[ 0, 2, 4, 6, 8], 

[10, 12, 14, 16, 18], 

[20, 22, 24, 26, 28], 

[30, 32, 34, 36, 38], 

[40, 42, 44, 46, 48]]) 

>>> gaussian_filter(a, sigma=1) 

array([[ 4, 6, 8, 9, 11], 

[10, 12, 14, 15, 17], 

[20, 22, 24, 25, 27], 

[29, 31, 33, 34, 36], 

[35, 37, 39, 40, 42]]) 

 

>>> from scipy import misc 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.gray() # show the filtered result in grayscale 

>>> ax1 = fig.add_subplot(121) # left side 

>>> ax2 = fig.add_subplot(122) # right side 

>>> ascent = misc.ascent() 

>>> result = gaussian_filter(ascent, sigma=5) 

>>> ax1.imshow(ascent) 

>>> ax2.imshow(result) 

>>> plt.show() 

""" 

input = numpy.asarray(input) 

output = _ni_support._get_output(output, input) 

orders = _ni_support._normalize_sequence(order, input.ndim) 

sigmas = _ni_support._normalize_sequence(sigma, input.ndim) 

modes = _ni_support._normalize_sequence(mode, input.ndim) 

axes = list(range(input.ndim)) 

axes = [(axes[ii], sigmas[ii], orders[ii], modes[ii]) 

for ii in range(len(axes)) if sigmas[ii] > 1e-15] 

if len(axes) > 0: 

for axis, sigma, order, mode in axes: 

gaussian_filter1d(input, sigma, axis, order, output, 

mode, cval, truncate) 

input = output 

else: 

output[...] = input[...] 

return output 

 

 

@_ni_docstrings.docfiller 

def prewitt(input, axis=-1, output=None, mode="reflect", cval=0.0): 

"""Calculate a Prewitt filter. 

 

Parameters 

---------- 

%(input)s 

%(axis)s 

%(output)s 

%(mode_multiple)s 

%(cval)s 

 

Examples 

-------- 

>>> from scipy import ndimage, misc 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.gray() # show the filtered result in grayscale 

>>> ax1 = fig.add_subplot(121) # left side 

>>> ax2 = fig.add_subplot(122) # right side 

>>> ascent = misc.ascent() 

>>> result = ndimage.prewitt(ascent) 

>>> ax1.imshow(ascent) 

>>> ax2.imshow(result) 

>>> plt.show() 

""" 

input = numpy.asarray(input) 

axis = _ni_support._check_axis(axis, input.ndim) 

output = _ni_support._get_output(output, input) 

modes = _ni_support._normalize_sequence(mode, input.ndim) 

correlate1d(input, [-1, 0, 1], axis, output, modes[axis], cval, 0) 

axes = [ii for ii in range(input.ndim) if ii != axis] 

for ii in axes: 

correlate1d(output, [1, 1, 1], ii, output, modes[ii], cval, 0,) 

return output 

 

 

@_ni_docstrings.docfiller 

def sobel(input, axis=-1, output=None, mode="reflect", cval=0.0): 

"""Calculate a Sobel filter. 

 

Parameters 

---------- 

%(input)s 

%(axis)s 

%(output)s 

%(mode_multiple)s 

%(cval)s 

 

Examples 

-------- 

>>> from scipy import ndimage, misc 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.gray() # show the filtered result in grayscale 

>>> ax1 = fig.add_subplot(121) # left side 

>>> ax2 = fig.add_subplot(122) # right side 

>>> ascent = misc.ascent() 

>>> result = ndimage.sobel(ascent) 

>>> ax1.imshow(ascent) 

>>> ax2.imshow(result) 

>>> plt.show() 

""" 

input = numpy.asarray(input) 

axis = _ni_support._check_axis(axis, input.ndim) 

output = _ni_support._get_output(output, input) 

modes = _ni_support._normalize_sequence(mode, input.ndim) 

correlate1d(input, [-1, 0, 1], axis, output, modes[axis], cval, 0) 

axes = [ii for ii in range(input.ndim) if ii != axis] 

for ii in axes: 

correlate1d(output, [1, 2, 1], ii, output, modes[ii], cval, 0) 

return output 

 

 

@_ni_docstrings.docfiller 

def generic_laplace(input, derivative2, output=None, mode="reflect", 

cval=0.0, 

extra_arguments=(), 

extra_keywords=None): 

""" 

N-dimensional Laplace filter using a provided second derivative function. 

 

Parameters 

---------- 

%(input)s 

derivative2 : callable 

Callable with the following signature:: 

 

derivative2(input, axis, output, mode, cval, 

*extra_arguments, **extra_keywords) 

 

See `extra_arguments`, `extra_keywords` below. 

%(output)s 

%(mode_multiple)s 

%(cval)s 

%(extra_keywords)s 

%(extra_arguments)s 

""" 

if extra_keywords is None: 

extra_keywords = {} 

input = numpy.asarray(input) 

output = _ni_support._get_output(output, input) 

axes = list(range(input.ndim)) 

if len(axes) > 0: 

modes = _ni_support._normalize_sequence(mode, len(axes)) 

derivative2(input, axes[0], output, modes[0], cval, 

*extra_arguments, **extra_keywords) 

for ii in range(1, len(axes)): 

tmp = derivative2(input, axes[ii], output.dtype, modes[ii], cval, 

*extra_arguments, **extra_keywords) 

output += tmp 

else: 

output[...] = input[...] 

return output 

 

 

@_ni_docstrings.docfiller 

def laplace(input, output=None, mode="reflect", cval=0.0): 

"""N-dimensional Laplace filter based on approximate second derivatives. 

 

Parameters 

---------- 

%(input)s 

%(output)s 

%(mode_multiple)s 

%(cval)s 

 

Examples 

-------- 

>>> from scipy import ndimage, misc 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.gray() # show the filtered result in grayscale 

>>> ax1 = fig.add_subplot(121) # left side 

>>> ax2 = fig.add_subplot(122) # right side 

>>> ascent = misc.ascent() 

>>> result = ndimage.laplace(ascent) 

>>> ax1.imshow(ascent) 

>>> ax2.imshow(result) 

>>> plt.show() 

""" 

def derivative2(input, axis, output, mode, cval): 

return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0) 

return generic_laplace(input, derivative2, output, mode, cval) 

 

 

@_ni_docstrings.docfiller 

def gaussian_laplace(input, sigma, output=None, mode="reflect", 

cval=0.0, **kwargs): 

"""Multidimensional Laplace filter using gaussian second derivatives. 

 

Parameters 

---------- 

%(input)s 

sigma : scalar or sequence of scalars 

The standard deviations of the Gaussian filter are given for 

each axis as a sequence, or as a single number, in which case 

it is equal for all axes. 

%(output)s 

%(mode_multiple)s 

%(cval)s 

Extra keyword arguments will be passed to gaussian_filter(). 

 

Examples 

-------- 

>>> from scipy import ndimage, misc 

>>> import matplotlib.pyplot as plt 

>>> ascent = misc.ascent() 

 

>>> fig = plt.figure() 

>>> plt.gray() # show the filtered result in grayscale 

>>> ax1 = fig.add_subplot(121) # left side 

>>> ax2 = fig.add_subplot(122) # right side 

 

>>> result = ndimage.gaussian_laplace(ascent, sigma=1) 

>>> ax1.imshow(result) 

 

>>> result = ndimage.gaussian_laplace(ascent, sigma=3) 

>>> ax2.imshow(result) 

>>> plt.show() 

""" 

input = numpy.asarray(input) 

 

def derivative2(input, axis, output, mode, cval, sigma, **kwargs): 

order = [0] * input.ndim 

order[axis] = 2 

return gaussian_filter(input, sigma, order, output, mode, cval, 

**kwargs) 

 

return generic_laplace(input, derivative2, output, mode, cval, 

extra_arguments=(sigma,), 

extra_keywords=kwargs) 

 

 

@_ni_docstrings.docfiller 

def generic_gradient_magnitude(input, derivative, output=None, 

mode="reflect", cval=0.0, 

extra_arguments=(), extra_keywords=None): 

"""Gradient magnitude using a provided gradient function. 

 

Parameters 

---------- 

%(input)s 

derivative : callable 

Callable with the following signature:: 

 

derivative(input, axis, output, mode, cval, 

*extra_arguments, **extra_keywords) 

 

See `extra_arguments`, `extra_keywords` below. 

`derivative` can assume that `input` and `output` are ndarrays. 

Note that the output from `derivative` is modified inplace; 

be careful to copy important inputs before returning them. 

%(output)s 

%(mode_multiple)s 

%(cval)s 

%(extra_keywords)s 

%(extra_arguments)s 

""" 

if extra_keywords is None: 

extra_keywords = {} 

input = numpy.asarray(input) 

output = _ni_support._get_output(output, input) 

axes = list(range(input.ndim)) 

if len(axes) > 0: 

modes = _ni_support._normalize_sequence(mode, len(axes)) 

derivative(input, axes[0], output, modes[0], cval, 

*extra_arguments, **extra_keywords) 

numpy.multiply(output, output, output) 

for ii in range(1, len(axes)): 

tmp = derivative(input, axes[ii], output.dtype, modes[ii], cval, 

*extra_arguments, **extra_keywords) 

numpy.multiply(tmp, tmp, tmp) 

output += tmp 

# This allows the sqrt to work with a different default casting 

numpy.sqrt(output, output, casting='unsafe') 

else: 

output[...] = input[...] 

return output 

 

 

@_ni_docstrings.docfiller 

def gaussian_gradient_magnitude(input, sigma, output=None, 

mode="reflect", cval=0.0, **kwargs): 

"""Multidimensional gradient magnitude using Gaussian derivatives. 

 

Parameters 

---------- 

%(input)s 

sigma : scalar or sequence of scalars 

The standard deviations of the Gaussian filter are given for 

each axis as a sequence, or as a single number, in which case 

it is equal for all axes.. 

%(output)s 

%(mode_multiple)s 

%(cval)s 

Extra keyword arguments will be passed to gaussian_filter(). 

 

Returns 

------- 

gaussian_gradient_magnitude : ndarray 

Filtered array. Has the same shape as `input`. 

 

Examples 

-------- 

>>> from scipy import ndimage, misc 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.gray() # show the filtered result in grayscale 

>>> ax1 = fig.add_subplot(121) # left side 

>>> ax2 = fig.add_subplot(122) # right side 

>>> ascent = misc.ascent() 

>>> result = ndimage.gaussian_gradient_magnitude(ascent, sigma=5) 

>>> ax1.imshow(ascent) 

>>> ax2.imshow(result) 

>>> plt.show() 

""" 

input = numpy.asarray(input) 

 

def derivative(input, axis, output, mode, cval, sigma, **kwargs): 

order = [0] * input.ndim 

order[axis] = 1 

return gaussian_filter(input, sigma, order, output, mode, 

cval, **kwargs) 

 

return generic_gradient_magnitude(input, derivative, output, mode, 

cval, extra_arguments=(sigma,), 

extra_keywords=kwargs) 

 

 

def _correlate_or_convolve(input, weights, output, mode, cval, origin, 

convolution): 

input = numpy.asarray(input) 

if numpy.iscomplexobj(input): 

raise TypeError('Complex type not supported') 

origins = _ni_support._normalize_sequence(origin, input.ndim) 

weights = numpy.asarray(weights, dtype=numpy.float64) 

wshape = [ii for ii in weights.shape if ii > 0] 

if len(wshape) != input.ndim: 

raise RuntimeError('filter weights array has incorrect shape.') 

if convolution: 

weights = weights[tuple([slice(None, None, -1)] * weights.ndim)] 

for ii in range(len(origins)): 

origins[ii] = -origins[ii] 

if not weights.shape[ii] & 1: 

origins[ii] -= 1 

for origin, lenw in zip(origins, wshape): 

if (lenw // 2 + origin < 0) or (lenw // 2 + origin > lenw): 

raise ValueError('invalid origin') 

if not weights.flags.contiguous: 

weights = weights.copy() 

output = _ni_support._get_output(output, input) 

mode = _ni_support._extend_mode_to_code(mode) 

_nd_image.correlate(input, weights, output, mode, cval, origins) 

return output 

 

 

@_ni_docstrings.docfiller 

def correlate(input, weights, output=None, mode='reflect', cval=0.0, 

origin=0): 

""" 

Multi-dimensional correlation. 

 

The array is correlated with the given kernel. 

 

Parameters 

---------- 

%(input)s 

weights : ndarray 

array of weights, same number of dimensions as input 

%(output)s 

%(mode_multiple)s 

%(cval)s 

%(origin_multiple)s 

 

See Also 

-------- 

convolve : Convolve an image with a kernel. 

""" 

return _correlate_or_convolve(input, weights, output, mode, cval, 

origin, False) 

 

 

@_ni_docstrings.docfiller 

def convolve(input, weights, output=None, mode='reflect', cval=0.0, 

origin=0): 

""" 

Multidimensional convolution. 

 

The array is convolved with the given kernel. 

 

Parameters 

---------- 

%(input)s 

weights : array_like 

Array of weights, same number of dimensions as input 

%(output)s 

%(mode_multiple)s 

cval : scalar, optional 

Value to fill past edges of input if `mode` is 'constant'. Default 

is 0.0 

%(origin_multiple)s 

 

Returns 

------- 

result : ndarray 

The result of convolution of `input` with `weights`. 

 

See Also 

-------- 

correlate : Correlate an image with a kernel. 

 

Notes 

----- 

Each value in result is :math:`C_i = \\sum_j{I_{i+k-j} W_j}`, where 

W is the `weights` kernel, 

j is the n-D spatial index over :math:`W`, 

I is the `input` and k is the coordinate of the center of 

W, specified by `origin` in the input parameters. 

 

Examples 

-------- 

Perhaps the simplest case to understand is ``mode='constant', cval=0.0``, 

because in this case borders (i.e. where the `weights` kernel, centered 

on any one value, extends beyond an edge of `input`. 

 

>>> a = np.array([[1, 2, 0, 0], 

... [5, 3, 0, 4], 

... [0, 0, 0, 7], 

... [9, 3, 0, 0]]) 

>>> k = np.array([[1,1,1],[1,1,0],[1,0,0]]) 

>>> from scipy import ndimage 

>>> ndimage.convolve(a, k, mode='constant', cval=0.0) 

array([[11, 10, 7, 4], 

[10, 3, 11, 11], 

[15, 12, 14, 7], 

[12, 3, 7, 0]]) 

 

Setting ``cval=1.0`` is equivalent to padding the outer edge of `input` 

with 1.0's (and then extracting only the original region of the result). 

 

>>> ndimage.convolve(a, k, mode='constant', cval=1.0) 

array([[13, 11, 8, 7], 

[11, 3, 11, 14], 

[16, 12, 14, 10], 

[15, 6, 10, 5]]) 

 

With ``mode='reflect'`` (the default), outer values are reflected at the 

edge of `input` to fill in missing values. 

 

>>> b = np.array([[2, 0, 0], 

... [1, 0, 0], 

... [0, 0, 0]]) 

>>> k = np.array([[0,1,0], [0,1,0], [0,1,0]]) 

>>> ndimage.convolve(b, k, mode='reflect') 

array([[5, 0, 0], 

[3, 0, 0], 

[1, 0, 0]]) 

 

This includes diagonally at the corners. 

 

>>> k = np.array([[1,0,0],[0,1,0],[0,0,1]]) 

>>> ndimage.convolve(b, k) 

array([[4, 2, 0], 

[3, 2, 0], 

[1, 1, 0]]) 

 

With ``mode='nearest'``, the single nearest value in to an edge in 

`input` is repeated as many times as needed to match the overlapping 

`weights`. 

 

>>> c = np.array([[2, 0, 1], 

... [1, 0, 0], 

... [0, 0, 0]]) 

>>> k = np.array([[0, 1, 0], 

... [0, 1, 0], 

... [0, 1, 0], 

... [0, 1, 0], 

... [0, 1, 0]]) 

>>> ndimage.convolve(c, k, mode='nearest') 

array([[7, 0, 3], 

[5, 0, 2], 

[3, 0, 1]]) 

 

""" 

return _correlate_or_convolve(input, weights, output, mode, cval, 

origin, True) 

 

 

@_ni_docstrings.docfiller 

def uniform_filter1d(input, size, axis=-1, output=None, 

mode="reflect", cval=0.0, origin=0): 

"""Calculate a one-dimensional uniform filter along the given axis. 

 

The lines of the array along the given axis are filtered with a 

uniform filter of given size. 

 

Parameters 

---------- 

%(input)s 

size : int 

length of uniform filter 

%(axis)s 

%(output)s 

%(mode)s 

%(cval)s 

%(origin)s 

 

Examples 

-------- 

>>> from scipy.ndimage import uniform_filter1d 

>>> uniform_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3) 

array([4, 3, 4, 1, 4, 6, 6, 3]) 

""" 

input = numpy.asarray(input) 

if numpy.iscomplexobj(input): 

raise TypeError('Complex type not supported') 

axis = _ni_support._check_axis(axis, input.ndim) 

if size < 1: 

raise RuntimeError('incorrect filter size') 

output = _ni_support._get_output(output, input) 

if (size // 2 + origin < 0) or (size // 2 + origin >= size): 

raise ValueError('invalid origin') 

mode = _ni_support._extend_mode_to_code(mode) 

_nd_image.uniform_filter1d(input, size, axis, output, mode, cval, 

origin) 

return output 

 

 

@_ni_docstrings.docfiller 

def uniform_filter(input, size=3, output=None, mode="reflect", 

cval=0.0, origin=0): 

"""Multi-dimensional uniform filter. 

 

Parameters 

---------- 

%(input)s 

size : int or sequence of ints, optional 

The sizes of the uniform filter are given for each axis as a 

sequence, or as a single number, in which case the size is 

equal for all axes. 

%(output)s 

%(mode_multiple)s 

%(cval)s 

%(origin_multiple)s 

 

Returns 

------- 

uniform_filter : ndarray 

Filtered array. Has the same shape as `input`. 

 

Notes 

----- 

The multi-dimensional filter is implemented as a sequence of 

one-dimensional uniform filters. The intermediate arrays are stored 

in the same data type as the output. Therefore, for output types 

with a limited precision, the results may be imprecise because 

intermediate results may be stored with insufficient precision. 

 

Examples 

-------- 

>>> from scipy import ndimage, misc 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.gray() # show the filtered result in grayscale 

>>> ax1 = fig.add_subplot(121) # left side 

>>> ax2 = fig.add_subplot(122) # right side 

>>> ascent = misc.ascent() 

>>> result = ndimage.uniform_filter(ascent, size=20) 

>>> ax1.imshow(ascent) 

>>> ax2.imshow(result) 

>>> plt.show() 

""" 

input = numpy.asarray(input) 

output = _ni_support._get_output(output, input) 

sizes = _ni_support._normalize_sequence(size, input.ndim) 

origins = _ni_support._normalize_sequence(origin, input.ndim) 

modes = _ni_support._normalize_sequence(mode, input.ndim) 

axes = list(range(input.ndim)) 

axes = [(axes[ii], sizes[ii], origins[ii], modes[ii]) 

for ii in range(len(axes)) if sizes[ii] > 1] 

if len(axes) > 0: 

for axis, size, origin, mode in axes: 

uniform_filter1d(input, int(size), axis, output, mode, 

cval, origin) 

input = output 

else: 

output[...] = input[...] 

return output 

 

 

@_ni_docstrings.docfiller 

def minimum_filter1d(input, size, axis=-1, output=None, 

mode="reflect", cval=0.0, origin=0): 

"""Calculate a one-dimensional minimum filter along the given axis. 

 

The lines of the array along the given axis are filtered with a 

minimum filter of given size. 

 

Parameters 

---------- 

%(input)s 

size : int 

length along which to calculate 1D minimum 

%(axis)s 

%(output)s 

%(mode)s 

%(cval)s 

%(origin)s 

 

Notes 

----- 

This function implements the MINLIST algorithm [1]_, as described by 

Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being 

the `input` length, regardless of filter size. 

 

References 

---------- 

.. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777 

.. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html 

 

 

Examples 

-------- 

>>> from scipy.ndimage import minimum_filter1d 

>>> minimum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3) 

array([2, 0, 0, 0, 1, 1, 0, 0]) 

""" 

input = numpy.asarray(input) 

if numpy.iscomplexobj(input): 

raise TypeError('Complex type not supported') 

axis = _ni_support._check_axis(axis, input.ndim) 

if size < 1: 

raise RuntimeError('incorrect filter size') 

output = _ni_support._get_output(output, input) 

if (size // 2 + origin < 0) or (size // 2 + origin >= size): 

raise ValueError('invalid origin') 

mode = _ni_support._extend_mode_to_code(mode) 

_nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval, 

origin, 1) 

return output 

 

 

@_ni_docstrings.docfiller 

def maximum_filter1d(input, size, axis=-1, output=None, 

mode="reflect", cval=0.0, origin=0): 

"""Calculate a one-dimensional maximum filter along the given axis. 

 

The lines of the array along the given axis are filtered with a 

maximum filter of given size. 

 

Parameters 

---------- 

%(input)s 

size : int 

Length along which to calculate the 1-D maximum. 

%(axis)s 

%(output)s 

%(mode)s 

%(cval)s 

%(origin)s 

 

Returns 

------- 

maximum1d : ndarray, None 

Maximum-filtered array with same shape as input. 

None if `output` is not None 

 

Notes 

----- 

This function implements the MAXLIST algorithm [1]_, as described by 

Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being 

the `input` length, regardless of filter size. 

 

References 

---------- 

.. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777 

.. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html 

 

Examples 

-------- 

>>> from scipy.ndimage import maximum_filter1d 

>>> maximum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3) 

array([8, 8, 8, 4, 9, 9, 9, 9]) 

""" 

input = numpy.asarray(input) 

if numpy.iscomplexobj(input): 

raise TypeError('Complex type not supported') 

axis = _ni_support._check_axis(axis, input.ndim) 

if size < 1: 

raise RuntimeError('incorrect filter size') 

output = _ni_support._get_output(output, input) 

if (size // 2 + origin < 0) or (size // 2 + origin >= size): 

raise ValueError('invalid origin') 

mode = _ni_support._extend_mode_to_code(mode) 

_nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval, 

origin, 0) 

return output 

 

 

def _min_or_max_filter(input, size, footprint, structure, output, mode, 

cval, origin, minimum): 

if (size is not None) and (footprint is not None): 

warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=3) 

if structure is None: 

if footprint is None: 

if size is None: 

raise RuntimeError("no footprint provided") 

separable = True 

else: 

footprint = numpy.asarray(footprint, dtype=bool) 

if not footprint.any(): 

raise ValueError("All-zero footprint is not supported.") 

if footprint.all(): 

size = footprint.shape 

footprint = None 

separable = True 

else: 

separable = False 

else: 

structure = numpy.asarray(structure, dtype=numpy.float64) 

separable = False 

if footprint is None: 

footprint = numpy.ones(structure.shape, bool) 

else: 

footprint = numpy.asarray(footprint, dtype=bool) 

input = numpy.asarray(input) 

if numpy.iscomplexobj(input): 

raise TypeError('Complex type not supported') 

output = _ni_support._get_output(output, input) 

origins = _ni_support._normalize_sequence(origin, input.ndim) 

if separable: 

sizes = _ni_support._normalize_sequence(size, input.ndim) 

modes = _ni_support._normalize_sequence(mode, input.ndim) 

axes = list(range(input.ndim)) 

axes = [(axes[ii], sizes[ii], origins[ii], modes[ii]) 

for ii in range(len(axes)) if sizes[ii] > 1] 

if minimum: 

filter_ = minimum_filter1d 

else: 

filter_ = maximum_filter1d 

if len(axes) > 0: 

for axis, size, origin, mode in axes: 

filter_(input, int(size), axis, output, mode, cval, origin) 

input = output 

else: 

output[...] = input[...] 

else: 

fshape = [ii for ii in footprint.shape if ii > 0] 

if len(fshape) != input.ndim: 

raise RuntimeError('footprint array has incorrect shape.') 

for origin, lenf in zip(origins, fshape): 

if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): 

raise ValueError('invalid origin') 

if not footprint.flags.contiguous: 

footprint = footprint.copy() 

if structure is not None: 

if len(structure.shape) != input.ndim: 

raise RuntimeError('structure array has incorrect shape') 

if not structure.flags.contiguous: 

structure = structure.copy() 

mode = _ni_support._extend_mode_to_code(mode) 

_nd_image.min_or_max_filter(input, footprint, structure, output, 

mode, cval, origins, minimum) 

return output 

 

 

@_ni_docstrings.docfiller 

def minimum_filter(input, size=None, footprint=None, output=None, 

mode="reflect", cval=0.0, origin=0): 

"""Calculate a multi-dimensional minimum filter. 

 

Parameters 

---------- 

%(input)s 

%(size_foot)s 

%(output)s 

%(mode_multiple)s 

%(cval)s 

%(origin_multiple)s 

 

Returns 

------- 

minimum_filter : ndarray 

Filtered array. Has the same shape as `input`. 

 

Examples 

-------- 

>>> from scipy import ndimage, misc 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.gray() # show the filtered result in grayscale 

>>> ax1 = fig.add_subplot(121) # left side 

>>> ax2 = fig.add_subplot(122) # right side 

>>> ascent = misc.ascent() 

>>> result = ndimage.minimum_filter(ascent, size=20) 

>>> ax1.imshow(ascent) 

>>> ax2.imshow(result) 

>>> plt.show() 

""" 

return _min_or_max_filter(input, size, footprint, None, output, mode, 

cval, origin, 1) 

 

 

@_ni_docstrings.docfiller 

def maximum_filter(input, size=None, footprint=None, output=None, 

mode="reflect", cval=0.0, origin=0): 

"""Calculate a multi-dimensional maximum filter. 

 

Parameters 

---------- 

%(input)s 

%(size_foot)s 

%(output)s 

%(mode_multiple)s 

%(cval)s 

%(origin_multiple)s 

 

Returns 

------- 

maximum_filter : ndarray 

Filtered array. Has the same shape as `input`. 

 

Examples 

-------- 

>>> from scipy import ndimage, misc 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.gray() # show the filtered result in grayscale 

>>> ax1 = fig.add_subplot(121) # left side 

>>> ax2 = fig.add_subplot(122) # right side 

>>> ascent = misc.ascent() 

>>> result = ndimage.maximum_filter(ascent, size=20) 

>>> ax1.imshow(ascent) 

>>> ax2.imshow(result) 

>>> plt.show() 

""" 

return _min_or_max_filter(input, size, footprint, None, output, mode, 

cval, origin, 0) 

 

 

@_ni_docstrings.docfiller 

def _rank_filter(input, rank, size=None, footprint=None, output=None, 

mode="reflect", cval=0.0, origin=0, operation='rank'): 

if (size is not None) and (footprint is not None): 

warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=3) 

input = numpy.asarray(input) 

if numpy.iscomplexobj(input): 

raise TypeError('Complex type not supported') 

origins = _ni_support._normalize_sequence(origin, input.ndim) 

if footprint is None: 

if size is None: 

raise RuntimeError("no footprint or filter size provided") 

sizes = _ni_support._normalize_sequence(size, input.ndim) 

footprint = numpy.ones(sizes, dtype=bool) 

else: 

footprint = numpy.asarray(footprint, dtype=bool) 

fshape = [ii for ii in footprint.shape if ii > 0] 

if len(fshape) != input.ndim: 

raise RuntimeError('filter footprint array has incorrect shape.') 

for origin, lenf in zip(origins, fshape): 

if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): 

raise ValueError('invalid origin') 

if not footprint.flags.contiguous: 

footprint = footprint.copy() 

filter_size = numpy.where(footprint, 1, 0).sum() 

if operation == 'median': 

rank = filter_size // 2 

elif operation == 'percentile': 

percentile = rank 

if percentile < 0.0: 

percentile += 100.0 

if percentile < 0 or percentile > 100: 

raise RuntimeError('invalid percentile') 

if percentile == 100.0: 

rank = filter_size - 1 

else: 

rank = int(float(filter_size) * percentile / 100.0) 

if rank < 0: 

rank += filter_size 

if rank < 0 or rank >= filter_size: 

raise RuntimeError('rank not within filter footprint size') 

if rank == 0: 

return minimum_filter(input, None, footprint, output, mode, cval, 

origins) 

elif rank == filter_size - 1: 

return maximum_filter(input, None, footprint, output, mode, cval, 

origins) 

else: 

output = _ni_support._get_output(output, input) 

mode = _ni_support._extend_mode_to_code(mode) 

_nd_image.rank_filter(input, rank, footprint, output, mode, cval, 

origins) 

return output 

 

 

@_ni_docstrings.docfiller 

def rank_filter(input, rank, size=None, footprint=None, output=None, 

mode="reflect", cval=0.0, origin=0): 

"""Calculate a multi-dimensional rank filter. 

 

Parameters 

---------- 

%(input)s 

rank : int 

The rank parameter may be less then zero, i.e., rank = -1 

indicates the largest element. 

%(size_foot)s 

%(output)s 

%(mode_multiple)s 

%(cval)s 

%(origin_multiple)s 

 

Returns 

------- 

rank_filter : ndarray 

Filtered array. Has the same shape as `input`. 

 

Examples 

-------- 

>>> from scipy import ndimage, misc 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.gray() # show the filtered result in grayscale 

>>> ax1 = fig.add_subplot(121) # left side 

>>> ax2 = fig.add_subplot(122) # right side 

>>> ascent = misc.ascent() 

>>> result = ndimage.rank_filter(ascent, rank=42, size=20) 

>>> ax1.imshow(ascent) 

>>> ax2.imshow(result) 

>>> plt.show() 

""" 

return _rank_filter(input, rank, size, footprint, output, mode, cval, 

origin, 'rank') 

 

 

@_ni_docstrings.docfiller 

def median_filter(input, size=None, footprint=None, output=None, 

mode="reflect", cval=0.0, origin=0): 

""" 

Calculate a multidimensional median filter. 

 

Parameters 

---------- 

%(input)s 

%(size_foot)s 

%(output)s 

%(mode_multiple)s 

%(cval)s 

%(origin_multiple)s 

 

Returns 

------- 

median_filter : ndarray 

Filtered array. Has the same shape as `input`. 

 

Examples 

-------- 

>>> from scipy import ndimage, misc 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.gray() # show the filtered result in grayscale 

>>> ax1 = fig.add_subplot(121) # left side 

>>> ax2 = fig.add_subplot(122) # right side 

>>> ascent = misc.ascent() 

>>> result = ndimage.median_filter(ascent, size=20) 

>>> ax1.imshow(ascent) 

>>> ax2.imshow(result) 

>>> plt.show() 

""" 

return _rank_filter(input, 0, size, footprint, output, mode, cval, 

origin, 'median') 

 

 

@_ni_docstrings.docfiller 

def percentile_filter(input, percentile, size=None, footprint=None, 

output=None, mode="reflect", cval=0.0, origin=0): 

"""Calculate a multi-dimensional percentile filter. 

 

Parameters 

---------- 

%(input)s 

percentile : scalar 

The percentile parameter may be less then zero, i.e., 

percentile = -20 equals percentile = 80 

%(size_foot)s 

%(output)s 

%(mode_multiple)s 

%(cval)s 

%(origin_multiple)s 

 

Returns 

------- 

percentile_filter : ndarray 

Filtered array. Has the same shape as `input`. 

 

Examples 

-------- 

>>> from scipy import ndimage, misc 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.gray() # show the filtered result in grayscale 

>>> ax1 = fig.add_subplot(121) # left side 

>>> ax2 = fig.add_subplot(122) # right side 

>>> ascent = misc.ascent() 

>>> result = ndimage.percentile_filter(ascent, percentile=20, size=20) 

>>> ax1.imshow(ascent) 

>>> ax2.imshow(result) 

>>> plt.show() 

""" 

return _rank_filter(input, percentile, size, footprint, output, mode, 

cval, origin, 'percentile') 

 

 

@_ni_docstrings.docfiller 

def generic_filter1d(input, function, filter_size, axis=-1, 

output=None, mode="reflect", cval=0.0, origin=0, 

extra_arguments=(), extra_keywords=None): 

"""Calculate a one-dimensional filter along the given axis. 

 

`generic_filter1d` iterates over the lines of the array, calling the 

given function at each line. The arguments of the line are the 

input line, and the output line. The input and output lines are 1D 

double arrays. The input line is extended appropriately according 

to the filter size and origin. The output line must be modified 

in-place with the result. 

 

Parameters 

---------- 

%(input)s 

function : {callable, scipy.LowLevelCallable} 

Function to apply along given axis. 

filter_size : scalar 

Length of the filter. 

%(axis)s 

%(output)s 

%(mode)s 

%(cval)s 

%(origin)s 

%(extra_arguments)s 

%(extra_keywords)s 

 

Notes 

----- 

This function also accepts low-level callback functions with one of 

the following signatures and wrapped in `scipy.LowLevelCallable`: 

 

.. code:: c 

 

int function(double *input_line, npy_intp input_length, 

double *output_line, npy_intp output_length, 

void *user_data) 

int function(double *input_line, intptr_t input_length, 

double *output_line, intptr_t output_length, 

void *user_data) 

 

The calling function iterates over the lines of the input and output 

arrays, calling the callback function at each line. The current line 

is extended according to the border conditions set by the calling 

function, and the result is copied into the array that is passed 

through ``input_line``. The length of the input line (after extension) 

is passed through ``input_length``. The callback function should apply 

the filter and store the result in the array passed through 

``output_line``. The length of the output line is passed through 

``output_length``. ``user_data`` is the data pointer provided 

to `scipy.LowLevelCallable` as-is. 

 

The callback function must return an integer error status that is zero 

if something went wrong and one otherwise. If an error occurs, you should 

normally set the python error status with an informative message 

before returning, otherwise a default error message is set by the 

calling function. 

 

In addition, some other low-level function pointer specifications 

are accepted, but these are for backward compatibility only and should 

not be used in new code. 

 

""" 

if extra_keywords is None: 

extra_keywords = {} 

input = numpy.asarray(input) 

if numpy.iscomplexobj(input): 

raise TypeError('Complex type not supported') 

output = _ni_support._get_output(output, input) 

if filter_size < 1: 

raise RuntimeError('invalid filter size') 

axis = _ni_support._check_axis(axis, input.ndim) 

if (filter_size // 2 + origin < 0) or (filter_size // 2 + origin >= 

filter_size): 

raise ValueError('invalid origin') 

mode = _ni_support._extend_mode_to_code(mode) 

_nd_image.generic_filter1d(input, function, filter_size, axis, output, 

mode, cval, origin, extra_arguments, 

extra_keywords) 

return output 

 

 

@_ni_docstrings.docfiller 

def generic_filter(input, function, size=None, footprint=None, 

output=None, mode="reflect", cval=0.0, origin=0, 

extra_arguments=(), extra_keywords=None): 

"""Calculate a multi-dimensional filter using the given function. 

 

At each element the provided function is called. The input values 

within the filter footprint at that element are passed to the function 

as a 1D array of double values. 

 

Parameters 

---------- 

%(input)s 

function : {callable, scipy.LowLevelCallable} 

Function to apply at each element. 

%(size_foot)s 

%(output)s 

%(mode_multiple)s 

%(cval)s 

%(origin_multiple)s 

%(extra_arguments)s 

%(extra_keywords)s 

 

Notes 

----- 

This function also accepts low-level callback functions with one of 

the following signatures and wrapped in `scipy.LowLevelCallable`: 

 

.. code:: c 

 

int callback(double *buffer, npy_intp filter_size, 

double *return_value, void *user_data) 

int callback(double *buffer, intptr_t filter_size, 

double *return_value, void *user_data) 

 

The calling function iterates over the elements of the input and 

output arrays, calling the callback function at each element. The 

elements within the footprint of the filter at the current element are 

passed through the ``buffer`` parameter, and the number of elements 

within the footprint through ``filter_size``. The calculated value is 

returned in ``return_value``. ``user_data`` is the data pointer provided 

to `scipy.LowLevelCallable` as-is. 

 

The callback function must return an integer error status that is zero 

if something went wrong and one otherwise. If an error occurs, you should 

normally set the python error status with an informative message 

before returning, otherwise a default error message is set by the 

calling function. 

 

In addition, some other low-level function pointer specifications 

are accepted, but these are for backward compatibility only and should 

not be used in new code. 

 

""" 

if (size is not None) and (footprint is not None): 

warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2) 

if extra_keywords is None: 

extra_keywords = {} 

input = numpy.asarray(input) 

if numpy.iscomplexobj(input): 

raise TypeError('Complex type not supported') 

origins = _ni_support._normalize_sequence(origin, input.ndim) 

if footprint is None: 

if size is None: 

raise RuntimeError("no footprint or filter size provided") 

sizes = _ni_support._normalize_sequence(size, input.ndim) 

footprint = numpy.ones(sizes, dtype=bool) 

else: 

footprint = numpy.asarray(footprint, dtype=bool) 

fshape = [ii for ii in footprint.shape if ii > 0] 

if len(fshape) != input.ndim: 

raise RuntimeError('filter footprint array has incorrect shape.') 

for origin, lenf in zip(origins, fshape): 

if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): 

raise ValueError('invalid origin') 

if not footprint.flags.contiguous: 

footprint = footprint.copy() 

output = _ni_support._get_output(output, input) 

mode = _ni_support._extend_mode_to_code(mode) 

_nd_image.generic_filter(input, function, footprint, output, mode, 

cval, origins, extra_arguments, extra_keywords) 

return output