1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

"""Equality-constrained quadratic programming solvers.""" 

 

from __future__ import division, print_function, absolute_import 

from scipy.sparse import (linalg, bmat, csc_matrix) 

from math import copysign 

import numpy as np 

from numpy.linalg import norm 

 

__all__ = [ 

'eqp_kktfact', 

'sphere_intersections', 

'box_intersections', 

'box_sphere_intersections', 

'inside_box_boundaries', 

'modified_dogleg', 

'projected_cg' 

] 

 

 

# For comparison with the projected CG 

def eqp_kktfact(H, c, A, b): 

"""Solve equality-constrained quadratic programming (EQP) problem. 

 

Solve ``min 1/2 x.T H x + x.t c`` subject to ``A x + b = 0`` 

using direct factorization of the KKT system. 

 

Parameters 

---------- 

H : sparse matrix, shape (n, n) 

Hessian matrix of the EQP problem. 

c : array_like, shape (n,) 

Gradient of the quadratic objective function. 

A : sparse matrix 

Jacobian matrix of the EQP problem. 

b : array_like, shape (m,) 

Right-hand side of the constraint equation. 

 

Returns 

------- 

x : array_like, shape (n,) 

Solution of the KKT problem. 

lagrange_multipliers : ndarray, shape (m,) 

Lagrange multipliers of the KKT problem. 

""" 

n, = np.shape(c) # Number of parameters 

m, = np.shape(b) # Number of constraints 

 

# Karush-Kuhn-Tucker matrix of coefficients. 

# Defined as in Nocedal/Wright "Numerical 

# Optimization" p.452 in Eq. (16.4). 

kkt_matrix = csc_matrix(bmat([[H, A.T], [A, None]])) 

# Vector of coefficients. 

kkt_vec = np.hstack([-c, -b]) 

 

# TODO: Use a symmetric indefinite factorization 

# to solve the system twice as fast (because 

# of the symmetry). 

lu = linalg.splu(kkt_matrix) 

kkt_sol = lu.solve(kkt_vec) 

x = kkt_sol[:n] 

lagrange_multipliers = -kkt_sol[n:n+m] 

 

return x, lagrange_multipliers 

 

 

def sphere_intersections(z, d, trust_radius, 

entire_line=False): 

"""Find the intersection between segment (or line) and spherical constraints. 

 

Find the intersection between the segment (or line) defined by the 

parametric equation ``x(t) = z + t*d`` and the ball 

``||x|| <= trust_radius``. 

 

Parameters 

---------- 

z : array_like, shape (n,) 

Initial point. 

d : array_like, shape (n,) 

Direction. 

trust_radius : float 

Ball radius. 

entire_line : bool, optional 

When ``True`` the function returns the intersection between the line 

``x(t) = z + t*d`` (``t`` can assume any value) and the ball 

``||x|| <= trust_radius``. When ``False`` returns the intersection 

between the segment ``x(t) = z + t*d``, ``0 <= t <= 1``, and the ball. 

 

Returns 

------- 

ta, tb : float 

The line/segment ``x(t) = z + t*d`` is inside the ball for 

for ``ta <= t <= tb``. 

intersect : bool 

When ``True`` there is a intersection between the line/segment 

and the sphere. On the other hand, when ``False``, there is no 

intersection. 

""" 

# Special case when d=0 

if norm(d) == 0: 

return 0, 0, False 

# Check for inf trust_radius 

if np.isinf(trust_radius): 

if entire_line: 

ta = -np.inf 

tb = np.inf 

else: 

ta = 0 

tb = 1 

intersect = True 

return ta, tb, intersect 

 

a = np.dot(d, d) 

b = 2 * np.dot(z, d) 

c = np.dot(z, z) - trust_radius**2 

discriminant = b*b - 4*a*c 

if discriminant < 0: 

intersect = False 

return 0, 0, intersect 

sqrt_discriminant = np.sqrt(discriminant) 

 

# The following calculation is mathematically 

# equivalent to: 

# ta = (-b - sqrt_discriminant) / (2*a) 

# tb = (-b + sqrt_discriminant) / (2*a) 

# but produce smaller round off errors. 

# Look at Matrix Computation p.97 

# for a better justification. 

aux = b + copysign(sqrt_discriminant, b) 

ta = -aux / (2*a) 

tb = -2*c / aux 

ta, tb = sorted([ta, tb]) 

 

if entire_line: 

intersect = True 

else: 

# Checks to see if intersection happens 

# within vectors length. 

if tb < 0 or ta > 1: 

intersect = False 

ta = 0 

tb = 0 

else: 

intersect = True 

# Restrict intersection interval 

# between 0 and 1. 

ta = max(0, ta) 

tb = min(1, tb) 

 

return ta, tb, intersect 

 

 

def box_intersections(z, d, lb, ub, 

entire_line=False): 

"""Find the intersection between segment (or line) and box constraints. 

 

Find the intersection between the segment (or line) defined by the 

parametric equation ``x(t) = z + t*d`` and the rectangular box 

``lb <= x <= ub``. 

 

Parameters 

---------- 

z : array_like, shape (n,) 

Initial point. 

d : array_like, shape (n,) 

Direction. 

lb : array_like, shape (n,) 

Lower bounds to each one of the components of ``x``. Used 

to delimit the rectangular box. 

ub : array_like, shape (n, ) 

Upper bounds to each one of the components of ``x``. Used 

to delimit the rectangular box. 

entire_line : bool, optional 

When ``True`` the function returns the intersection between the line 

``x(t) = z + t*d`` (``t`` can assume any value) and the rectangular 

box. When ``False`` returns the intersection between the segment 

``x(t) = z + t*d``, ``0 <= t <= 1``, and the rectangular box. 

 

Returns 

------- 

ta, tb : float 

The line/segment ``x(t) = z + t*d`` is inside the box for 

for ``ta <= t <= tb``. 

intersect : bool 

When ``True`` there is a intersection between the line (or segment) 

and the rectangular box. On the other hand, when ``False``, there is no 

intersection. 

""" 

# Make sure it is a numpy array 

z = np.asarray(z) 

d = np.asarray(d) 

lb = np.asarray(lb) 

ub = np.asarray(ub) 

# Special case when d=0 

if norm(d) == 0: 

return 0, 0, False 

 

# Get values for which d==0 

zero_d = (d == 0) 

# If the boundaries are not satisfied for some coordinate 

# for which "d" is zero, there is no box-line intersection. 

if (z[zero_d] < lb[zero_d]).any() or (z[zero_d] > ub[zero_d]).any(): 

intersect = False 

return 0, 0, intersect 

# Remove values for which d is zero 

not_zero_d = np.logical_not(zero_d) 

z = z[not_zero_d] 

d = d[not_zero_d] 

lb = lb[not_zero_d] 

ub = ub[not_zero_d] 

 

# Find a series of intervals (t_lb[i], t_ub[i]). 

t_lb = (lb-z) / d 

t_ub = (ub-z) / d 

# Get the intersection of all those intervals. 

ta = max(np.minimum(t_lb, t_ub)) 

tb = min(np.maximum(t_lb, t_ub)) 

 

# Check if intersection is feasible 

if ta <= tb: 

intersect = True 

else: 

intersect = False 

# Checks to see if intersection happens within vectors length. 

if not entire_line: 

if tb < 0 or ta > 1: 

intersect = False 

ta = 0 

tb = 0 

else: 

# Restrict intersection interval between 0 and 1. 

ta = max(0, ta) 

tb = min(1, tb) 

 

return ta, tb, intersect 

 

 

def box_sphere_intersections(z, d, lb, ub, trust_radius, 

entire_line=False, 

extra_info=False): 

"""Find the intersection between segment (or line) and box/sphere constraints. 

 

Find the intersection between the segment (or line) defined by the 

parametric equation ``x(t) = z + t*d``, the rectangular box 

``lb <= x <= ub`` and the ball ``||x|| <= trust_radius``. 

 

Parameters 

---------- 

z : array_like, shape (n,) 

Initial point. 

d : array_like, shape (n,) 

Direction. 

lb : array_like, shape (n,) 

Lower bounds to each one of the components of ``x``. Used 

to delimit the rectangular box. 

ub : array_like, shape (n, ) 

Upper bounds to each one of the components of ``x``. Used 

to delimit the rectangular box. 

trust_radius : float 

Ball radius. 

entire_line : bool, optional 

When ``True`` the function returns the intersection between the line 

``x(t) = z + t*d`` (``t`` can assume any value) and the constraints. 

When ``False`` returns the intersection between the segment 

``x(t) = z + t*d``, ``0 <= t <= 1`` and the constraints. 

extra_info : bool, optional 

When ``True`` returns ``intersect_sphere`` and ``intersect_box``. 

 

Returns 

------- 

ta, tb : float 

The line/segment ``x(t) = z + t*d`` is inside the rectangular box and 

inside the ball for for ``ta <= t <= tb``. 

intersect : bool 

When ``True`` there is a intersection between the line (or segment) 

and both constraints. On the other hand, when ``False``, there is no 

intersection. 

sphere_info : dict, optional 

Dictionary ``{ta, tb, intersect}`` containing the interval ``[ta, tb]`` 

for which the line intercept the ball. And a boolean value indicating 

whether the sphere is intersected by the line. 

box_info : dict, optional 

Dictionary ``{ta, tb, intersect}`` containing the interval ``[ta, tb]`` 

for which the line intercept the box. And a boolean value indicating 

whether the box is intersected by the line. 

""" 

ta_b, tb_b, intersect_b = box_intersections(z, d, lb, ub, 

entire_line) 

ta_s, tb_s, intersect_s = sphere_intersections(z, d, 

trust_radius, 

entire_line) 

ta = np.maximum(ta_b, ta_s) 

tb = np.minimum(tb_b, tb_s) 

if intersect_b and intersect_s and ta <= tb: 

intersect = True 

else: 

intersect = False 

 

if extra_info: 

sphere_info = {'ta': ta_s, 'tb': tb_s, 'intersect': intersect_s} 

box_info = {'ta': ta_b, 'tb': tb_b, 'intersect': intersect_b} 

return ta, tb, intersect, sphere_info, box_info 

else: 

return ta, tb, intersect 

 

 

def inside_box_boundaries(x, lb, ub): 

"""Check if lb <= x <= ub.""" 

return (lb <= x).all() and (x <= ub).all() 

 

 

def reinforce_box_boundaries(x, lb, ub): 

"""Return clipped value of x""" 

return np.minimum(np.maximum(x, lb), ub) 

 

 

def modified_dogleg(A, Y, b, trust_radius, lb, ub): 

"""Approximately minimize ``1/2*|| A x + b ||^2`` inside trust-region. 

 

Approximately solve the problem of minimizing ``1/2*|| A x + b ||^2`` 

subject to ``||x|| < Delta`` and ``lb <= x <= ub`` using a modification 

of the classical dogleg approach. 

 

Parameters 

---------- 

A : LinearOperator (or sparse matrix or ndarray), shape (m, n) 

Matrix ``A`` in the minimization problem. It should have 

dimension ``(m, n)`` such that ``m < n``. 

Y : LinearOperator (or sparse matrix or ndarray), shape (n, m) 

LinearOperator that apply the projection matrix 

``Q = A.T inv(A A.T)`` to the vector. The obtained vector 

``y = Q x`` being the minimum norm solution of ``A y = x``. 

b : array_like, shape (m,) 

Vector ``b``in the minimization problem. 

trust_radius: float 

Trust radius to be considered. Delimits a sphere boundary 

to the problem. 

lb : array_like, shape (n,) 

Lower bounds to each one of the components of ``x``. 

It is expected that ``lb <= 0``, otherwise the algorithm 

may fail. If ``lb[i] = -Inf`` the lower 

bound for the i-th component is just ignored. 

ub : array_like, shape (n, ) 

Upper bounds to each one of the components of ``x``. 

It is expected that ``ub >= 0``, otherwise the algorithm 

may fail. If ``ub[i] = Inf`` the upper bound for the i-th 

component is just ignored. 

 

Returns 

------- 

x : array_like, shape (n,) 

Solution to the problem. 

 

Notes 

----- 

Based on implementations described in p.p. 885-886 from [1]_. 

 

References 

---------- 

.. [1] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal. 

"An interior point algorithm for large-scale nonlinear 

programming." SIAM Journal on Optimization 9.4 (1999): 877-900. 

""" 

# Compute minimum norm minimizer of 1/2*|| A x + b ||^2. 

newton_point = -Y.dot(b) 

# Check for interior point 

if inside_box_boundaries(newton_point, lb, ub) \ 

and norm(newton_point) <= trust_radius: 

x = newton_point 

return x 

 

# Compute gradient vector ``g = A.T b`` 

g = A.T.dot(b) 

# Compute cauchy point 

# `cauchy_point = g.T g / (g.T A.T A g)``. 

A_g = A.dot(g) 

cauchy_point = -np.dot(g, g) / np.dot(A_g, A_g) * g 

# Origin 

origin_point = np.zeros_like(cauchy_point) 

 

# Check the segment between cauchy_point and newton_point 

# for a possible solution. 

z = cauchy_point 

p = newton_point - cauchy_point 

_, alpha, intersect = box_sphere_intersections(z, p, lb, ub, 

trust_radius) 

if intersect: 

x1 = z + alpha*p 

else: 

# Check the segment between the origin and cauchy_point 

# for a possible solution. 

z = origin_point 

p = cauchy_point 

_, alpha, _ = box_sphere_intersections(z, p, lb, ub, 

trust_radius) 

x1 = z + alpha*p 

 

# Check the segment between origin and newton_point 

# for a possible solution. 

z = origin_point 

p = newton_point 

_, alpha, _ = box_sphere_intersections(z, p, lb, ub, 

trust_radius) 

x2 = z + alpha*p 

 

# Return the best solution among x1 and x2. 

if norm(A.dot(x1) + b) < norm(A.dot(x2) + b): 

return x1 

else: 

return x2 

 

 

def projected_cg(H, c, Z, Y, b, trust_radius=np.inf, 

lb=None, ub=None, tol=None, 

max_iter=None, max_infeasible_iter=None, 

return_all=False): 

"""Solve EQP problem with projected CG method. 

 

Solve equality-constrained quadratic programming problem 

``min 1/2 x.T H x + x.t c`` subject to ``A x + b = 0`` and, 

possibly, to trust region constraints ``||x|| < trust_radius`` 

and box constraints ``lb <= x <= ub``. 

 

Parameters 

---------- 

H : LinearOperator (or sparse matrix or ndarray), shape (n, n) 

Operator for computing ``H v``. 

c : array_like, shape (n,) 

Gradient of the quadratic objective function. 

Z : LinearOperator (or sparse matrix or ndarray), shape (n, n) 

Operator for projecting ``x`` into the null space of A. 

Y : LinearOperator, sparse matrix, ndarray, shape (n, m) 

Operator that, for a given a vector ``b``, compute smallest 

norm solution of ``A x + b = 0``. 

b : array_like, shape (m,) 

Right-hand side of the constraint equation. 

trust_radius : float, optional 

Trust radius to be considered. By default uses ``trust_radius=inf``, 

which means no trust radius at all. 

lb : array_like, shape (n,), optional 

Lower bounds to each one of the components of ``x``. 

If ``lb[i] = -Inf`` the lower bound for the i-th 

component is just ignored (default). 

ub : array_like, shape (n, ), optional 

Upper bounds to each one of the components of ``x``. 

If ``ub[i] = Inf`` the upper bound for the i-th 

component is just ignored (default). 

tol : float, optional 

Tolerance used to interrupt the algorithm. 

max_iter : int, optional 

Maximum algorithm iterations. Where ``max_inter <= n-m``. 

By default uses ``max_iter = n-m``. 

max_infeasible_iter : int, optional 

Maximum infeasible (regarding box constraints) iterations the 

algorithm is allowed to take. 

By default uses ``max_infeasible_iter = n-m``. 

return_all : bool, optional 

When ``true`` return the list of all vectors through the iterations. 

 

Returns 

------- 

x : array_like, shape (n,) 

Solution of the EQP problem. 

info : Dict 

Dictionary containing the following: 

 

- niter : Number of iterations. 

- stop_cond : Reason for algorithm termination: 

1. Iteration limit was reached; 

2. Reached the trust-region boundary; 

3. Negative curvature detected; 

4. Tolerance was satisfied. 

- allvecs : List containing all intermediary vectors (optional). 

- hits_boundary : True if the proposed step is on the boundary 

of the trust region. 

 

Notes 

----- 

Implementation of Algorithm 6.2 on [1]_. 

 

In the absence of spherical and box constraints, for sufficient 

iterations, the method returns a truly optimal result. 

In the presence of those constraints the value returned is only 

a inexpensive approximation of the optimal value. 

 

References 

---------- 

.. [1] Gould, Nicholas IM, Mary E. Hribar, and Jorge Nocedal. 

"On the solution of equality constrained quadratic 

programming problems arising in optimization." 

SIAM Journal on Scientific Computing 23.4 (2001): 1376-1395. 

""" 

CLOSE_TO_ZERO = 1e-25 

 

n, = np.shape(c) # Number of parameters 

m, = np.shape(b) # Number of constraints 

 

# Initial Values 

x = Y.dot(-b) 

r = Z.dot(H.dot(x) + c) 

g = Z.dot(r) 

p = -g 

 

# Store ``x`` value 

if return_all: 

allvecs = [x] 

# Values for the first iteration 

H_p = H.dot(p) 

rt_g = norm(g)**2 # g.T g = r.T Z g = r.T g (ref [1]_ p.1389) 

 

# If x > trust-region the problem does not have a solution. 

tr_distance = trust_radius - norm(x) 

if tr_distance < 0: 

raise ValueError("Trust region problem does not have a solution.") 

# If x == trust_radius, then x is the solution 

# to the optimization problem, since x is the 

# minimum norm solution to Ax=b. 

elif tr_distance < CLOSE_TO_ZERO: 

info = {'niter': 0, 'stop_cond': 2, 'hits_boundary': True} 

if return_all: 

allvecs.append(x) 

info['allvecs'] = allvecs 

return x, info 

 

# Set default tolerance 

if tol is None: 

tol = max(min(0.01 * np.sqrt(rt_g), 0.1 * rt_g), CLOSE_TO_ZERO) 

# Set default lower and upper bounds 

if lb is None: 

lb = np.full(n, -np.inf) 

if ub is None: 

ub = np.full(n, np.inf) 

# Set maximum iterations 

if max_iter is None: 

max_iter = n-m 

max_iter = min(max_iter, n-m) 

# Set maximum infeasible iterations 

if max_infeasible_iter is None: 

max_infeasible_iter = n-m 

 

hits_boundary = False 

stop_cond = 1 

counter = 0 

last_feasible_x = np.zeros_like(x) 

k = 0 

for i in range(max_iter): 

# Stop criteria - Tolerance : r.T g < tol 

if rt_g < tol: 

stop_cond = 4 

break 

k += 1 

# Compute curvature 

pt_H_p = H_p.dot(p) 

# Stop criteria - Negative curvature 

if pt_H_p <= 0: 

if np.isinf(trust_radius): 

raise ValueError("Negative curvature not " 

"allowed for unrestrited " 

"problems.") 

else: 

# Find intersection with constraints 

_, alpha, intersect = box_sphere_intersections( 

x, p, lb, ub, trust_radius, entire_line=True) 

# Update solution 

if intersect: 

x = x + alpha*p 

# Reinforce variables are inside box constraints. 

# This is only necessary because of roundoff errors. 

x = reinforce_box_boundaries(x, lb, ub) 

# Atribute information 

stop_cond = 3 

hits_boundary = True 

break 

 

# Get next step 

alpha = rt_g / pt_H_p 

x_next = x + alpha*p 

 

# Stop criteria - Hits boundary 

if np.linalg.norm(x_next) >= trust_radius: 

# Find intersection with box constraints 

_, theta, intersect = box_sphere_intersections(x, alpha*p, lb, ub, 

trust_radius) 

# Update solution 

if intersect: 

x = x + theta*alpha*p 

# Reinforce variables are inside box constraints. 

# This is only necessary because of roundoff errors. 

x = reinforce_box_boundaries(x, lb, ub) 

# Atribute information 

stop_cond = 2 

hits_boundary = True 

break 

 

# Check if ``x`` is inside the box and start counter if it is not. 

if inside_box_boundaries(x_next, lb, ub): 

counter = 0 

else: 

counter += 1 

# Whenever outside box constraints keep looking for intersections. 

if counter > 0: 

_, theta, intersect = box_sphere_intersections(x, alpha*p, lb, ub, 

trust_radius) 

if intersect: 

last_feasible_x = x + theta*alpha*p 

# Reinforce variables are inside box constraints. 

# This is only necessary because of roundoff errors. 

last_feasible_x = reinforce_box_boundaries(last_feasible_x, 

lb, ub) 

counter = 0 

# Stop after too many infeasible (regarding box constraints) iteration. 

if counter > max_infeasible_iter: 

break 

# Store ``x_next`` value 

if return_all: 

allvecs.append(x_next) 

 

# Update residual 

r_next = r + alpha*H_p 

# Project residual g+ = Z r+ 

g_next = Z.dot(r_next) 

# Compute conjugate direction step d 

rt_g_next = norm(g_next)**2 # g.T g = r.T g (ref [1]_ p.1389) 

beta = rt_g_next / rt_g 

p = - g_next + beta*p 

# Prepare for next iteration 

x = x_next 

g = g_next 

r = g_next 

rt_g = norm(g)**2 # g.T g = r.T Z g = r.T g (ref [1]_ p.1389) 

H_p = H.dot(p) 

 

if not inside_box_boundaries(x, lb, ub): 

x = last_feasible_x 

hits_boundary = True 

info = {'niter': k, 'stop_cond': stop_cond, 

'hits_boundary': hits_boundary} 

if return_all: 

info['allvecs'] = allvecs 

return x, info