1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

"""Filter design. 

""" 

from __future__ import division, print_function, absolute_import 

 

import math 

import operator 

import warnings 

 

import numpy 

import numpy as np 

from numpy import (atleast_1d, poly, polyval, roots, real, asarray, 

resize, pi, absolute, logspace, r_, sqrt, tan, log10, 

arctan, arcsinh, sin, exp, cosh, arccosh, ceil, conjugate, 

zeros, sinh, append, concatenate, prod, ones, array, 

mintypecode) 

from numpy.polynomial.polynomial import polyval as npp_polyval 

 

from scipy import special, optimize, fftpack 

from scipy.special import comb, factorial 

from scipy._lib._numpy_compat import polyvalfromroots 

 

 

__all__ = ['findfreqs', 'freqs', 'freqz', 'tf2zpk', 'zpk2tf', 'normalize', 

'lp2lp', 'lp2hp', 'lp2bp', 'lp2bs', 'bilinear', 'iirdesign', 

'iirfilter', 'butter', 'cheby1', 'cheby2', 'ellip', 'bessel', 

'band_stop_obj', 'buttord', 'cheb1ord', 'cheb2ord', 'ellipord', 

'buttap', 'cheb1ap', 'cheb2ap', 'ellipap', 'besselap', 

'BadCoefficients', 'freqs_zpk', 'freqz_zpk', 

'tf2sos', 'sos2tf', 'zpk2sos', 'sos2zpk', 'group_delay', 

'sosfreqz', 'iirnotch', 'iirpeak', 'bilinear_zpk', 

'lp2lp_zpk', 'lp2hp_zpk', 'lp2bp_zpk', 'lp2bs_zpk'] 

 

 

class BadCoefficients(UserWarning): 

"""Warning about badly conditioned filter coefficients""" 

pass 

 

 

abs = absolute 

 

 

def findfreqs(num, den, N, kind='ba'): 

""" 

Find array of frequencies for computing the response of an analog filter. 

 

Parameters 

---------- 

num, den : array_like, 1-D 

The polynomial coefficients of the numerator and denominator of the 

transfer function of the filter or LTI system, where the coefficients 

are ordered from highest to lowest degree. Or, the roots of the 

transfer function numerator and denominator (i.e. zeroes and poles). 

N : int 

The length of the array to be computed. 

kind : str {'ba', 'zp'}, optional 

Specifies whether the numerator and denominator are specified by their 

polynomial coefficients ('ba'), or their roots ('zp'). 

 

Returns 

------- 

w : (N,) ndarray 

A 1-D array of frequencies, logarithmically spaced. 

 

Examples 

-------- 

Find a set of nine frequencies that span the "interesting part" of the 

frequency response for the filter with the transfer function 

 

H(s) = s / (s^2 + 8s + 25) 

 

>>> from scipy import signal 

>>> signal.findfreqs([1, 0], [1, 8, 25], N=9) 

array([ 1.00000000e-02, 3.16227766e-02, 1.00000000e-01, 

3.16227766e-01, 1.00000000e+00, 3.16227766e+00, 

1.00000000e+01, 3.16227766e+01, 1.00000000e+02]) 

""" 

if kind == 'ba': 

ep = atleast_1d(roots(den)) + 0j 

tz = atleast_1d(roots(num)) + 0j 

elif kind == 'zp': 

ep = atleast_1d(den) + 0j 

tz = atleast_1d(num) + 0j 

else: 

raise ValueError("input must be one of {'ba', 'zp'}") 

 

if len(ep) == 0: 

ep = atleast_1d(-1000) + 0j 

 

ez = r_['-1', 

numpy.compress(ep.imag >= 0, ep, axis=-1), 

numpy.compress((abs(tz) < 1e5) & (tz.imag >= 0), tz, axis=-1)] 

 

integ = abs(ez) < 1e-10 

hfreq = numpy.around(numpy.log10(numpy.max(3 * abs(ez.real + integ) + 

1.5 * ez.imag)) + 0.5) 

lfreq = numpy.around(numpy.log10(0.1 * numpy.min(abs(real(ez + integ)) + 

2 * ez.imag)) - 0.5) 

 

w = logspace(lfreq, hfreq, N) 

return w 

 

 

def freqs(b, a, worN=200, plot=None): 

""" 

Compute frequency response of analog filter. 

 

Given the M-order numerator `b` and N-order denominator `a` of an analog 

filter, compute its frequency response:: 

 

b[0]*(jw)**M + b[1]*(jw)**(M-1) + ... + b[M] 

H(w) = ---------------------------------------------- 

a[0]*(jw)**N + a[1]*(jw)**(N-1) + ... + a[N] 

 

Parameters 

---------- 

b : array_like 

Numerator of a linear filter. 

a : array_like 

Denominator of a linear filter. 

worN : {None, int, array_like}, optional 

If None, then compute at 200 frequencies around the interesting parts 

of the response curve (determined by pole-zero locations). If a single 

integer, then compute at that many frequencies. Otherwise, compute the 

response at the angular frequencies (e.g. rad/s) given in `worN`. 

plot : callable, optional 

A callable that takes two arguments. If given, the return parameters 

`w` and `h` are passed to plot. Useful for plotting the frequency 

response inside `freqs`. 

 

Returns 

------- 

w : ndarray 

The angular frequencies at which `h` was computed. 

h : ndarray 

The frequency response. 

 

See Also 

-------- 

freqz : Compute the frequency response of a digital filter. 

 

Notes 

----- 

Using Matplotlib's "plot" function as the callable for `plot` produces 

unexpected results, this plots the real part of the complex transfer 

function, not the magnitude. Try ``lambda w, h: plot(w, abs(h))``. 

 

Examples 

-------- 

>>> from scipy.signal import freqs, iirfilter 

 

>>> b, a = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1') 

 

>>> w, h = freqs(b, a, worN=np.logspace(-1, 2, 1000)) 

 

>>> import matplotlib.pyplot as plt 

>>> plt.semilogx(w, 20 * np.log10(abs(h))) 

>>> plt.xlabel('Frequency') 

>>> plt.ylabel('Amplitude response [dB]') 

>>> plt.grid() 

>>> plt.show() 

 

""" 

if worN is None: 

w = findfreqs(b, a, 200) 

elif isinstance(worN, int): 

N = worN 

w = findfreqs(b, a, N) 

else: 

w = worN 

w = atleast_1d(w) 

s = 1j * w 

h = polyval(b, s) / polyval(a, s) 

if plot is not None: 

plot(w, h) 

 

return w, h 

 

 

def freqs_zpk(z, p, k, worN=200): 

""" 

Compute frequency response of analog filter. 

 

Given the zeros `z`, poles `p`, and gain `k` of a filter, compute its 

frequency response:: 

 

(jw-z[0]) * (jw-z[1]) * ... * (jw-z[-1]) 

H(w) = k * ---------------------------------------- 

(jw-p[0]) * (jw-p[1]) * ... * (jw-p[-1]) 

 

Parameters 

---------- 

z : array_like 

Zeroes of a linear filter 

p : array_like 

Poles of a linear filter 

k : scalar 

Gain of a linear filter 

worN : {None, int, array_like}, optional 

If None, then compute at 200 frequencies around the interesting parts 

of the response curve (determined by pole-zero locations). If a single 

integer, then compute at that many frequencies. Otherwise, compute the 

response at the angular frequencies (e.g. rad/s) given in `worN`. 

 

Returns 

------- 

w : ndarray 

The angular frequencies at which `h` was computed. 

h : ndarray 

The frequency response. 

 

See Also 

-------- 

freqs : Compute the frequency response of an analog filter in TF form 

freqz : Compute the frequency response of a digital filter in TF form 

freqz_zpk : Compute the frequency response of a digital filter in ZPK form 

 

Notes 

----- 

.. versionadded:: 0.19.0 

 

Examples 

-------- 

>>> from scipy.signal import freqs_zpk, iirfilter 

 

>>> z, p, k = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1', 

... output='zpk') 

 

>>> w, h = freqs_zpk(z, p, k, worN=np.logspace(-1, 2, 1000)) 

 

>>> import matplotlib.pyplot as plt 

>>> plt.semilogx(w, 20 * np.log10(abs(h))) 

>>> plt.xlabel('Frequency') 

>>> plt.ylabel('Amplitude response [dB]') 

>>> plt.grid() 

>>> plt.show() 

 

""" 

k = np.asarray(k) 

if k.size > 1: 

raise ValueError('k must be a single scalar gain') 

 

if worN is None: 

w = findfreqs(z, p, 200, kind='zp') 

elif isinstance(worN, int): 

N = worN 

w = findfreqs(z, p, N, kind='zp') 

else: 

w = worN 

 

w = atleast_1d(w) 

s = 1j * w 

num = polyvalfromroots(s, z) 

den = polyvalfromroots(s, p) 

h = k * num/den 

return w, h 

 

 

def freqz(b, a=1, worN=512, whole=False, plot=None): 

""" 

Compute the frequency response of a digital filter. 

 

Given the M-order numerator `b` and N-order denominator `a` of a digital 

filter, compute its frequency response:: 

 

jw -jw -jwM 

jw B(e ) b[0] + b[1]e + ... + b[M]e 

H(e ) = ------ = ----------------------------------- 

jw -jw -jwN 

A(e ) a[0] + a[1]e + ... + a[N]e 

 

Parameters 

---------- 

b : array_like 

Numerator of a linear filter. If `b` has dimension greater than 1, 

it is assumed that the coefficients are stored in the first dimension, 

and ``b.shape[1:]``, ``a.shape[1:]``, and the shape of the frequencies 

array must be compatible for broadcasting. 

a : array_like 

Denominator of a linear filter. If `b` has dimension greater than 1, 

it is assumed that the coefficients are stored in the first dimension, 

and ``b.shape[1:]``, ``a.shape[1:]``, and the shape of the frequencies 

array must be compatible for broadcasting. 

worN : {None, int, array_like}, optional 

If None, then compute at 512 equally spaced frequencies. 

If a single integer, then compute at that many frequencies. This is 

a convenient alternative to:: 

 

np.linspace(0, 2*pi if whole else pi, N, endpoint=False) 

 

Using a number that is fast for FFT computations can result in 

faster computations (see Notes). 

If an array_like, compute the response at the frequencies given (in 

radians/sample). 

whole : bool, optional 

Normally, frequencies are computed from 0 to the Nyquist frequency, 

pi radians/sample (upper-half of unit-circle). If `whole` is True, 

compute frequencies from 0 to 2*pi radians/sample. 

plot : callable 

A callable that takes two arguments. If given, the return parameters 

`w` and `h` are passed to plot. Useful for plotting the frequency 

response inside `freqz`. 

 

Returns 

------- 

w : ndarray 

The normalized frequencies at which `h` was computed, in 

radians/sample. 

h : ndarray 

The frequency response, as complex numbers. 

 

See Also 

-------- 

freqz_zpk 

sosfreqz 

 

Notes 

----- 

Using Matplotlib's :func:`matplotlib.pyplot.plot` function as the callable 

for `plot` produces unexpected results, as this plots the real part of the 

complex transfer function, not the magnitude. 

Try ``lambda w, h: plot(w, np.abs(h))``. 

 

A direct computation via (R)FFT is used to compute the frequency response 

when the following conditions are met: 

 

1. An integer value is given for `worN`. 

2. `worN` is fast to compute via FFT (i.e., 

`next_fast_len(worN) <scipy.fftpack.next_fast_len>` equals `worN`). 

3. The denominator coefficients are a single value (``a.shape[0] == 1``). 

4. `worN` is at least as long as the numerator coefficients 

(``worN >= b.shape[0]``). 

5. If ``b.ndim > 1``, then ``b.shape[-1] == 1``. 

 

For long FIR filters, the FFT approach can have lower error and be much 

faster than the equivalent direct polynomial calculation. 

 

Examples 

-------- 

>>> from scipy import signal 

>>> b = signal.firwin(80, 0.5, window=('kaiser', 8)) 

>>> w, h = signal.freqz(b) 

 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.title('Digital filter frequency response') 

>>> ax1 = fig.add_subplot(111) 

 

>>> plt.plot(w, 20 * np.log10(abs(h)), 'b') 

>>> plt.ylabel('Amplitude [dB]', color='b') 

>>> plt.xlabel('Frequency [rad/sample]') 

 

>>> ax2 = ax1.twinx() 

>>> angles = np.unwrap(np.angle(h)) 

>>> plt.plot(w, angles, 'g') 

>>> plt.ylabel('Angle (radians)', color='g') 

>>> plt.grid() 

>>> plt.axis('tight') 

>>> plt.show() 

 

Broadcasting Examples 

 

Suppose we have two FIR filters whose coefficients are stored in the 

rows of an array with shape (2, 25). For this demonstration we'll 

use random data: 

 

>>> np.random.seed(42) 

>>> b = np.random.rand(2, 25) 

 

To compute the frequency response for these two filters with one call 

to `freqz`, we must pass in ``b.T``, because `freqz` expects the first 

axis to hold the coefficients. We must then extend the shape with a 

trivial dimension of length 1 to allow broadcasting with the array 

of frequencies. That is, we pass in ``b.T[..., np.newaxis]``, which has 

shape (25, 2, 1): 

 

>>> w, h = signal.freqz(b.T[..., np.newaxis], worN=1024) 

>>> w.shape 

(1024,) 

>>> h.shape 

(2, 1024) 

 

Now suppose we have two transfer functions, with the same numerator 

coefficients ``b = [0.5, 0.5]``. The coefficients for the two denominators 

are stored in the first dimension of the two-dimensional array `a`:: 

 

a = [ 1 1 ] 

[ -0.25, -0.5 ] 

 

>>> b = np.array([0.5, 0.5]) 

>>> a = np.array([[1, 1], [-0.25, -0.5]]) 

 

Only `a` is more than one-dimensional. To make it compatible for 

broadcasting with the frequencies, we extend it with a trivial dimension 

in the call to `freqz`: 

 

>>> w, h = signal.freqz(b, a[..., np.newaxis], worN=1024) 

>>> w.shape 

(1024,) 

>>> h.shape 

(2, 1024) 

 

""" 

b = atleast_1d(b) 

a = atleast_1d(a) 

 

if worN is None: 

worN = 512 

 

h = None 

try: 

worN = operator.index(worN) 

except TypeError: # not int-like 

w = atleast_1d(worN) 

else: 

if worN < 0: 

raise ValueError('worN must be nonnegative, got %s' % (worN,)) 

lastpoint = 2 * pi if whole else pi 

w = np.linspace(0, lastpoint, worN, endpoint=False) 

if (a.size == 1 and worN >= b.shape[0] and 

fftpack.next_fast_len(worN) == worN and 

(b.ndim == 1 or (b.shape[-1] == 1))): 

# if worN is fast, 2 * worN will be fast, too, so no need to check 

n_fft = worN if whole else worN * 2 

if np.isrealobj(b) and np.isrealobj(a): 

fft_func = np.fft.rfft 

else: 

fft_func = fftpack.fft 

h = fft_func(b, n=n_fft, axis=0)[:worN] 

h /= a 

if fft_func is np.fft.rfft and whole: 

# exclude DC and maybe Nyquist (no need to use axis_reverse 

# here because we can build reversal with the truncation) 

stop = -1 if n_fft % 2 == 1 else -2 

h_flip = slice(stop, 0, -1) 

h = np.concatenate((h, h[h_flip].conj())) 

if b.ndim > 1: 

# Last axis of h has length 1, so drop it. 

h = h[..., 0] 

# Rotate the first axis of h to the end. 

h = np.rollaxis(h, 0, h.ndim) 

del worN 

 

if h is None: # still need to compute using freqs w 

zm1 = exp(-1j * w) 

h = (npp_polyval(zm1, b, tensor=False) / 

npp_polyval(zm1, a, tensor=False)) 

if plot is not None: 

plot(w, h) 

 

return w, h 

 

 

def freqz_zpk(z, p, k, worN=512, whole=False): 

r""" 

Compute the frequency response of a digital filter in ZPK form. 

 

Given the Zeros, Poles and Gain of a digital filter, compute its frequency 

response:: 

 

:math:`H(z)=k \prod_i (z - Z[i]) / \prod_j (z - P[j])` 

 

where :math:`k` is the `gain`, :math:`Z` are the `zeros` and :math:`P` are 

the `poles`. 

 

Parameters 

---------- 

z : array_like 

Zeroes of a linear filter 

p : array_like 

Poles of a linear filter 

k : scalar 

Gain of a linear filter 

worN : {None, int, array_like}, optional 

If single integer (default 512, same as None), then compute at `worN` 

frequencies equally spaced around the unit circle. If an array_like, 

compute the response at the frequencies given (in radians/sample). 

whole : bool, optional 

Normally, frequencies are computed from 0 to the Nyquist frequency, 

pi radians/sample (upper-half of unit-circle). If `whole` is True, 

compute frequencies from 0 to 2*pi radians/sample. 

 

Returns 

------- 

w : ndarray 

The normalized frequencies at which `h` was computed, in 

radians/sample. 

h : ndarray 

The frequency response. 

 

See Also 

-------- 

freqs : Compute the frequency response of an analog filter in TF form 

freqs_zpk : Compute the frequency response of an analog filter in ZPK form 

freqz : Compute the frequency response of a digital filter in TF form 

 

Notes 

----- 

.. versionadded:: 0.19.0 

 

Examples 

-------- 

>>> from scipy import signal 

>>> z, p, k = signal.butter(4, 0.2, output='zpk') 

>>> w, h = signal.freqz_zpk(z, p, k) 

 

>>> import matplotlib.pyplot as plt 

>>> fig = plt.figure() 

>>> plt.title('Digital filter frequency response') 

>>> ax1 = fig.add_subplot(111) 

 

>>> plt.plot(w, 20 * np.log10(abs(h)), 'b') 

>>> plt.ylabel('Amplitude [dB]', color='b') 

>>> plt.xlabel('Frequency [rad/sample]') 

 

>>> ax2 = ax1.twinx() 

>>> angles = np.unwrap(np.angle(h)) 

>>> plt.plot(w, angles, 'g') 

>>> plt.ylabel('Angle (radians)', color='g') 

>>> plt.grid() 

>>> plt.axis('tight') 

>>> plt.show() 

 

""" 

z, p = map(atleast_1d, (z, p)) 

if whole: 

lastpoint = 2 * pi 

else: 

lastpoint = pi 

if worN is None: 

w = numpy.linspace(0, lastpoint, 512, endpoint=False) 

elif isinstance(worN, int): 

N = worN 

w = numpy.linspace(0, lastpoint, N, endpoint=False) 

else: 

w = worN 

w = atleast_1d(w) 

zm1 = exp(1j * w) 

h = k * polyvalfromroots(zm1, z) / polyvalfromroots(zm1, p) 

 

return w, h 

 

 

def group_delay(system, w=512, whole=False): 

r"""Compute the group delay of a digital filter. 

 

The group delay measures by how many samples amplitude envelopes of 

various spectral components of a signal are delayed by a filter. 

It is formally defined as the derivative of continuous (unwrapped) phase:: 

 

d jw 

D(w) = - -- arg H(e) 

dw 

 

Parameters 

---------- 

system : tuple of array_like (b, a) 

Numerator and denominator coefficients of a filter transfer function. 

w : {None, int, array-like}, optional 

If None, then compute at 512 frequencies equally spaced 

around the unit circle. 

If a single integer, then compute at that many frequencies. 

If array, compute the delay at the frequencies given 

(in radians/sample). 

whole : bool, optional 

Normally, frequencies are computed from 0 to the Nyquist frequency, 

pi radians/sample (upper-half of unit-circle). If `whole` is True, 

compute frequencies from 0 to ``2*pi`` radians/sample. 

 

Returns 

------- 

w : ndarray 

The normalized frequencies at which the group delay was computed, 

in radians/sample. 

gd : ndarray 

The group delay. 

 

Notes 

----- 

The similar function in MATLAB is called `grpdelay`. 

 

If the transfer function :math:`H(z)` has zeros or poles on the unit 

circle, the group delay at corresponding frequencies is undefined. 

When such a case arises the warning is raised and the group delay 

is set to 0 at those frequencies. 

 

For the details of numerical computation of the group delay refer to [1]_. 

 

.. versionadded:: 0.16.0 

 

See Also 

-------- 

freqz : Frequency response of a digital filter 

 

References 

---------- 

.. [1] Richard G. Lyons, "Understanding Digital Signal Processing, 

3rd edition", p. 830. 

 

Examples 

-------- 

>>> from scipy import signal 

>>> b, a = signal.iirdesign(0.1, 0.3, 5, 50, ftype='cheby1') 

>>> w, gd = signal.group_delay((b, a)) 

 

>>> import matplotlib.pyplot as plt 

>>> plt.title('Digital filter group delay') 

>>> plt.plot(w, gd) 

>>> plt.ylabel('Group delay [samples]') 

>>> plt.xlabel('Frequency [rad/sample]') 

>>> plt.show() 

 

""" 

if w is None: 

w = 512 

 

if isinstance(w, int): 

if whole: 

w = np.linspace(0, 2 * pi, w, endpoint=False) 

else: 

w = np.linspace(0, pi, w, endpoint=False) 

 

w = np.atleast_1d(w) 

b, a = map(np.atleast_1d, system) 

c = np.convolve(b, a[::-1]) 

cr = c * np.arange(c.size) 

z = np.exp(-1j * w) 

num = np.polyval(cr[::-1], z) 

den = np.polyval(c[::-1], z) 

singular = np.absolute(den) < 10 * EPSILON 

if np.any(singular): 

warnings.warn( 

"The group delay is singular at frequencies [{0}], setting to 0". 

format(", ".join("{0:.3f}".format(ws) for ws in w[singular])) 

) 

 

gd = np.zeros_like(w) 

gd[~singular] = np.real(num[~singular] / den[~singular]) - a.size + 1 

return w, gd 

 

 

def _validate_sos(sos): 

"""Helper to validate a SOS input""" 

sos = np.atleast_2d(sos) 

if sos.ndim != 2: 

raise ValueError('sos array must be 2D') 

n_sections, m = sos.shape 

if m != 6: 

raise ValueError('sos array must be shape (n_sections, 6)') 

if not (sos[:, 3] == 1).all(): 

raise ValueError('sos[:, 3] should be all ones') 

return sos, n_sections 

 

 

def sosfreqz(sos, worN=None, whole=False): 

""" 

Compute the frequency response of a digital filter in SOS format. 

 

Given `sos`, an array with shape (n, 6) of second order sections of 

a digital filter, compute the frequency response of the system function:: 

 

B0(z) B1(z) B{n-1}(z) 

H(z) = ----- * ----- * ... * --------- 

A0(z) A1(z) A{n-1}(z) 

 

for z = exp(omega*1j), where B{k}(z) and A{k}(z) are numerator and 

denominator of the transfer function of the k-th second order section. 

 

Parameters 

---------- 

sos : array_like 

Array of second-order filter coefficients, must have shape 

``(n_sections, 6)``. Each row corresponds to a second-order 

section, with the first three columns providing the numerator 

coefficients and the last three providing the denominator 

coefficients. 

worN : {None, int, array_like}, optional 

If None (default), then compute at 512 frequencies equally spaced 

around the unit circle. 

If a single integer, then compute at that many frequencies. 

Using a number that is fast for FFT computations can result in 

faster computations (see Notes of `freqz`). 

If an array_like, compute the response at the frequencies given (in 

radians/sample; must be 1D). 

whole : bool, optional 

Normally, frequencies are computed from 0 to the Nyquist frequency, 

pi radians/sample (upper-half of unit-circle). If `whole` is True, 

compute frequencies from 0 to 2*pi radians/sample. 

 

Returns 

------- 

w : ndarray 

The normalized frequencies at which `h` was computed, in 

radians/sample. 

h : ndarray 

The frequency response, as complex numbers. 

 

See Also 

-------- 

freqz, sosfilt 

 

Notes 

----- 

 

.. versionadded:: 0.19.0 

 

Examples 

-------- 

Design a 15th-order bandpass filter in SOS format. 

 

>>> from scipy import signal 

>>> sos = signal.ellip(15, 0.5, 60, (0.2, 0.4), btype='bandpass', 

... output='sos') 

 

Compute the frequency response at 1500 points from DC to Nyquist. 

 

>>> w, h = signal.sosfreqz(sos, worN=1500) 

 

Plot the response. 

 

>>> import matplotlib.pyplot as plt 

>>> plt.subplot(2, 1, 1) 

>>> db = 20*np.log10(np.abs(h)) 

>>> plt.plot(w/np.pi, db) 

>>> plt.ylim(-75, 5) 

>>> plt.grid(True) 

>>> plt.yticks([0, -20, -40, -60]) 

>>> plt.ylabel('Gain [dB]') 

>>> plt.title('Frequency Response') 

>>> plt.subplot(2, 1, 2) 

>>> plt.plot(w/np.pi, np.angle(h)) 

>>> plt.grid(True) 

>>> plt.yticks([-np.pi, -0.5*np.pi, 0, 0.5*np.pi, np.pi], 

... [r'$-\\pi$', r'$-\\pi/2$', '0', r'$\\pi/2$', r'$\\pi$']) 

>>> plt.ylabel('Phase [rad]') 

>>> plt.xlabel('Normalized frequency (1.0 = Nyquist)') 

>>> plt.show() 

 

If the same filter is implemented as a single transfer function, 

numerical error corrupts the frequency response: 

 

>>> b, a = signal.ellip(15, 0.5, 60, (0.2, 0.4), btype='bandpass', 

... output='ba') 

>>> w, h = signal.freqz(b, a, worN=1500) 

>>> plt.subplot(2, 1, 1) 

>>> db = 20*np.log10(np.abs(h)) 

>>> plt.plot(w/np.pi, db) 

>>> plt.subplot(2, 1, 2) 

>>> plt.plot(w/np.pi, np.angle(h)) 

>>> plt.show() 

 

""" 

 

sos, n_sections = _validate_sos(sos) 

if n_sections == 0: 

raise ValueError('Cannot compute frequencies with no sections') 

h = 1. 

for row in sos: 

w, rowh = freqz(row[:3], row[3:], worN=worN, whole=whole) 

h *= rowh 

return w, h 

 

 

def _cplxreal(z, tol=None): 

""" 

Split into complex and real parts, combining conjugate pairs. 

 

The 1D input vector `z` is split up into its complex (`zc`) and real (`zr`) 

elements. Every complex element must be part of a complex-conjugate pair, 

which are combined into a single number (with positive imaginary part) in 

the output. Two complex numbers are considered a conjugate pair if their 

real and imaginary parts differ in magnitude by less than ``tol * abs(z)``. 

 

Parameters 

---------- 

z : array_like 

Vector of complex numbers to be sorted and split 

tol : float, optional 

Relative tolerance for testing realness and conjugate equality. 

Default is ``100 * spacing(1)`` of `z`'s data type (i.e. 2e-14 for 

float64) 

 

Returns 

------- 

zc : ndarray 

Complex elements of `z`, with each pair represented by a single value 

having positive imaginary part, sorted first by real part, and then 

by magnitude of imaginary part. The pairs are averaged when combined 

to reduce error. 

zr : ndarray 

Real elements of `z` (those having imaginary part less than 

`tol` times their magnitude), sorted by value. 

 

Raises 

------ 

ValueError 

If there are any complex numbers in `z` for which a conjugate 

cannot be found. 

 

See Also 

-------- 

_cplxpair 

 

Examples 

-------- 

>>> a = [4, 3, 1, 2-2j, 2+2j, 2-1j, 2+1j, 2-1j, 2+1j, 1+1j, 1-1j] 

>>> zc, zr = _cplxreal(a) 

>>> print(zc) 

[ 1.+1.j 2.+1.j 2.+1.j 2.+2.j] 

>>> print(zr) 

[ 1. 3. 4.] 

""" 

 

z = atleast_1d(z) 

if z.size == 0: 

return z, z 

elif z.ndim != 1: 

raise ValueError('_cplxreal only accepts 1D input') 

 

if tol is None: 

# Get tolerance from dtype of input 

tol = 100 * np.finfo((1.0 * z).dtype).eps 

 

# Sort by real part, magnitude of imaginary part (speed up further sorting) 

z = z[np.lexsort((abs(z.imag), z.real))] 

 

# Split reals from conjugate pairs 

real_indices = abs(z.imag) <= tol * abs(z) 

zr = z[real_indices].real 

 

if len(zr) == len(z): 

# Input is entirely real 

return array([]), zr 

 

# Split positive and negative halves of conjugates 

z = z[~real_indices] 

zp = z[z.imag > 0] 

zn = z[z.imag < 0] 

 

if len(zp) != len(zn): 

raise ValueError('Array contains complex value with no matching ' 

'conjugate.') 

 

# Find runs of (approximately) the same real part 

same_real = np.diff(zp.real) <= tol * abs(zp[:-1]) 

diffs = numpy.diff(concatenate(([0], same_real, [0]))) 

run_starts = numpy.where(diffs > 0)[0] 

run_stops = numpy.where(diffs < 0)[0] 

 

# Sort each run by their imaginary parts 

for i in range(len(run_starts)): 

start = run_starts[i] 

stop = run_stops[i] + 1 

for chunk in (zp[start:stop], zn[start:stop]): 

chunk[...] = chunk[np.lexsort([abs(chunk.imag)])] 

 

# Check that negatives match positives 

if any(abs(zp - zn.conj()) > tol * abs(zn)): 

raise ValueError('Array contains complex value with no matching ' 

'conjugate.') 

 

# Average out numerical inaccuracy in real vs imag parts of pairs 

zc = (zp + zn.conj()) / 2 

 

return zc, zr 

 

 

def _cplxpair(z, tol=None): 

""" 

Sort into pairs of complex conjugates. 

 

Complex conjugates in `z` are sorted by increasing real part. In each 

pair, the number with negative imaginary part appears first. 

 

If pairs have identical real parts, they are sorted by increasing 

imaginary magnitude. 

 

Two complex numbers are considered a conjugate pair if their real and 

imaginary parts differ in magnitude by less than ``tol * abs(z)``. The 

pairs are forced to be exact complex conjugates by averaging the positive 

and negative values. 

 

Purely real numbers are also sorted, but placed after the complex 

conjugate pairs. A number is considered real if its imaginary part is 

smaller than `tol` times the magnitude of the number. 

 

Parameters 

---------- 

z : array_like 

1-dimensional input array to be sorted. 

tol : float, optional 

Relative tolerance for testing realness and conjugate equality. 

Default is ``100 * spacing(1)`` of `z`'s data type (i.e. 2e-14 for 

float64) 

 

Returns 

------- 

y : ndarray 

Complex conjugate pairs followed by real numbers. 

 

Raises 

------ 

ValueError 

If there are any complex numbers in `z` for which a conjugate 

cannot be found. 

 

See Also 

-------- 

_cplxreal 

 

Examples 

-------- 

>>> a = [4, 3, 1, 2-2j, 2+2j, 2-1j, 2+1j, 2-1j, 2+1j, 1+1j, 1-1j] 

>>> z = _cplxpair(a) 

>>> print(z) 

[ 1.-1.j 1.+1.j 2.-1.j 2.+1.j 2.-1.j 2.+1.j 2.-2.j 2.+2.j 1.+0.j 

3.+0.j 4.+0.j] 

""" 

 

z = atleast_1d(z) 

if z.size == 0 or np.isrealobj(z): 

return np.sort(z) 

 

if z.ndim != 1: 

raise ValueError('z must be 1-dimensional') 

 

zc, zr = _cplxreal(z, tol) 

 

# Interleave complex values and their conjugates, with negative imaginary 

# parts first in each pair 

zc = np.dstack((zc.conj(), zc)).flatten() 

z = np.append(zc, zr) 

return z 

 

 

def tf2zpk(b, a): 

r"""Return zero, pole, gain (z, p, k) representation from a numerator, 

denominator representation of a linear filter. 

 

Parameters 

---------- 

b : array_like 

Numerator polynomial coefficients. 

a : array_like 

Denominator polynomial coefficients. 

 

Returns 

------- 

z : ndarray 

Zeros of the transfer function. 

p : ndarray 

Poles of the transfer function. 

k : float 

System gain. 

 

Notes 

----- 

If some values of `b` are too close to 0, they are removed. In that case, 

a BadCoefficients warning is emitted. 

 

The `b` and `a` arrays are interpreted as coefficients for positive, 

descending powers of the transfer function variable. So the inputs 

:math:`b = [b_0, b_1, ..., b_M]` and :math:`a =[a_0, a_1, ..., a_N]` 

can represent an analog filter of the form: 

 

.. math:: 

 

H(s) = \frac 

{b_0 s^M + b_1 s^{(M-1)} + \cdots + b_M} 

{a_0 s^N + a_1 s^{(N-1)} + \cdots + a_N} 

 

or a discrete-time filter of the form: 

 

.. math:: 

 

H(z) = \frac 

{b_0 z^M + b_1 z^{(M-1)} + \cdots + b_M} 

{a_0 z^N + a_1 z^{(N-1)} + \cdots + a_N} 

 

This "positive powers" form is found more commonly in controls 

engineering. If `M` and `N` are equal (which is true for all filters 

generated by the bilinear transform), then this happens to be equivalent 

to the "negative powers" discrete-time form preferred in DSP: 

 

.. math:: 

 

H(z) = \frac 

{b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}} 

{a_0 + a_1 z^{-1} + \cdots + a_N z^{-N}} 

 

Although this is true for common filters, remember that this is not true 

in the general case. If `M` and `N` are not equal, the discrete-time 

transfer function coefficients must first be converted to the "positive 

powers" form before finding the poles and zeros. 

 

""" 

b, a = normalize(b, a) 

b = (b + 0.0) / a[0] 

a = (a + 0.0) / a[0] 

k = b[0] 

b /= b[0] 

z = roots(b) 

p = roots(a) 

return z, p, k 

 

 

def zpk2tf(z, p, k): 

""" 

Return polynomial transfer function representation from zeros and poles 

 

Parameters 

---------- 

z : array_like 

Zeros of the transfer function. 

p : array_like 

Poles of the transfer function. 

k : float 

System gain. 

 

Returns 

------- 

b : ndarray 

Numerator polynomial coefficients. 

a : ndarray 

Denominator polynomial coefficients. 

 

""" 

z = atleast_1d(z) 

k = atleast_1d(k) 

if len(z.shape) > 1: 

temp = poly(z[0]) 

b = zeros((z.shape[0], z.shape[1] + 1), temp.dtype.char) 

if len(k) == 1: 

k = [k[0]] * z.shape[0] 

for i in range(z.shape[0]): 

b[i] = k[i] * poly(z[i]) 

else: 

b = k * poly(z) 

a = atleast_1d(poly(p)) 

 

# Use real output if possible. Copied from numpy.poly, since 

# we can't depend on a specific version of numpy. 

if issubclass(b.dtype.type, numpy.complexfloating): 

# if complex roots are all complex conjugates, the roots are real. 

roots = numpy.asarray(z, complex) 

pos_roots = numpy.compress(roots.imag > 0, roots) 

neg_roots = numpy.conjugate(numpy.compress(roots.imag < 0, roots)) 

if len(pos_roots) == len(neg_roots): 

if numpy.all(numpy.sort_complex(neg_roots) == 

numpy.sort_complex(pos_roots)): 

b = b.real.copy() 

 

if issubclass(a.dtype.type, numpy.complexfloating): 

# if complex roots are all complex conjugates, the roots are real. 

roots = numpy.asarray(p, complex) 

pos_roots = numpy.compress(roots.imag > 0, roots) 

neg_roots = numpy.conjugate(numpy.compress(roots.imag < 0, roots)) 

if len(pos_roots) == len(neg_roots): 

if numpy.all(numpy.sort_complex(neg_roots) == 

numpy.sort_complex(pos_roots)): 

a = a.real.copy() 

 

return b, a 

 

 

def tf2sos(b, a, pairing='nearest'): 

""" 

Return second-order sections from transfer function representation 

 

Parameters 

---------- 

b : array_like 

Numerator polynomial coefficients. 

a : array_like 

Denominator polynomial coefficients. 

pairing : {'nearest', 'keep_odd'}, optional 

The method to use to combine pairs of poles and zeros into sections. 

See `zpk2sos`. 

 

Returns 

------- 

sos : ndarray 

Array of second-order filter coefficients, with shape 

``(n_sections, 6)``. See `sosfilt` for the SOS filter format 

specification. 

 

See Also 

-------- 

zpk2sos, sosfilt 

 

Notes 

----- 

It is generally discouraged to convert from TF to SOS format, since doing 

so usually will not improve numerical precision errors. Instead, consider 

designing filters in ZPK format and converting directly to SOS. TF is 

converted to SOS by first converting to ZPK format, then converting 

ZPK to SOS. 

 

.. versionadded:: 0.16.0 

""" 

return zpk2sos(*tf2zpk(b, a), pairing=pairing) 

 

 

def sos2tf(sos): 

""" 

Return a single transfer function from a series of second-order sections 

 

Parameters 

---------- 

sos : array_like 

Array of second-order filter coefficients, must have shape 

``(n_sections, 6)``. See `sosfilt` for the SOS filter format 

specification. 

 

Returns 

------- 

b : ndarray 

Numerator polynomial coefficients. 

a : ndarray 

Denominator polynomial coefficients. 

 

Notes 

----- 

.. versionadded:: 0.16.0 

""" 

sos = np.asarray(sos) 

b = [1.] 

a = [1.] 

n_sections = sos.shape[0] 

for section in range(n_sections): 

b = np.polymul(b, sos[section, :3]) 

a = np.polymul(a, sos[section, 3:]) 

return b, a 

 

 

def sos2zpk(sos): 

""" 

Return zeros, poles, and gain of a series of second-order sections 

 

Parameters 

---------- 

sos : array_like 

Array of second-order filter coefficients, must have shape 

``(n_sections, 6)``. See `sosfilt` for the SOS filter format 

specification. 

 

Returns 

------- 

z : ndarray 

Zeros of the transfer function. 

p : ndarray 

Poles of the transfer function. 

k : float 

System gain. 

 

Notes 

----- 

.. versionadded:: 0.16.0 

""" 

sos = np.asarray(sos) 

n_sections = sos.shape[0] 

z = np.empty(n_sections*2, np.complex128) 

p = np.empty(n_sections*2, np.complex128) 

k = 1. 

for section in range(n_sections): 

zpk = tf2zpk(sos[section, :3], sos[section, 3:]) 

z[2*section:2*(section+1)] = zpk[0] 

p[2*section:2*(section+1)] = zpk[1] 

k *= zpk[2] 

return z, p, k 

 

 

def _nearest_real_complex_idx(fro, to, which): 

"""Get the next closest real or complex element based on distance""" 

assert which in ('real', 'complex') 

order = np.argsort(np.abs(fro - to)) 

mask = np.isreal(fro[order]) 

if which == 'complex': 

mask = ~mask 

return order[np.where(mask)[0][0]] 

 

 

def zpk2sos(z, p, k, pairing='nearest'): 

""" 

Return second-order sections from zeros, poles, and gain of a system 

 

Parameters 

---------- 

z : array_like 

Zeros of the transfer function. 

p : array_like 

Poles of the transfer function. 

k : float 

System gain. 

pairing : {'nearest', 'keep_odd'}, optional 

The method to use to combine pairs of poles and zeros into sections. 

See Notes below. 

 

Returns 

------- 

sos : ndarray 

Array of second-order filter coefficients, with shape 

``(n_sections, 6)``. See `sosfilt` for the SOS filter format 

specification. 

 

See Also 

-------- 

sosfilt 

 

Notes 

----- 

The algorithm used to convert ZPK to SOS format is designed to 

minimize errors due to numerical precision issues. The pairing 

algorithm attempts to minimize the peak gain of each biquadratic 

section. This is done by pairing poles with the nearest zeros, starting 

with the poles closest to the unit circle. 

 

*Algorithms* 

 

The current algorithms are designed specifically for use with digital 

filters. (The output coefficients are not correct for analog filters.) 

 

The steps in the ``pairing='nearest'`` and ``pairing='keep_odd'`` 

algorithms are mostly shared. The ``nearest`` algorithm attempts to 

minimize the peak gain, while ``'keep_odd'`` minimizes peak gain under 

the constraint that odd-order systems should retain one section 

as first order. The algorithm steps and are as follows: 

 

As a pre-processing step, add poles or zeros to the origin as 

necessary to obtain the same number of poles and zeros for pairing. 

If ``pairing == 'nearest'`` and there are an odd number of poles, 

add an additional pole and a zero at the origin. 

 

The following steps are then iterated over until no more poles or 

zeros remain: 

 

1. Take the (next remaining) pole (complex or real) closest to the 

unit circle to begin a new filter section. 

 

2. If the pole is real and there are no other remaining real poles [#]_, 

add the closest real zero to the section and leave it as a first 

order section. Note that after this step we are guaranteed to be 

left with an even number of real poles, complex poles, real zeros, 

and complex zeros for subsequent pairing iterations. 

 

3. Else: 

 

1. If the pole is complex and the zero is the only remaining real 

zero*, then pair the pole with the *next* closest zero 

(guaranteed to be complex). This is necessary to ensure that 

there will be a real zero remaining to eventually create a 

first-order section (thus keeping the odd order). 

 

2. Else pair the pole with the closest remaining zero (complex or 

real). 

 

3. Proceed to complete the second-order section by adding another 

pole and zero to the current pole and zero in the section: 

 

1. If the current pole and zero are both complex, add their 

conjugates. 

 

2. Else if the pole is complex and the zero is real, add the 

conjugate pole and the next closest real zero. 

 

3. Else if the pole is real and the zero is complex, add the 

conjugate zero and the real pole closest to those zeros. 

 

4. Else (we must have a real pole and real zero) add the next 

real pole closest to the unit circle, and then add the real 

zero closest to that pole. 

 

.. [#] This conditional can only be met for specific odd-order inputs 

with the ``pairing == 'keep_odd'`` method. 

 

.. versionadded:: 0.16.0 

 

Examples 

-------- 

 

Design a 6th order low-pass elliptic digital filter for a system with a 

sampling rate of 8000 Hz that has a pass-band corner frequency of 

1000 Hz. The ripple in the pass-band should not exceed 0.087 dB, and 

the attenuation in the stop-band should be at least 90 dB. 

 

In the following call to `signal.ellip`, we could use ``output='sos'``, 

but for this example, we'll use ``output='zpk'``, and then convert to SOS 

format with `zpk2sos`: 

 

>>> from scipy import signal 

>>> z, p, k = signal.ellip(6, 0.087, 90, 1000/(0.5*8000), output='zpk') 

 

Now convert to SOS format. 

 

>>> sos = signal.zpk2sos(z, p, k) 

 

The coefficients of the numerators of the sections: 

 

>>> sos[:, :3] 

array([[ 0.0014154 , 0.00248707, 0.0014154 ], 

[ 1. , 0.72965193, 1. ], 

[ 1. , 0.17594966, 1. ]]) 

 

The symmetry in the coefficients occurs because all the zeros are on the 

unit circle. 

 

The coefficients of the denominators of the sections: 

 

>>> sos[:, 3:] 

array([[ 1. , -1.32543251, 0.46989499], 

[ 1. , -1.26117915, 0.6262586 ], 

[ 1. , -1.25707217, 0.86199667]]) 

 

The next example shows the effect of the `pairing` option. We have a 

system with three poles and three zeros, so the SOS array will have 

shape (2, 6). The means there is, in effect, an extra pole and an extra 

zero at the origin in the SOS representation. 

 

>>> z1 = np.array([-1, -0.5-0.5j, -0.5+0.5j]) 

>>> p1 = np.array([0.75, 0.8+0.1j, 0.8-0.1j]) 

 

With ``pairing='nearest'`` (the default), we obtain 

 

>>> signal.zpk2sos(z1, p1, 1) 

array([[ 1. , 1. , 0.5 , 1. , -0.75, 0. ], 

[ 1. , 1. , 0. , 1. , -1.6 , 0.65]]) 

 

The first section has the zeros {-0.5-0.05j, -0.5+0.5j} and the poles 

{0, 0.75}, and the second section has the zeros {-1, 0} and poles 

{0.8+0.1j, 0.8-0.1j}. Note that the extra pole and zero at the origin 

have been assigned to different sections. 

 

With ``pairing='keep_odd'``, we obtain: 

 

>>> signal.zpk2sos(z1, p1, 1, pairing='keep_odd') 

array([[ 1. , 1. , 0. , 1. , -0.75, 0. ], 

[ 1. , 1. , 0.5 , 1. , -1.6 , 0.65]]) 

 

The extra pole and zero at the origin are in the same section. 

The first section is, in effect, a first-order section. 

 

""" 

# TODO in the near future: 

# 1. Add SOS capability to `filtfilt`, `freqz`, etc. somehow (#3259). 

# 2. Make `decimate` use `sosfilt` instead of `lfilter`. 

# 3. Make sosfilt automatically simplify sections to first order 

# when possible. Note this might make `sosfiltfilt` a bit harder (ICs). 

# 4. Further optimizations of the section ordering / pole-zero pairing. 

# See the wiki for other potential issues. 

 

valid_pairings = ['nearest', 'keep_odd'] 

if pairing not in valid_pairings: 

raise ValueError('pairing must be one of %s, not %s' 

% (valid_pairings, pairing)) 

if len(z) == len(p) == 0: 

return array([[k, 0., 0., 1., 0., 0.]]) 

 

# ensure we have the same number of poles and zeros, and make copies 

p = np.concatenate((p, np.zeros(max(len(z) - len(p), 0)))) 

z = np.concatenate((z, np.zeros(max(len(p) - len(z), 0)))) 

n_sections = (max(len(p), len(z)) + 1) // 2 

sos = zeros((n_sections, 6)) 

 

if len(p) % 2 == 1 and pairing == 'nearest': 

p = np.concatenate((p, [0.])) 

z = np.concatenate((z, [0.])) 

assert len(p) == len(z) 

 

# Ensure we have complex conjugate pairs 

# (note that _cplxreal only gives us one element of each complex pair): 

z = np.concatenate(_cplxreal(z)) 

p = np.concatenate(_cplxreal(p)) 

 

p_sos = np.zeros((n_sections, 2), np.complex128) 

z_sos = np.zeros_like(p_sos) 

for si in range(n_sections): 

# Select the next "worst" pole 

p1_idx = np.argmin(np.abs(1 - np.abs(p))) 

p1 = p[p1_idx] 

p = np.delete(p, p1_idx) 

 

# Pair that pole with a zero 

 

if np.isreal(p1) and np.isreal(p).sum() == 0: 

# Special case to set a first-order section 

z1_idx = _nearest_real_complex_idx(z, p1, 'real') 

z1 = z[z1_idx] 

z = np.delete(z, z1_idx) 

p2 = z2 = 0 

else: 

if not np.isreal(p1) and np.isreal(z).sum() == 1: 

# Special case to ensure we choose a complex zero to pair 

# with so later (setting up a first-order section) 

z1_idx = _nearest_real_complex_idx(z, p1, 'complex') 

assert not np.isreal(z[z1_idx]) 

else: 

# Pair the pole with the closest zero (real or complex) 

z1_idx = np.argmin(np.abs(p1 - z)) 

z1 = z[z1_idx] 

z = np.delete(z, z1_idx) 

 

# Now that we have p1 and z1, figure out what p2 and z2 need to be 

if not np.isreal(p1): 

if not np.isreal(z1): # complex pole, complex zero 

p2 = p1.conj() 

z2 = z1.conj() 

else: # complex pole, real zero 

p2 = p1.conj() 

z2_idx = _nearest_real_complex_idx(z, p1, 'real') 

z2 = z[z2_idx] 

assert np.isreal(z2) 

z = np.delete(z, z2_idx) 

else: 

if not np.isreal(z1): # real pole, complex zero 

z2 = z1.conj() 

p2_idx = _nearest_real_complex_idx(p, z1, 'real') 

p2 = p[p2_idx] 

assert np.isreal(p2) 

else: # real pole, real zero 

# pick the next "worst" pole to use 

idx = np.where(np.isreal(p))[0] 

assert len(idx) > 0 

p2_idx = idx[np.argmin(np.abs(np.abs(p[idx]) - 1))] 

p2 = p[p2_idx] 

# find a real zero to match the added pole 

assert np.isreal(p2) 

z2_idx = _nearest_real_complex_idx(z, p2, 'real') 

z2 = z[z2_idx] 

assert np.isreal(z2) 

z = np.delete(z, z2_idx) 

p = np.delete(p, p2_idx) 

p_sos[si] = [p1, p2] 

z_sos[si] = [z1, z2] 

assert len(p) == len(z) == 0 # we've consumed all poles and zeros 

del p, z 

 

# Construct the system, reversing order so the "worst" are last 

p_sos = np.reshape(p_sos[::-1], (n_sections, 2)) 

z_sos = np.reshape(z_sos[::-1], (n_sections, 2)) 

gains = np.ones(n_sections) 

gains[0] = k 

for si in range(n_sections): 

x = zpk2tf(z_sos[si], p_sos[si], gains[si]) 

sos[si] = np.concatenate(x) 

return sos 

 

 

def _align_nums(nums): 

"""Aligns the shapes of multiple numerators. 

 

Given an array of numerator coefficient arrays [[a_1, a_2,..., 

a_n],..., [b_1, b_2,..., b_m]], this function pads shorter numerator 

arrays with zero's so that all numerators have the same length. Such 

alignment is necessary for functions like 'tf2ss', which needs the 

alignment when dealing with SIMO transfer functions. 

 

Parameters 

---------- 

nums: array_like 

Numerator or list of numerators. Not necessarily with same length. 

 

Returns 

------- 

nums: array 

The numerator. If `nums` input was a list of numerators then a 2d 

array with padded zeros for shorter numerators is returned. Otherwise 

returns ``np.asarray(nums)``. 

""" 

try: 

# The statement can throw a ValueError if one 

# of the numerators is a single digit and another 

# is array-like e.g. if nums = [5, [1, 2, 3]] 

nums = asarray(nums) 

 

if not np.issubdtype(nums.dtype, np.number): 

raise ValueError("dtype of numerator is non-numeric") 

 

return nums 

 

except ValueError: 

nums = [np.atleast_1d(num) for num in nums] 

max_width = max(num.size for num in nums) 

 

# pre-allocate 

aligned_nums = np.zeros((len(nums), max_width)) 

 

# Create numerators with padded zeros 

for index, num in enumerate(nums): 

aligned_nums[index, -num.size:] = num 

 

return aligned_nums 

 

 

def normalize(b, a): 

"""Normalize numerator/denominator of a continuous-time transfer function. 

 

If values of `b` are too close to 0, they are removed. In that case, a 

BadCoefficients warning is emitted. 

 

Parameters 

---------- 

b: array_like 

Numerator of the transfer function. Can be a 2d array to normalize 

multiple transfer functions. 

a: array_like 

Denominator of the transfer function. At most 1d. 

 

Returns 

------- 

num: array 

The numerator of the normalized transfer function. At least a 1d 

array. A 2d-array if the input `num` is a 2d array. 

den: 1d-array 

The denominator of the normalized transfer function. 

 

Notes 

----- 

Coefficients for both the numerator and denominator should be specified in 

descending exponent order (e.g., ``s^2 + 3s + 5`` would be represented as 

``[1, 3, 5]``). 

""" 

num, den = b, a 

 

den = np.atleast_1d(den) 

num = np.atleast_2d(_align_nums(num)) 

 

if den.ndim != 1: 

raise ValueError("Denominator polynomial must be rank-1 array.") 

if num.ndim > 2: 

raise ValueError("Numerator polynomial must be rank-1 or" 

" rank-2 array.") 

if np.all(den == 0): 

raise ValueError("Denominator must have at least on nonzero element.") 

 

# Trim leading zeros in denominator, leave at least one. 

den = np.trim_zeros(den, 'f') 

 

# Normalize transfer function 

num, den = num / den[0], den / den[0] 

 

# Count numerator columns that are all zero 

leading_zeros = 0 

for col in num.T: 

if np.allclose(col, 0, atol=1e-14): 

leading_zeros += 1 

else: 

break 

 

# Trim leading zeros of numerator 

if leading_zeros > 0: 

warnings.warn("Badly conditioned filter coefficients (numerator): the " 

"results may be meaningless", BadCoefficients) 

# Make sure at least one column remains 

if leading_zeros == num.shape[1]: 

leading_zeros -= 1 

num = num[:, leading_zeros:] 

 

# Squeeze first dimension if singular 

if num.shape[0] == 1: 

num = num[0, :] 

 

return num, den 

 

 

def lp2lp(b, a, wo=1.0): 

""" 

Transform a lowpass filter prototype to a different frequency. 

 

Return an analog low-pass filter with cutoff frequency `wo` 

from an analog low-pass filter prototype with unity cutoff frequency, in 

transfer function ('ba') representation. 

 

See Also 

-------- 

lp2hp, lp2bp, lp2bs, bilinear 

lp2lp_zpk 

 

""" 

a, b = map(atleast_1d, (a, b)) 

try: 

wo = float(wo) 

except TypeError: 

wo = float(wo[0]) 

d = len(a) 

n = len(b) 

M = max((d, n)) 

pwo = pow(wo, numpy.arange(M - 1, -1, -1)) 

start1 = max((n - d, 0)) 

start2 = max((d - n, 0)) 

b = b * pwo[start1] / pwo[start2:] 

a = a * pwo[start1] / pwo[start1:] 

return normalize(b, a) 

 

 

def lp2hp(b, a, wo=1.0): 

""" 

Transform a lowpass filter prototype to a highpass filter. 

 

Return an analog high-pass filter with cutoff frequency `wo` 

from an analog low-pass filter prototype with unity cutoff frequency, in 

transfer function ('ba') representation. 

 

See Also 

-------- 

lp2lp, lp2bp, lp2bs, bilinear 

lp2hp_zpk 

 

""" 

a, b = map(atleast_1d, (a, b)) 

try: 

wo = float(wo) 

except TypeError: 

wo = float(wo[0]) 

d = len(a) 

n = len(b) 

if wo != 1: 

pwo = pow(wo, numpy.arange(max((d, n)))) 

else: 

pwo = numpy.ones(max((d, n)), b.dtype.char) 

if d >= n: 

outa = a[::-1] * pwo 

outb = resize(b, (d,)) 

outb[n:] = 0.0 

outb[:n] = b[::-1] * pwo[:n] 

else: 

outb = b[::-1] * pwo 

outa = resize(a, (n,)) 

outa[d:] = 0.0 

outa[:d] = a[::-1] * pwo[:d] 

 

return normalize(outb, outa) 

 

 

def lp2bp(b, a, wo=1.0, bw=1.0): 

""" 

Transform a lowpass filter prototype to a bandpass filter. 

 

Return an analog band-pass filter with center frequency `wo` and 

bandwidth `bw` from an analog low-pass filter prototype with unity 

cutoff frequency, in transfer function ('ba') representation. 

 

See Also 

-------- 

lp2lp, lp2hp, lp2bs, bilinear 

lp2bp_zpk 

 

""" 

a, b = map(atleast_1d, (a, b)) 

D = len(a) - 1 

N = len(b) - 1 

artype = mintypecode((a, b)) 

ma = max([N, D]) 

Np = N + ma 

Dp = D + ma 

bprime = numpy.zeros(Np + 1, artype) 

aprime = numpy.zeros(Dp + 1, artype) 

wosq = wo * wo 

for j in range(Np + 1): 

val = 0.0 

for i in range(0, N + 1): 

for k in range(0, i + 1): 

if ma - i + 2 * k == j: 

val += comb(i, k) * b[N - i] * (wosq) ** (i - k) / bw ** i 

bprime[Np - j] = val 

for j in range(Dp + 1): 

val = 0.0 

for i in range(0, D + 1): 

for k in range(0, i + 1): 

if ma - i + 2 * k == j: 

val += comb(i, k) * a[D - i] * (wosq) ** (i - k) / bw ** i 

aprime[Dp - j] = val 

 

return normalize(bprime, aprime) 

 

 

def lp2bs(b, a, wo=1.0, bw=1.0): 

""" 

Transform a lowpass filter prototype to a bandstop filter. 

 

Return an analog band-stop filter with center frequency `wo` and 

bandwidth `bw` from an analog low-pass filter prototype with unity 

cutoff frequency, in transfer function ('ba') representation. 

 

See Also 

-------- 

lp2lp, lp2hp, lp2bp, bilinear 

lp2bs_zpk 

 

""" 

a, b = map(atleast_1d, (a, b)) 

D = len(a) - 1 

N = len(b) - 1 

artype = mintypecode((a, b)) 

M = max([N, D]) 

Np = M + M 

Dp = M + M 

bprime = numpy.zeros(Np + 1, artype) 

aprime = numpy.zeros(Dp + 1, artype) 

wosq = wo * wo 

for j in range(Np + 1): 

val = 0.0 

for i in range(0, N + 1): 

for k in range(0, M - i + 1): 

if i + 2 * k == j: 

val += (comb(M - i, k) * b[N - i] * 

(wosq) ** (M - i - k) * bw ** i) 

bprime[Np - j] = val 

for j in range(Dp + 1): 

val = 0.0 

for i in range(0, D + 1): 

for k in range(0, M - i + 1): 

if i + 2 * k == j: 

val += (comb(M - i, k) * a[D - i] * 

(wosq) ** (M - i - k) * bw ** i) 

aprime[Dp - j] = val 

 

return normalize(bprime, aprime) 

 

 

def bilinear(b, a, fs=1.0): 

"""Return a digital filter from an analog one using a bilinear transform. 

 

The bilinear transform substitutes ``(z-1) / (z+1)`` for ``s``. 

 

See Also 

-------- 

lp2lp, lp2hp, lp2bp, lp2bs 

bilinear_zpk 

 

""" 

fs = float(fs) 

a, b = map(atleast_1d, (a, b)) 

D = len(a) - 1 

N = len(b) - 1 

artype = float 

M = max([N, D]) 

Np = M 

Dp = M 

bprime = numpy.zeros(Np + 1, artype) 

aprime = numpy.zeros(Dp + 1, artype) 

for j in range(Np + 1): 

val = 0.0 

for i in range(N + 1): 

for k in range(i + 1): 

for l in range(M - i + 1): 

if k + l == j: 

val += (comb(i, k) * comb(M - i, l) * b[N - i] * 

pow(2 * fs, i) * (-1) ** k) 

bprime[j] = real(val) 

for j in range(Dp + 1): 

val = 0.0 

for i in range(D + 1): 

for k in range(i + 1): 

for l in range(M - i + 1): 

if k + l == j: 

val += (comb(i, k) * comb(M - i, l) * a[D - i] * 

pow(2 * fs, i) * (-1) ** k) 

aprime[j] = real(val) 

 

return normalize(bprime, aprime) 

 

 

def iirdesign(wp, ws, gpass, gstop, analog=False, ftype='ellip', output='ba'): 

"""Complete IIR digital and analog filter design. 

 

Given passband and stopband frequencies and gains, construct an analog or 

digital IIR filter of minimum order for a given basic type. Return the 

output in numerator, denominator ('ba'), pole-zero ('zpk') or second order 

sections ('sos') form. 

 

Parameters 

---------- 

wp, ws : float 

Passband and stopband edge frequencies. 

For digital filters, these are normalized from 0 to 1, where 1 is the 

Nyquist frequency, pi radians/sample. (`wp` and `ws` are thus in 

half-cycles / sample.) For example: 

 

- Lowpass: wp = 0.2, ws = 0.3 

- Highpass: wp = 0.3, ws = 0.2 

- Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] 

- Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] 

 

For analog filters, `wp` and `ws` are angular frequencies (e.g. rad/s). 

 

gpass : float 

The maximum loss in the passband (dB). 

gstop : float 

The minimum attenuation in the stopband (dB). 

analog : bool, optional 

When True, return an analog filter, otherwise a digital filter is 

returned. 

ftype : str, optional 

The type of IIR filter to design: 

 

- Butterworth : 'butter' 

- Chebyshev I : 'cheby1' 

- Chebyshev II : 'cheby2' 

- Cauer/elliptic: 'ellip' 

- Bessel/Thomson: 'bessel' 

 

output : {'ba', 'zpk', 'sos'}, optional 

Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or 

second-order sections ('sos'). Default is 'ba'. 

 

Returns 

------- 

b, a : ndarray, ndarray 

Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. 

Only returned if ``output='ba'``. 

z, p, k : ndarray, ndarray, float 

Zeros, poles, and system gain of the IIR filter transfer 

function. Only returned if ``output='zpk'``. 

sos : ndarray 

Second-order sections representation of the IIR filter. 

Only returned if ``output=='sos'``. 

 

See Also 

-------- 

butter : Filter design using order and critical points 

cheby1, cheby2, ellip, bessel 

buttord : Find order and critical points from passband and stopband spec 

cheb1ord, cheb2ord, ellipord 

iirfilter : General filter design using order and critical frequencies 

 

Notes 

----- 

The ``'sos'`` output parameter was added in 0.16.0. 

""" 

try: 

ordfunc = filter_dict[ftype][1] 

except KeyError: 

raise ValueError("Invalid IIR filter type: %s" % ftype) 

except IndexError: 

raise ValueError(("%s does not have order selection. Use " 

"iirfilter function.") % ftype) 

 

wp = atleast_1d(wp) 

ws = atleast_1d(ws) 

band_type = 2 * (len(wp) - 1) 

band_type += 1 

if wp[0] >= ws[0]: 

band_type += 1 

 

btype = {1: 'lowpass', 2: 'highpass', 

3: 'bandstop', 4: 'bandpass'}[band_type] 

 

N, Wn = ordfunc(wp, ws, gpass, gstop, analog=analog) 

return iirfilter(N, Wn, rp=gpass, rs=gstop, analog=analog, btype=btype, 

ftype=ftype, output=output) 

 

 

def iirfilter(N, Wn, rp=None, rs=None, btype='band', analog=False, 

ftype='butter', output='ba'): 

""" 

IIR digital and analog filter design given order and critical points. 

 

Design an Nth-order digital or analog filter and return the filter 

coefficients. 

 

Parameters 

---------- 

N : int 

The order of the filter. 

Wn : array_like 

A scalar or length-2 sequence giving the critical frequencies. 

For digital filters, `Wn` is normalized from 0 to 1, where 1 is the 

Nyquist frequency, pi radians/sample. (`Wn` is thus in 

half-cycles / sample.) 

For analog filters, `Wn` is an angular frequency (e.g. rad/s). 

rp : float, optional 

For Chebyshev and elliptic filters, provides the maximum ripple 

in the passband. (dB) 

rs : float, optional 

For Chebyshev and elliptic filters, provides the minimum attenuation 

in the stop band. (dB) 

btype : {'bandpass', 'lowpass', 'highpass', 'bandstop'}, optional 

The type of filter. Default is 'bandpass'. 

analog : bool, optional 

When True, return an analog filter, otherwise a digital filter is 

returned. 

ftype : str, optional 

The type of IIR filter to design: 

 

- Butterworth : 'butter' 

- Chebyshev I : 'cheby1' 

- Chebyshev II : 'cheby2' 

- Cauer/elliptic: 'ellip' 

- Bessel/Thomson: 'bessel' 

 

output : {'ba', 'zpk', 'sos'}, optional 

Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or 

second-order sections ('sos'). Default is 'ba'. 

 

Returns 

------- 

b, a : ndarray, ndarray 

Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. 

Only returned if ``output='ba'``. 

z, p, k : ndarray, ndarray, float 

Zeros, poles, and system gain of the IIR filter transfer 

function. Only returned if ``output='zpk'``. 

sos : ndarray 

Second-order sections representation of the IIR filter. 

Only returned if ``output=='sos'``. 

 

See Also 

-------- 

butter : Filter design using order and critical points 

cheby1, cheby2, ellip, bessel 

buttord : Find order and critical points from passband and stopband spec 

cheb1ord, cheb2ord, ellipord 

iirdesign : General filter design using passband and stopband spec 

 

Notes 

----- 

The ``'sos'`` output parameter was added in 0.16.0. 

 

Examples 

-------- 

Generate a 17th-order Chebyshev II bandpass filter and plot the frequency 

response: 

 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

 

>>> b, a = signal.iirfilter(17, [50, 200], rs=60, btype='band', 

... analog=True, ftype='cheby2') 

>>> w, h = signal.freqs(b, a, 1000) 

>>> fig = plt.figure() 

>>> ax = fig.add_subplot(111) 

>>> ax.semilogx(w, 20 * np.log10(abs(h))) 

>>> ax.set_title('Chebyshev Type II bandpass frequency response') 

>>> ax.set_xlabel('Frequency [radians / second]') 

>>> ax.set_ylabel('Amplitude [dB]') 

>>> ax.axis((10, 1000, -100, 10)) 

>>> ax.grid(which='both', axis='both') 

>>> plt.show() 

 

""" 

ftype, btype, output = [x.lower() for x in (ftype, btype, output)] 

Wn = asarray(Wn) 

try: 

btype = band_dict[btype] 

except KeyError: 

raise ValueError("'%s' is an invalid bandtype for filter." % btype) 

 

try: 

typefunc = filter_dict[ftype][0] 

except KeyError: 

raise ValueError("'%s' is not a valid basic IIR filter." % ftype) 

 

if output not in ['ba', 'zpk', 'sos']: 

raise ValueError("'%s' is not a valid output form." % output) 

 

if rp is not None and rp < 0: 

raise ValueError("passband ripple (rp) must be positive") 

 

if rs is not None and rs < 0: 

raise ValueError("stopband attenuation (rs) must be positive") 

 

# Get analog lowpass prototype 

if typefunc == buttap: 

z, p, k = typefunc(N) 

elif typefunc == besselap: 

z, p, k = typefunc(N, norm=bessel_norms[ftype]) 

elif typefunc == cheb1ap: 

if rp is None: 

raise ValueError("passband ripple (rp) must be provided to " 

"design a Chebyshev I filter.") 

z, p, k = typefunc(N, rp) 

elif typefunc == cheb2ap: 

if rs is None: 

raise ValueError("stopband attenuation (rs) must be provided to " 

"design an Chebyshev II filter.") 

z, p, k = typefunc(N, rs) 

elif typefunc == ellipap: 

if rs is None or rp is None: 

raise ValueError("Both rp and rs must be provided to design an " 

"elliptic filter.") 

z, p, k = typefunc(N, rp, rs) 

else: 

raise NotImplementedError("'%s' not implemented in iirfilter." % ftype) 

 

# Pre-warp frequencies for digital filter design 

if not analog: 

if numpy.any(Wn <= 0) or numpy.any(Wn >= 1): 

raise ValueError("Digital filter critical frequencies " 

"must be 0 < Wn < 1") 

fs = 2.0 

warped = 2 * fs * tan(pi * Wn / fs) 

else: 

warped = Wn 

 

# transform to lowpass, bandpass, highpass, or bandstop 

if btype in ('lowpass', 'highpass'): 

if numpy.size(Wn) != 1: 

raise ValueError('Must specify a single critical frequency Wn') 

 

if btype == 'lowpass': 

z, p, k = lp2lp_zpk(z, p, k, wo=warped) 

elif btype == 'highpass': 

z, p, k = lp2hp_zpk(z, p, k, wo=warped) 

elif btype in ('bandpass', 'bandstop'): 

try: 

bw = warped[1] - warped[0] 

wo = sqrt(warped[0] * warped[1]) 

except IndexError: 

raise ValueError('Wn must specify start and stop frequencies') 

 

if btype == 'bandpass': 

z, p, k = lp2bp_zpk(z, p, k, wo=wo, bw=bw) 

elif btype == 'bandstop': 

z, p, k = lp2bs_zpk(z, p, k, wo=wo, bw=bw) 

else: 

raise NotImplementedError("'%s' not implemented in iirfilter." % btype) 

 

# Find discrete equivalent if necessary 

if not analog: 

z, p, k = bilinear_zpk(z, p, k, fs=fs) 

 

# Transform to proper out type (pole-zero, state-space, numer-denom) 

if output == 'zpk': 

return z, p, k 

elif output == 'ba': 

return zpk2tf(z, p, k) 

elif output == 'sos': 

return zpk2sos(z, p, k) 

 

 

def _relative_degree(z, p): 

""" 

Return relative degree of transfer function from zeros and poles 

""" 

degree = len(p) - len(z) 

if degree < 0: 

raise ValueError("Improper transfer function. " 

"Must have at least as many poles as zeros.") 

else: 

return degree 

 

 

def bilinear_zpk(z, p, k, fs): 

""" 

Return a digital IIR filter from an analog one using a bilinear transform. 

 

Transform a set of poles and zeros from the analog s-plane to the digital 

z-plane using Tustin's method, which substitutes ``(z-1) / (z+1)`` for 

``s``, maintaining the shape of the frequency response. 

 

Parameters 

---------- 

z : array_like 

Zeros of the analog filter transfer function. 

p : array_like 

Poles of the analog filter transfer function. 

k : float 

System gain of the analog filter transfer function. 

fs : float 

Sample rate, as ordinary frequency (e.g. hertz). No prewarping is 

done in this function. 

 

Returns 

------- 

z : ndarray 

Zeros of the transformed digital filter transfer function. 

p : ndarray 

Poles of the transformed digital filter transfer function. 

k : float 

System gain of the transformed digital filter. 

 

See Also 

-------- 

lp2lp_zpk, lp2hp_zpk, lp2bp_zpk, lp2bs_zpk 

bilinear 

 

Notes 

----- 

.. versionadded:: 1.1.0 

 

""" 

z = atleast_1d(z) 

p = atleast_1d(p) 

 

degree = _relative_degree(z, p) 

 

fs2 = 2.0*fs 

 

# Bilinear transform the poles and zeros 

z_z = (fs2 + z) / (fs2 - z) 

p_z = (fs2 + p) / (fs2 - p) 

 

# Any zeros that were at infinity get moved to the Nyquist frequency 

z_z = append(z_z, -ones(degree)) 

 

# Compensate for gain change 

k_z = k * real(prod(fs2 - z) / prod(fs2 - p)) 

 

return z_z, p_z, k_z 

 

 

def lp2lp_zpk(z, p, k, wo=1.0): 

r""" 

Transform a lowpass filter prototype to a different frequency. 

 

Return an analog low-pass filter with cutoff frequency `wo` 

from an analog low-pass filter prototype with unity cutoff frequency, 

using zeros, poles, and gain ('zpk') representation. 

 

Parameters 

---------- 

z : array_like 

Zeros of the analog filter transfer function. 

p : array_like 

Poles of the analog filter transfer function. 

k : float 

System gain of the analog filter transfer function. 

wo : float 

Desired cutoff, as angular frequency (e.g. rad/s). 

Defaults to no change. 

 

Returns 

------- 

z : ndarray 

Zeros of the transformed low-pass filter transfer function. 

p : ndarray 

Poles of the transformed low-pass filter transfer function. 

k : float 

System gain of the transformed low-pass filter. 

 

See Also 

-------- 

lp2hp_zpk, lp2bp_zpk, lp2bs_zpk, bilinear 

lp2lp 

 

Notes 

----- 

This is derived from the s-plane substitution 

 

.. math:: s \rightarrow \frac{s}{\omega_0} 

 

.. versionadded:: 1.1.0 

 

""" 

z = atleast_1d(z) 

p = atleast_1d(p) 

wo = float(wo) # Avoid int wraparound 

 

degree = _relative_degree(z, p) 

 

# Scale all points radially from origin to shift cutoff frequency 

z_lp = wo * z 

p_lp = wo * p 

 

# Each shifted pole decreases gain by wo, each shifted zero increases it. 

# Cancel out the net change to keep overall gain the same 

k_lp = k * wo**degree 

 

return z_lp, p_lp, k_lp 

 

 

def lp2hp_zpk(z, p, k, wo=1.0): 

r""" 

Transform a lowpass filter prototype to a highpass filter. 

 

Return an analog high-pass filter with cutoff frequency `wo` 

from an analog low-pass filter prototype with unity cutoff frequency, 

using zeros, poles, and gain ('zpk') representation. 

 

Parameters 

---------- 

z : array_like 

Zeros of the analog filter transfer function. 

p : array_like 

Poles of the analog filter transfer function. 

k : float 

System gain of the analog filter transfer function. 

wo : float 

Desired cutoff, as angular frequency (e.g. rad/s). 

Defaults to no change. 

 

Returns 

------- 

z : ndarray 

Zeros of the transformed high-pass filter transfer function. 

p : ndarray 

Poles of the transformed high-pass filter transfer function. 

k : float 

System gain of the transformed high-pass filter. 

 

See Also 

-------- 

lp2lp_zpk, lp2bp_zpk, lp2bs_zpk, bilinear 

lp2hp 

 

Notes 

----- 

This is derived from the s-plane substitution 

 

.. math:: s \rightarrow \frac{\omega_0}{s} 

 

This maintains symmetry of the lowpass and highpass responses on a 

logarithmic scale. 

 

.. versionadded:: 1.1.0 

 

""" 

z = atleast_1d(z) 

p = atleast_1d(p) 

wo = float(wo) 

 

degree = _relative_degree(z, p) 

 

# Invert positions radially about unit circle to convert LPF to HPF 

# Scale all points radially from origin to shift cutoff frequency 

z_hp = wo / z 

p_hp = wo / p 

 

# If lowpass had zeros at infinity, inverting moves them to origin. 

z_hp = append(z_hp, zeros(degree)) 

 

# Cancel out gain change caused by inversion 

k_hp = k * real(prod(-z) / prod(-p)) 

 

return z_hp, p_hp, k_hp 

 

 

def lp2bp_zpk(z, p, k, wo=1.0, bw=1.0): 

r""" 

Transform a lowpass filter prototype to a bandpass filter. 

 

Return an analog band-pass filter with center frequency `wo` and 

bandwidth `bw` from an analog low-pass filter prototype with unity 

cutoff frequency, using zeros, poles, and gain ('zpk') representation. 

 

Parameters 

---------- 

z : array_like 

Zeros of the analog filter transfer function. 

p : array_like 

Poles of the analog filter transfer function. 

k : float 

System gain of the analog filter transfer function. 

wo : float 

Desired passband center, as angular frequency (e.g. rad/s). 

Defaults to no change. 

bw : float 

Desired passband width, as angular frequency (e.g. rad/s). 

Defaults to 1. 

 

Returns 

------- 

z : ndarray 

Zeros of the transformed band-pass filter transfer function. 

p : ndarray 

Poles of the transformed band-pass filter transfer function. 

k : float 

System gain of the transformed band-pass filter. 

 

See Also 

-------- 

lp2lp_zpk, lp2hp_zpk, lp2bs_zpk, bilinear 

lp2bp 

 

Notes 

----- 

This is derived from the s-plane substitution 

 

.. math:: s \rightarrow \frac{s^2 + {\omega_0}^2}{s \cdot \mathrm{BW}} 

 

This is the "wideband" transformation, producing a passband with 

geometric (log frequency) symmetry about `wo`. 

 

.. versionadded:: 1.1.0 

 

""" 

z = atleast_1d(z) 

p = atleast_1d(p) 

wo = float(wo) 

bw = float(bw) 

 

degree = _relative_degree(z, p) 

 

# Scale poles and zeros to desired bandwidth 

z_lp = z * bw/2 

p_lp = p * bw/2 

 

# Square root needs to produce complex result, not NaN 

z_lp = z_lp.astype(complex) 

p_lp = p_lp.astype(complex) 

 

# Duplicate poles and zeros and shift from baseband to +wo and -wo 

z_bp = concatenate((z_lp + sqrt(z_lp**2 - wo**2), 

z_lp - sqrt(z_lp**2 - wo**2))) 

p_bp = concatenate((p_lp + sqrt(p_lp**2 - wo**2), 

p_lp - sqrt(p_lp**2 - wo**2))) 

 

# Move degree zeros to origin, leaving degree zeros at infinity for BPF 

z_bp = append(z_bp, zeros(degree)) 

 

# Cancel out gain change from frequency scaling 

k_bp = k * bw**degree 

 

return z_bp, p_bp, k_bp 

 

 

def lp2bs_zpk(z, p, k, wo=1.0, bw=1.0): 

r""" 

Transform a lowpass filter prototype to a bandstop filter. 

 

Return an analog band-stop filter with center frequency `wo` and 

stopband width `bw` from an analog low-pass filter prototype with unity 

cutoff frequency, using zeros, poles, and gain ('zpk') representation. 

 

Parameters 

---------- 

z : array_like 

Zeros of the analog filter transfer function. 

p : array_like 

Poles of the analog filter transfer function. 

k : float 

System gain of the analog filter transfer function. 

wo : float 

Desired stopband center, as angular frequency (e.g. rad/s). 

Defaults to no change. 

bw : float 

Desired stopband width, as angular frequency (e.g. rad/s). 

Defaults to 1. 

 

Returns 

------- 

z : ndarray 

Zeros of the transformed band-stop filter transfer function. 

p : ndarray 

Poles of the transformed band-stop filter transfer function. 

k : float 

System gain of the transformed band-stop filter. 

 

See Also 

-------- 

lp2lp_zpk, lp2hp_zpk, lp2bp_zpk, bilinear 

lp2bs 

 

Notes 

----- 

This is derived from the s-plane substitution 

 

.. math:: s \rightarrow \frac{s \cdot \mathrm{BW}}{s^2 + {\omega_0}^2} 

 

This is the "wideband" transformation, producing a stopband with 

geometric (log frequency) symmetry about `wo`. 

 

.. versionadded:: 1.1.0 

 

""" 

z = atleast_1d(z) 

p = atleast_1d(p) 

wo = float(wo) 

bw = float(bw) 

 

degree = _relative_degree(z, p) 

 

# Invert to a highpass filter with desired bandwidth 

z_hp = (bw/2) / z 

p_hp = (bw/2) / p 

 

# Square root needs to produce complex result, not NaN 

z_hp = z_hp.astype(complex) 

p_hp = p_hp.astype(complex) 

 

# Duplicate poles and zeros and shift from baseband to +wo and -wo 

z_bs = concatenate((z_hp + sqrt(z_hp**2 - wo**2), 

z_hp - sqrt(z_hp**2 - wo**2))) 

p_bs = concatenate((p_hp + sqrt(p_hp**2 - wo**2), 

p_hp - sqrt(p_hp**2 - wo**2))) 

 

# Move any zeros that were at infinity to the center of the stopband 

z_bs = append(z_bs, +1j*wo * ones(degree)) 

z_bs = append(z_bs, -1j*wo * ones(degree)) 

 

# Cancel out gain change caused by inversion 

k_bs = k * real(prod(-z) / prod(-p)) 

 

return z_bs, p_bs, k_bs 

 

 

def butter(N, Wn, btype='low', analog=False, output='ba'): 

""" 

Butterworth digital and analog filter design. 

 

Design an Nth-order digital or analog Butterworth filter and return 

the filter coefficients. 

 

Parameters 

---------- 

N : int 

The order of the filter. 

Wn : array_like 

A scalar or length-2 sequence giving the critical frequencies. 

For a Butterworth filter, this is the point at which the gain 

drops to 1/sqrt(2) that of the passband (the "-3 dB point"). 

For digital filters, `Wn` is normalized from 0 to 1, where 1 is the 

Nyquist frequency, pi radians/sample. (`Wn` is thus in 

half-cycles / sample.) 

For analog filters, `Wn` is an angular frequency (e.g. rad/s). 

btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional 

The type of filter. Default is 'lowpass'. 

analog : bool, optional 

When True, return an analog filter, otherwise a digital filter is 

returned. 

output : {'ba', 'zpk', 'sos'}, optional 

Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or 

second-order sections ('sos'). Default is 'ba'. 

 

Returns 

------- 

b, a : ndarray, ndarray 

Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. 

Only returned if ``output='ba'``. 

z, p, k : ndarray, ndarray, float 

Zeros, poles, and system gain of the IIR filter transfer 

function. Only returned if ``output='zpk'``. 

sos : ndarray 

Second-order sections representation of the IIR filter. 

Only returned if ``output=='sos'``. 

 

See Also 

-------- 

buttord, buttap 

 

Notes 

----- 

The Butterworth filter has maximally flat frequency response in the 

passband. 

 

The ``'sos'`` output parameter was added in 0.16.0. 

 

Examples 

-------- 

Plot the filter's frequency response, showing the critical points: 

 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

 

>>> b, a = signal.butter(4, 100, 'low', analog=True) 

>>> w, h = signal.freqs(b, a) 

>>> plt.semilogx(w, 20 * np.log10(abs(h))) 

>>> plt.title('Butterworth filter frequency response') 

>>> plt.xlabel('Frequency [radians / second]') 

>>> plt.ylabel('Amplitude [dB]') 

>>> plt.margins(0, 0.1) 

>>> plt.grid(which='both', axis='both') 

>>> plt.axvline(100, color='green') # cutoff frequency 

>>> plt.show() 

 

""" 

return iirfilter(N, Wn, btype=btype, analog=analog, 

output=output, ftype='butter') 

 

 

def cheby1(N, rp, Wn, btype='low', analog=False, output='ba'): 

""" 

Chebyshev type I digital and analog filter design. 

 

Design an Nth-order digital or analog Chebyshev type I filter and 

return the filter coefficients. 

 

Parameters 

---------- 

N : int 

The order of the filter. 

rp : float 

The maximum ripple allowed below unity gain in the passband. 

Specified in decibels, as a positive number. 

Wn : array_like 

A scalar or length-2 sequence giving the critical frequencies. 

For Type I filters, this is the point in the transition band at which 

the gain first drops below -`rp`. 

For digital filters, `Wn` is normalized from 0 to 1, where 1 is the 

Nyquist frequency, pi radians/sample. (`Wn` is thus in 

half-cycles / sample.) 

For analog filters, `Wn` is an angular frequency (e.g. rad/s). 

btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional 

The type of filter. Default is 'lowpass'. 

analog : bool, optional 

When True, return an analog filter, otherwise a digital filter is 

returned. 

output : {'ba', 'zpk', 'sos'}, optional 

Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or 

second-order sections ('sos'). Default is 'ba'. 

 

Returns 

------- 

b, a : ndarray, ndarray 

Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. 

Only returned if ``output='ba'``. 

z, p, k : ndarray, ndarray, float 

Zeros, poles, and system gain of the IIR filter transfer 

function. Only returned if ``output='zpk'``. 

sos : ndarray 

Second-order sections representation of the IIR filter. 

Only returned if ``output=='sos'``. 

 

See Also 

-------- 

cheb1ord, cheb1ap 

 

Notes 

----- 

The Chebyshev type I filter maximizes the rate of cutoff between the 

frequency response's passband and stopband, at the expense of ripple in 

the passband and increased ringing in the step response. 

 

Type I filters roll off faster than Type II (`cheby2`), but Type II 

filters do not have any ripple in the passband. 

 

The equiripple passband has N maxima or minima (for example, a 

5th-order filter has 3 maxima and 2 minima). Consequently, the DC gain is 

unity for odd-order filters, or -rp dB for even-order filters. 

 

The ``'sos'`` output parameter was added in 0.16.0. 

 

Examples 

-------- 

Plot the filter's frequency response, showing the critical points: 

 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

 

>>> b, a = signal.cheby1(4, 5, 100, 'low', analog=True) 

>>> w, h = signal.freqs(b, a) 

>>> plt.semilogx(w, 20 * np.log10(abs(h))) 

>>> plt.title('Chebyshev Type I frequency response (rp=5)') 

>>> plt.xlabel('Frequency [radians / second]') 

>>> plt.ylabel('Amplitude [dB]') 

>>> plt.margins(0, 0.1) 

>>> plt.grid(which='both', axis='both') 

>>> plt.axvline(100, color='green') # cutoff frequency 

>>> plt.axhline(-5, color='green') # rp 

>>> plt.show() 

 

""" 

return iirfilter(N, Wn, rp=rp, btype=btype, analog=analog, 

output=output, ftype='cheby1') 

 

 

def cheby2(N, rs, Wn, btype='low', analog=False, output='ba'): 

""" 

Chebyshev type II digital and analog filter design. 

 

Design an Nth-order digital or analog Chebyshev type II filter and 

return the filter coefficients. 

 

Parameters 

---------- 

N : int 

The order of the filter. 

rs : float 

The minimum attenuation required in the stop band. 

Specified in decibels, as a positive number. 

Wn : array_like 

A scalar or length-2 sequence giving the critical frequencies. 

For Type II filters, this is the point in the transition band at which 

the gain first reaches -`rs`. 

For digital filters, `Wn` is normalized from 0 to 1, where 1 is the 

Nyquist frequency, pi radians/sample. (`Wn` is thus in 

half-cycles / sample.) 

For analog filters, `Wn` is an angular frequency (e.g. rad/s). 

btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional 

The type of filter. Default is 'lowpass'. 

analog : bool, optional 

When True, return an analog filter, otherwise a digital filter is 

returned. 

output : {'ba', 'zpk', 'sos'}, optional 

Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or 

second-order sections ('sos'). Default is 'ba'. 

 

Returns 

------- 

b, a : ndarray, ndarray 

Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. 

Only returned if ``output='ba'``. 

z, p, k : ndarray, ndarray, float 

Zeros, poles, and system gain of the IIR filter transfer 

function. Only returned if ``output='zpk'``. 

sos : ndarray 

Second-order sections representation of the IIR filter. 

Only returned if ``output=='sos'``. 

 

See Also 

-------- 

cheb2ord, cheb2ap 

 

Notes 

----- 

The Chebyshev type II filter maximizes the rate of cutoff between the 

frequency response's passband and stopband, at the expense of ripple in 

the stopband and increased ringing in the step response. 

 

Type II filters do not roll off as fast as Type I (`cheby1`). 

 

The ``'sos'`` output parameter was added in 0.16.0. 

 

Examples 

-------- 

Plot the filter's frequency response, showing the critical points: 

 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

 

>>> b, a = signal.cheby2(4, 40, 100, 'low', analog=True) 

>>> w, h = signal.freqs(b, a) 

>>> plt.semilogx(w, 20 * np.log10(abs(h))) 

>>> plt.title('Chebyshev Type II frequency response (rs=40)') 

>>> plt.xlabel('Frequency [radians / second]') 

>>> plt.ylabel('Amplitude [dB]') 

>>> plt.margins(0, 0.1) 

>>> plt.grid(which='both', axis='both') 

>>> plt.axvline(100, color='green') # cutoff frequency 

>>> plt.axhline(-40, color='green') # rs 

>>> plt.show() 

 

""" 

return iirfilter(N, Wn, rs=rs, btype=btype, analog=analog, 

output=output, ftype='cheby2') 

 

 

def ellip(N, rp, rs, Wn, btype='low', analog=False, output='ba'): 

""" 

Elliptic (Cauer) digital and analog filter design. 

 

Design an Nth-order digital or analog elliptic filter and return 

the filter coefficients. 

 

Parameters 

---------- 

N : int 

The order of the filter. 

rp : float 

The maximum ripple allowed below unity gain in the passband. 

Specified in decibels, as a positive number. 

rs : float 

The minimum attenuation required in the stop band. 

Specified in decibels, as a positive number. 

Wn : array_like 

A scalar or length-2 sequence giving the critical frequencies. 

For elliptic filters, this is the point in the transition band at 

which the gain first drops below -`rp`. 

For digital filters, `Wn` is normalized from 0 to 1, where 1 is the 

Nyquist frequency, pi radians/sample. (`Wn` is thus in 

half-cycles / sample.) 

For analog filters, `Wn` is an angular frequency (e.g. rad/s). 

btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional 

The type of filter. Default is 'lowpass'. 

analog : bool, optional 

When True, return an analog filter, otherwise a digital filter is 

returned. 

output : {'ba', 'zpk', 'sos'}, optional 

Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or 

second-order sections ('sos'). Default is 'ba'. 

 

Returns 

------- 

b, a : ndarray, ndarray 

Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. 

Only returned if ``output='ba'``. 

z, p, k : ndarray, ndarray, float 

Zeros, poles, and system gain of the IIR filter transfer 

function. Only returned if ``output='zpk'``. 

sos : ndarray 

Second-order sections representation of the IIR filter. 

Only returned if ``output=='sos'``. 

 

See Also 

-------- 

ellipord, ellipap 

 

Notes 

----- 

Also known as Cauer or Zolotarev filters, the elliptical filter maximizes 

the rate of transition between the frequency response's passband and 

stopband, at the expense of ripple in both, and increased ringing in the 

step response. 

 

As `rp` approaches 0, the elliptical filter becomes a Chebyshev 

type II filter (`cheby2`). As `rs` approaches 0, it becomes a Chebyshev 

type I filter (`cheby1`). As both approach 0, it becomes a Butterworth 

filter (`butter`). 

 

The equiripple passband has N maxima or minima (for example, a 

5th-order filter has 3 maxima and 2 minima). Consequently, the DC gain is 

unity for odd-order filters, or -rp dB for even-order filters. 

 

The ``'sos'`` output parameter was added in 0.16.0. 

 

Examples 

-------- 

Plot the filter's frequency response, showing the critical points: 

 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

 

>>> b, a = signal.ellip(4, 5, 40, 100, 'low', analog=True) 

>>> w, h = signal.freqs(b, a) 

>>> plt.semilogx(w, 20 * np.log10(abs(h))) 

>>> plt.title('Elliptic filter frequency response (rp=5, rs=40)') 

>>> plt.xlabel('Frequency [radians / second]') 

>>> plt.ylabel('Amplitude [dB]') 

>>> plt.margins(0, 0.1) 

>>> plt.grid(which='both', axis='both') 

>>> plt.axvline(100, color='green') # cutoff frequency 

>>> plt.axhline(-40, color='green') # rs 

>>> plt.axhline(-5, color='green') # rp 

>>> plt.show() 

 

""" 

return iirfilter(N, Wn, rs=rs, rp=rp, btype=btype, analog=analog, 

output=output, ftype='elliptic') 

 

 

def bessel(N, Wn, btype='low', analog=False, output='ba', norm='phase'): 

""" 

Bessel/Thomson digital and analog filter design. 

 

Design an Nth-order digital or analog Bessel filter and return the 

filter coefficients. 

 

Parameters 

---------- 

N : int 

The order of the filter. 

Wn : array_like 

A scalar or length-2 sequence giving the critical frequencies (defined 

by the `norm` parameter). 

For analog filters, `Wn` is an angular frequency (e.g. rad/s). 

For digital filters, `Wn` is normalized from 0 to 1, where 1 is the 

Nyquist frequency, pi radians/sample. (`Wn` is thus in 

half-cycles / sample.) 

btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional 

The type of filter. Default is 'lowpass'. 

analog : bool, optional 

When True, return an analog filter, otherwise a digital filter is 

returned. (See Notes.) 

output : {'ba', 'zpk', 'sos'}, optional 

Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or 

second-order sections ('sos'). Default is 'ba'. 

norm : {'phase', 'delay', 'mag'}, optional 

Critical frequency normalization: 

 

``phase`` 

The filter is normalized such that the phase response reaches its 

midpoint at angular (e.g. rad/s) frequency `Wn`. This happens for 

both low-pass and high-pass filters, so this is the 

"phase-matched" case. 

 

The magnitude response asymptotes are the same as a Butterworth 

filter of the same order with a cutoff of `Wn`. 

 

This is the default, and matches MATLAB's implementation. 

 

``delay`` 

The filter is normalized such that the group delay in the passband 

is 1/`Wn` (e.g. seconds). This is the "natural" type obtained by 

solving Bessel polynomials. 

 

``mag`` 

The filter is normalized such that the gain magnitude is -3 dB at 

angular frequency `Wn`. 

 

.. versionadded:: 0.18.0 

 

Returns 

------- 

b, a : ndarray, ndarray 

Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. 

Only returned if ``output='ba'``. 

z, p, k : ndarray, ndarray, float 

Zeros, poles, and system gain of the IIR filter transfer 

function. Only returned if ``output='zpk'``. 

sos : ndarray 

Second-order sections representation of the IIR filter. 

Only returned if ``output=='sos'``. 

 

Notes 

----- 

Also known as a Thomson filter, the analog Bessel filter has maximally 

flat group delay and maximally linear phase response, with very little 

ringing in the step response. [1]_ 

 

The Bessel is inherently an analog filter. This function generates digital 

Bessel filters using the bilinear transform, which does not preserve the 

phase response of the analog filter. As such, it is only approximately 

correct at frequencies below about fs/4. To get maximally-flat group 

delay at higher frequencies, the analog Bessel filter must be transformed 

using phase-preserving techniques. 

 

See `besselap` for implementation details and references. 

 

The ``'sos'`` output parameter was added in 0.16.0. 

 

Examples 

-------- 

Plot the phase-normalized frequency response, showing the relationship 

to the Butterworth's cutoff frequency (green): 

 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

 

>>> b, a = signal.butter(4, 100, 'low', analog=True) 

>>> w, h = signal.freqs(b, a) 

>>> plt.semilogx(w, 20 * np.log10(np.abs(h)), color='silver', ls='dashed') 

>>> b, a = signal.bessel(4, 100, 'low', analog=True, norm='phase') 

>>> w, h = signal.freqs(b, a) 

>>> plt.semilogx(w, 20 * np.log10(np.abs(h))) 

>>> plt.title('Bessel filter magnitude response (with Butterworth)') 

>>> plt.xlabel('Frequency [radians / second]') 

>>> plt.ylabel('Amplitude [dB]') 

>>> plt.margins(0, 0.1) 

>>> plt.grid(which='both', axis='both') 

>>> plt.axvline(100, color='green') # cutoff frequency 

>>> plt.show() 

 

and the phase midpoint: 

 

>>> plt.figure() 

>>> plt.semilogx(w, np.unwrap(np.angle(h))) 

>>> plt.axvline(100, color='green') # cutoff frequency 

>>> plt.axhline(-np.pi, color='red') # phase midpoint 

>>> plt.title('Bessel filter phase response') 

>>> plt.xlabel('Frequency [radians / second]') 

>>> plt.ylabel('Phase [radians]') 

>>> plt.margins(0, 0.1) 

>>> plt.grid(which='both', axis='both') 

>>> plt.show() 

 

Plot the magnitude-normalized frequency response, showing the -3 dB cutoff: 

 

>>> b, a = signal.bessel(3, 10, 'low', analog=True, norm='mag') 

>>> w, h = signal.freqs(b, a) 

>>> plt.semilogx(w, 20 * np.log10(np.abs(h))) 

>>> plt.axhline(-3, color='red') # -3 dB magnitude 

>>> plt.axvline(10, color='green') # cutoff frequency 

>>> plt.title('Magnitude-normalized Bessel filter frequency response') 

>>> plt.xlabel('Frequency [radians / second]') 

>>> plt.ylabel('Amplitude [dB]') 

>>> plt.margins(0, 0.1) 

>>> plt.grid(which='both', axis='both') 

>>> plt.show() 

 

Plot the delay-normalized filter, showing the maximally-flat group delay 

at 0.1 seconds: 

 

>>> b, a = signal.bessel(5, 1/0.1, 'low', analog=True, norm='delay') 

>>> w, h = signal.freqs(b, a) 

>>> plt.figure() 

>>> plt.semilogx(w[1:], -np.diff(np.unwrap(np.angle(h)))/np.diff(w)) 

>>> plt.axhline(0.1, color='red') # 0.1 seconds group delay 

>>> plt.title('Bessel filter group delay') 

>>> plt.xlabel('Frequency [radians / second]') 

>>> plt.ylabel('Group delay [seconds]') 

>>> plt.margins(0, 0.1) 

>>> plt.grid(which='both', axis='both') 

>>> plt.show() 

 

References 

---------- 

.. [1] Thomson, W.E., "Delay Networks having Maximally Flat Frequency 

Characteristics", Proceedings of the Institution of Electrical 

Engineers, Part III, November 1949, Vol. 96, No. 44, pp. 487-490. 

 

""" 

return iirfilter(N, Wn, btype=btype, analog=analog, 

output=output, ftype='bessel_'+norm) 

 

 

def maxflat(): 

pass 

 

 

def yulewalk(): 

pass 

 

 

def band_stop_obj(wp, ind, passb, stopb, gpass, gstop, type): 

""" 

Band Stop Objective Function for order minimization. 

 

Returns the non-integer order for an analog band stop filter. 

 

Parameters 

---------- 

wp : scalar 

Edge of passband `passb`. 

ind : int, {0, 1} 

Index specifying which `passb` edge to vary (0 or 1). 

passb : ndarray 

Two element sequence of fixed passband edges. 

stopb : ndarray 

Two element sequence of fixed stopband edges. 

gstop : float 

Amount of attenuation in stopband in dB. 

gpass : float 

Amount of ripple in the passband in dB. 

type : {'butter', 'cheby', 'ellip'} 

Type of filter. 

 

Returns 

------- 

n : scalar 

Filter order (possibly non-integer). 

 

""" 

passbC = passb.copy() 

passbC[ind] = wp 

nat = (stopb * (passbC[0] - passbC[1]) / 

(stopb ** 2 - passbC[0] * passbC[1])) 

nat = min(abs(nat)) 

 

if type == 'butter': 

GSTOP = 10 ** (0.1 * abs(gstop)) 

GPASS = 10 ** (0.1 * abs(gpass)) 

n = (log10((GSTOP - 1.0) / (GPASS - 1.0)) / (2 * log10(nat))) 

elif type == 'cheby': 

GSTOP = 10 ** (0.1 * abs(gstop)) 

GPASS = 10 ** (0.1 * abs(gpass)) 

n = arccosh(sqrt((GSTOP - 1.0) / (GPASS - 1.0))) / arccosh(nat) 

elif type == 'ellip': 

GSTOP = 10 ** (0.1 * gstop) 

GPASS = 10 ** (0.1 * gpass) 

arg1 = sqrt((GPASS - 1.0) / (GSTOP - 1.0)) 

arg0 = 1.0 / nat 

d0 = special.ellipk([arg0 ** 2, 1 - arg0 ** 2]) 

d1 = special.ellipk([arg1 ** 2, 1 - arg1 ** 2]) 

n = (d0[0] * d1[1] / (d0[1] * d1[0])) 

else: 

raise ValueError("Incorrect type: %s" % type) 

return n 

 

 

def buttord(wp, ws, gpass, gstop, analog=False): 

"""Butterworth filter order selection. 

 

Return the order of the lowest order digital or analog Butterworth filter 

that loses no more than `gpass` dB in the passband and has at least 

`gstop` dB attenuation in the stopband. 

 

Parameters 

---------- 

wp, ws : float 

Passband and stopband edge frequencies. 

For digital filters, these are normalized from 0 to 1, where 1 is the 

Nyquist frequency, pi radians/sample. (`wp` and `ws` are thus in 

half-cycles / sample.) For example: 

 

- Lowpass: wp = 0.2, ws = 0.3 

- Highpass: wp = 0.3, ws = 0.2 

- Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] 

- Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] 

 

For analog filters, `wp` and `ws` are angular frequencies (e.g. rad/s). 

 

gpass : float 

The maximum loss in the passband (dB). 

gstop : float 

The minimum attenuation in the stopband (dB). 

analog : bool, optional 

When True, return an analog filter, otherwise a digital filter is 

returned. 

 

Returns 

------- 

ord : int 

The lowest order for a Butterworth filter which meets specs. 

wn : ndarray or float 

The Butterworth natural frequency (i.e. the "3dB frequency"). Should 

be used with `butter` to give filter results. 

 

See Also 

-------- 

butter : Filter design using order and critical points 

cheb1ord : Find order and critical points from passband and stopband spec 

cheb2ord, ellipord 

iirfilter : General filter design using order and critical frequencies 

iirdesign : General filter design using passband and stopband spec 

 

Examples 

-------- 

Design an analog bandpass filter with passband within 3 dB from 20 to 

50 rad/s, while rejecting at least -40 dB below 14 and above 60 rad/s. 

Plot its frequency response, showing the passband and stopband 

constraints in gray. 

 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

 

>>> N, Wn = signal.buttord([20, 50], [14, 60], 3, 40, True) 

>>> b, a = signal.butter(N, Wn, 'band', True) 

>>> w, h = signal.freqs(b, a, np.logspace(1, 2, 500)) 

>>> plt.semilogx(w, 20 * np.log10(abs(h))) 

>>> plt.title('Butterworth bandpass filter fit to constraints') 

>>> plt.xlabel('Frequency [radians / second]') 

>>> plt.ylabel('Amplitude [dB]') 

>>> plt.grid(which='both', axis='both') 

>>> plt.fill([1, 14, 14, 1], [-40, -40, 99, 99], '0.9', lw=0) # stop 

>>> plt.fill([20, 20, 50, 50], [-99, -3, -3, -99], '0.9', lw=0) # pass 

>>> plt.fill([60, 60, 1e9, 1e9], [99, -40, -40, 99], '0.9', lw=0) # stop 

>>> plt.axis([10, 100, -60, 3]) 

>>> plt.show() 

 

""" 

wp = atleast_1d(wp) 

ws = atleast_1d(ws) 

filter_type = 2 * (len(wp) - 1) 

filter_type += 1 

if wp[0] >= ws[0]: 

filter_type += 1 

 

# Pre-warp frequencies for digital filter design 

if not analog: 

passb = tan(pi * wp / 2.0) 

stopb = tan(pi * ws / 2.0) 

else: 

passb = wp * 1.0 

stopb = ws * 1.0 

 

if filter_type == 1: # low 

nat = stopb / passb 

elif filter_type == 2: # high 

nat = passb / stopb 

elif filter_type == 3: # stop 

wp0 = optimize.fminbound(band_stop_obj, passb[0], stopb[0] - 1e-12, 

args=(0, passb, stopb, gpass, gstop, 

'butter'), 

disp=0) 

passb[0] = wp0 

wp1 = optimize.fminbound(band_stop_obj, stopb[1] + 1e-12, passb[1], 

args=(1, passb, stopb, gpass, gstop, 

'butter'), 

disp=0) 

passb[1] = wp1 

nat = ((stopb * (passb[0] - passb[1])) / 

(stopb ** 2 - passb[0] * passb[1])) 

elif filter_type == 4: # pass 

nat = ((stopb ** 2 - passb[0] * passb[1]) / 

(stopb * (passb[0] - passb[1]))) 

 

nat = min(abs(nat)) 

 

GSTOP = 10 ** (0.1 * abs(gstop)) 

GPASS = 10 ** (0.1 * abs(gpass)) 

ord = int(ceil(log10((GSTOP - 1.0) / (GPASS - 1.0)) / (2 * log10(nat)))) 

 

# Find the Butterworth natural frequency WN (or the "3dB" frequency") 

# to give exactly gpass at passb. 

try: 

W0 = (GPASS - 1.0) ** (-1.0 / (2.0 * ord)) 

except ZeroDivisionError: 

W0 = 1.0 

print("Warning, order is zero...check input parameters.") 

 

# now convert this frequency back from lowpass prototype 

# to the original analog filter 

 

if filter_type == 1: # low 

WN = W0 * passb 

elif filter_type == 2: # high 

WN = passb / W0 

elif filter_type == 3: # stop 

WN = numpy.zeros(2, float) 

discr = sqrt((passb[1] - passb[0]) ** 2 + 

4 * W0 ** 2 * passb[0] * passb[1]) 

WN[0] = ((passb[1] - passb[0]) + discr) / (2 * W0) 

WN[1] = ((passb[1] - passb[0]) - discr) / (2 * W0) 

WN = numpy.sort(abs(WN)) 

elif filter_type == 4: # pass 

W0 = numpy.array([-W0, W0], float) 

WN = (-W0 * (passb[1] - passb[0]) / 2.0 + 

sqrt(W0 ** 2 / 4.0 * (passb[1] - passb[0]) ** 2 + 

passb[0] * passb[1])) 

WN = numpy.sort(abs(WN)) 

else: 

raise ValueError("Bad type: %s" % filter_type) 

 

if not analog: 

wn = (2.0 / pi) * arctan(WN) 

else: 

wn = WN 

 

if len(wn) == 1: 

wn = wn[0] 

return ord, wn 

 

 

def cheb1ord(wp, ws, gpass, gstop, analog=False): 

"""Chebyshev type I filter order selection. 

 

Return the order of the lowest order digital or analog Chebyshev Type I 

filter that loses no more than `gpass` dB in the passband and has at 

least `gstop` dB attenuation in the stopband. 

 

Parameters 

---------- 

wp, ws : float 

Passband and stopband edge frequencies. 

For digital filters, these are normalized from 0 to 1, where 1 is the 

Nyquist frequency, pi radians/sample. (`wp` and `ws` are thus in 

half-cycles / sample.) For example: 

 

- Lowpass: wp = 0.2, ws = 0.3 

- Highpass: wp = 0.3, ws = 0.2 

- Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] 

- Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] 

 

For analog filters, `wp` and `ws` are angular frequencies (e.g. rad/s). 

 

gpass : float 

The maximum loss in the passband (dB). 

gstop : float 

The minimum attenuation in the stopband (dB). 

analog : bool, optional 

When True, return an analog filter, otherwise a digital filter is 

returned. 

 

Returns 

------- 

ord : int 

The lowest order for a Chebyshev type I filter that meets specs. 

wn : ndarray or float 

The Chebyshev natural frequency (the "3dB frequency") for use with 

`cheby1` to give filter results. 

 

See Also 

-------- 

cheby1 : Filter design using order and critical points 

buttord : Find order and critical points from passband and stopband spec 

cheb2ord, ellipord 

iirfilter : General filter design using order and critical frequencies 

iirdesign : General filter design using passband and stopband spec 

 

Examples 

-------- 

Design a digital lowpass filter such that the passband is within 3 dB up 

to 0.2*(fs/2), while rejecting at least -40 dB above 0.3*(fs/2). Plot its 

frequency response, showing the passband and stopband constraints in gray. 

 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

 

>>> N, Wn = signal.cheb1ord(0.2, 0.3, 3, 40) 

>>> b, a = signal.cheby1(N, 3, Wn, 'low') 

>>> w, h = signal.freqz(b, a) 

>>> plt.semilogx(w / np.pi, 20 * np.log10(abs(h))) 

>>> plt.title('Chebyshev I lowpass filter fit to constraints') 

>>> plt.xlabel('Normalized frequency') 

>>> plt.ylabel('Amplitude [dB]') 

>>> plt.grid(which='both', axis='both') 

>>> plt.fill([.01, 0.2, 0.2, .01], [-3, -3, -99, -99], '0.9', lw=0) # stop 

>>> plt.fill([0.3, 0.3, 2, 2], [ 9, -40, -40, 9], '0.9', lw=0) # pass 

>>> plt.axis([0.08, 1, -60, 3]) 

>>> plt.show() 

 

""" 

wp = atleast_1d(wp) 

ws = atleast_1d(ws) 

filter_type = 2 * (len(wp) - 1) 

if wp[0] < ws[0]: 

filter_type += 1 

else: 

filter_type += 2 

 

# Pre-warp frequencies for digital filter design 

if not analog: 

passb = tan(pi * wp / 2.0) 

stopb = tan(pi * ws / 2.0) 

else: 

passb = wp * 1.0 

stopb = ws * 1.0 

 

if filter_type == 1: # low 

nat = stopb / passb 

elif filter_type == 2: # high 

nat = passb / stopb 

elif filter_type == 3: # stop 

wp0 = optimize.fminbound(band_stop_obj, passb[0], stopb[0] - 1e-12, 

args=(0, passb, stopb, gpass, gstop, 'cheby'), 

disp=0) 

passb[0] = wp0 

wp1 = optimize.fminbound(band_stop_obj, stopb[1] + 1e-12, passb[1], 

args=(1, passb, stopb, gpass, gstop, 'cheby'), 

disp=0) 

passb[1] = wp1 

nat = ((stopb * (passb[0] - passb[1])) / 

(stopb ** 2 - passb[0] * passb[1])) 

elif filter_type == 4: # pass 

nat = ((stopb ** 2 - passb[0] * passb[1]) / 

(stopb * (passb[0] - passb[1]))) 

 

nat = min(abs(nat)) 

 

GSTOP = 10 ** (0.1 * abs(gstop)) 

GPASS = 10 ** (0.1 * abs(gpass)) 

ord = int(ceil(arccosh(sqrt((GSTOP - 1.0) / (GPASS - 1.0))) / 

arccosh(nat))) 

 

# Natural frequencies are just the passband edges 

if not analog: 

wn = (2.0 / pi) * arctan(passb) 

else: 

wn = passb 

 

if len(wn) == 1: 

wn = wn[0] 

return ord, wn 

 

 

def cheb2ord(wp, ws, gpass, gstop, analog=False): 

"""Chebyshev type II filter order selection. 

 

Return the order of the lowest order digital or analog Chebyshev Type II 

filter that loses no more than `gpass` dB in the passband and has at least 

`gstop` dB attenuation in the stopband. 

 

Parameters 

---------- 

wp, ws : float 

Passband and stopband edge frequencies. 

For digital filters, these are normalized from 0 to 1, where 1 is the 

Nyquist frequency, pi radians/sample. (`wp` and `ws` are thus in 

half-cycles / sample.) For example: 

 

- Lowpass: wp = 0.2, ws = 0.3 

- Highpass: wp = 0.3, ws = 0.2 

- Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] 

- Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] 

 

For analog filters, `wp` and `ws` are angular frequencies (e.g. rad/s). 

 

gpass : float 

The maximum loss in the passband (dB). 

gstop : float 

The minimum attenuation in the stopband (dB). 

analog : bool, optional 

When True, return an analog filter, otherwise a digital filter is 

returned. 

 

Returns 

------- 

ord : int 

The lowest order for a Chebyshev type II filter that meets specs. 

wn : ndarray or float 

The Chebyshev natural frequency (the "3dB frequency") for use with 

`cheby2` to give filter results. 

 

See Also 

-------- 

cheby2 : Filter design using order and critical points 

buttord : Find order and critical points from passband and stopband spec 

cheb1ord, ellipord 

iirfilter : General filter design using order and critical frequencies 

iirdesign : General filter design using passband and stopband spec 

 

Examples 

-------- 

Design a digital bandstop filter which rejects -60 dB from 0.2*(fs/2) to 

0.5*(fs/2), while staying within 3 dB below 0.1*(fs/2) or above 

0.6*(fs/2). Plot its frequency response, showing the passband and 

stopband constraints in gray. 

 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

 

>>> N, Wn = signal.cheb2ord([0.1, 0.6], [0.2, 0.5], 3, 60) 

>>> b, a = signal.cheby2(N, 60, Wn, 'stop') 

>>> w, h = signal.freqz(b, a) 

>>> plt.semilogx(w / np.pi, 20 * np.log10(abs(h))) 

>>> plt.title('Chebyshev II bandstop filter fit to constraints') 

>>> plt.xlabel('Normalized frequency') 

>>> plt.ylabel('Amplitude [dB]') 

>>> plt.grid(which='both', axis='both') 

>>> plt.fill([.01, .1, .1, .01], [-3, -3, -99, -99], '0.9', lw=0) # stop 

>>> plt.fill([.2, .2, .5, .5], [ 9, -60, -60, 9], '0.9', lw=0) # pass 

>>> plt.fill([.6, .6, 2, 2], [-99, -3, -3, -99], '0.9', lw=0) # stop 

>>> plt.axis([0.06, 1, -80, 3]) 

>>> plt.show() 

 

""" 

wp = atleast_1d(wp) 

ws = atleast_1d(ws) 

filter_type = 2 * (len(wp) - 1) 

if wp[0] < ws[0]: 

filter_type += 1 

else: 

filter_type += 2 

 

# Pre-warp frequencies for digital filter design 

if not analog: 

passb = tan(pi * wp / 2.0) 

stopb = tan(pi * ws / 2.0) 

else: 

passb = wp * 1.0 

stopb = ws * 1.0 

 

if filter_type == 1: # low 

nat = stopb / passb 

elif filter_type == 2: # high 

nat = passb / stopb 

elif filter_type == 3: # stop 

wp0 = optimize.fminbound(band_stop_obj, passb[0], stopb[0] - 1e-12, 

args=(0, passb, stopb, gpass, gstop, 'cheby'), 

disp=0) 

passb[0] = wp0 

wp1 = optimize.fminbound(band_stop_obj, stopb[1] + 1e-12, passb[1], 

args=(1, passb, stopb, gpass, gstop, 'cheby'), 

disp=0) 

passb[1] = wp1 

nat = ((stopb * (passb[0] - passb[1])) / 

(stopb ** 2 - passb[0] * passb[1])) 

elif filter_type == 4: # pass 

nat = ((stopb ** 2 - passb[0] * passb[1]) / 

(stopb * (passb[0] - passb[1]))) 

 

nat = min(abs(nat)) 

 

GSTOP = 10 ** (0.1 * abs(gstop)) 

GPASS = 10 ** (0.1 * abs(gpass)) 

ord = int(ceil(arccosh(sqrt((GSTOP - 1.0) / (GPASS - 1.0))) / 

arccosh(nat))) 

 

# Find frequency where analog response is -gpass dB. 

# Then convert back from low-pass prototype to the original filter. 

 

new_freq = cosh(1.0 / ord * arccosh(sqrt((GSTOP - 1.0) / (GPASS - 1.0)))) 

new_freq = 1.0 / new_freq 

 

if filter_type == 1: 

nat = passb / new_freq 

elif filter_type == 2: 

nat = passb * new_freq 

elif filter_type == 3: 

nat = numpy.zeros(2, float) 

nat[0] = (new_freq / 2.0 * (passb[0] - passb[1]) + 

sqrt(new_freq ** 2 * (passb[1] - passb[0]) ** 2 / 4.0 + 

passb[1] * passb[0])) 

nat[1] = passb[1] * passb[0] / nat[0] 

elif filter_type == 4: 

nat = numpy.zeros(2, float) 

nat[0] = (1.0 / (2.0 * new_freq) * (passb[0] - passb[1]) + 

sqrt((passb[1] - passb[0]) ** 2 / (4.0 * new_freq ** 2) + 

passb[1] * passb[0])) 

nat[1] = passb[0] * passb[1] / nat[0] 

 

if not analog: 

wn = (2.0 / pi) * arctan(nat) 

else: 

wn = nat 

 

if len(wn) == 1: 

wn = wn[0] 

return ord, wn 

 

 

def ellipord(wp, ws, gpass, gstop, analog=False): 

"""Elliptic (Cauer) filter order selection. 

 

Return the order of the lowest order digital or analog elliptic filter 

that loses no more than `gpass` dB in the passband and has at least 

`gstop` dB attenuation in the stopband. 

 

Parameters 

---------- 

wp, ws : float 

Passband and stopband edge frequencies. 

For digital filters, these are normalized from 0 to 1, where 1 is the 

Nyquist frequency, pi radians/sample. (`wp` and `ws` are thus in 

half-cycles / sample.) For example: 

 

- Lowpass: wp = 0.2, ws = 0.3 

- Highpass: wp = 0.3, ws = 0.2 

- Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] 

- Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] 

 

For analog filters, `wp` and `ws` are angular frequencies (e.g. rad/s). 

 

gpass : float 

The maximum loss in the passband (dB). 

gstop : float 

The minimum attenuation in the stopband (dB). 

analog : bool, optional 

When True, return an analog filter, otherwise a digital filter is 

returned. 

 

Returns 

------- 

ord : int 

The lowest order for an Elliptic (Cauer) filter that meets specs. 

wn : ndarray or float 

The Chebyshev natural frequency (the "3dB frequency") for use with 

`ellip` to give filter results. 

 

See Also 

-------- 

ellip : Filter design using order and critical points 

buttord : Find order and critical points from passband and stopband spec 

cheb1ord, cheb2ord 

iirfilter : General filter design using order and critical frequencies 

iirdesign : General filter design using passband and stopband spec 

 

Examples 

-------- 

Design an analog highpass filter such that the passband is within 3 dB 

above 30 rad/s, while rejecting -60 dB at 10 rad/s. Plot its 

frequency response, showing the passband and stopband constraints in gray. 

 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

 

>>> N, Wn = signal.ellipord(30, 10, 3, 60, True) 

>>> b, a = signal.ellip(N, 3, 60, Wn, 'high', True) 

>>> w, h = signal.freqs(b, a, np.logspace(0, 3, 500)) 

>>> plt.semilogx(w, 20 * np.log10(abs(h))) 

>>> plt.title('Elliptical highpass filter fit to constraints') 

>>> plt.xlabel('Frequency [radians / second]') 

>>> plt.ylabel('Amplitude [dB]') 

>>> plt.grid(which='both', axis='both') 

>>> plt.fill([.1, 10, 10, .1], [1e4, 1e4, -60, -60], '0.9', lw=0) # stop 

>>> plt.fill([30, 30, 1e9, 1e9], [-99, -3, -3, -99], '0.9', lw=0) # pass 

>>> plt.axis([1, 300, -80, 3]) 

>>> plt.show() 

 

""" 

wp = atleast_1d(wp) 

ws = atleast_1d(ws) 

filter_type = 2 * (len(wp) - 1) 

filter_type += 1 

if wp[0] >= ws[0]: 

filter_type += 1 

 

# Pre-warp frequencies for digital filter design 

if not analog: 

passb = tan(pi * wp / 2.0) 

stopb = tan(pi * ws / 2.0) 

else: 

passb = wp * 1.0 

stopb = ws * 1.0 

 

if filter_type == 1: # low 

nat = stopb / passb 

elif filter_type == 2: # high 

nat = passb / stopb 

elif filter_type == 3: # stop 

wp0 = optimize.fminbound(band_stop_obj, passb[0], stopb[0] - 1e-12, 

args=(0, passb, stopb, gpass, gstop, 'ellip'), 

disp=0) 

passb[0] = wp0 

wp1 = optimize.fminbound(band_stop_obj, stopb[1] + 1e-12, passb[1], 

args=(1, passb, stopb, gpass, gstop, 'ellip'), 

disp=0) 

passb[1] = wp1 

nat = ((stopb * (passb[0] - passb[1])) / 

(stopb ** 2 - passb[0] * passb[1])) 

elif filter_type == 4: # pass 

nat = ((stopb ** 2 - passb[0] * passb[1]) / 

(stopb * (passb[0] - passb[1]))) 

 

nat = min(abs(nat)) 

 

GSTOP = 10 ** (0.1 * gstop) 

GPASS = 10 ** (0.1 * gpass) 

arg1 = sqrt((GPASS - 1.0) / (GSTOP - 1.0)) 

arg0 = 1.0 / nat 

d0 = special.ellipk([arg0 ** 2, 1 - arg0 ** 2]) 

d1 = special.ellipk([arg1 ** 2, 1 - arg1 ** 2]) 

ord = int(ceil(d0[0] * d1[1] / (d0[1] * d1[0]))) 

 

if not analog: 

wn = arctan(passb) * 2.0 / pi 

else: 

wn = passb 

 

if len(wn) == 1: 

wn = wn[0] 

return ord, wn 

 

 

def buttap(N): 

"""Return (z,p,k) for analog prototype of Nth-order Butterworth filter. 

 

The filter will have an angular (e.g. rad/s) cutoff frequency of 1. 

 

See Also 

-------- 

butter : Filter design function using this prototype 

 

""" 

if abs(int(N)) != N: 

raise ValueError("Filter order must be a nonnegative integer") 

z = numpy.array([]) 

m = numpy.arange(-N+1, N, 2) 

# Middle value is 0 to ensure an exactly real pole 

p = -numpy.exp(1j * pi * m / (2 * N)) 

k = 1 

return z, p, k 

 

 

def cheb1ap(N, rp): 

""" 

Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter. 

 

The returned filter prototype has `rp` decibels of ripple in the passband. 

 

The filter's angular (e.g. rad/s) cutoff frequency is normalized to 1, 

defined as the point at which the gain first drops below ``-rp``. 

 

See Also 

-------- 

cheby1 : Filter design function using this prototype 

 

""" 

if abs(int(N)) != N: 

raise ValueError("Filter order must be a nonnegative integer") 

elif N == 0: 

# Avoid divide-by-zero error 

# Even order filters have DC gain of -rp dB 

return numpy.array([]), numpy.array([]), 10**(-rp/20) 

z = numpy.array([]) 

 

# Ripple factor (epsilon) 

eps = numpy.sqrt(10 ** (0.1 * rp) - 1.0) 

mu = 1.0 / N * arcsinh(1 / eps) 

 

# Arrange poles in an ellipse on the left half of the S-plane 

m = numpy.arange(-N+1, N, 2) 

theta = pi * m / (2*N) 

p = -sinh(mu + 1j*theta) 

 

k = numpy.prod(-p, axis=0).real 

if N % 2 == 0: 

k = k / sqrt((1 + eps * eps)) 

 

return z, p, k 

 

 

def cheb2ap(N, rs): 

""" 

Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter. 

 

The returned filter prototype has `rs` decibels of ripple in the stopband. 

 

The filter's angular (e.g. rad/s) cutoff frequency is normalized to 1, 

defined as the point at which the gain first reaches ``-rs``. 

 

See Also 

-------- 

cheby2 : Filter design function using this prototype 

 

""" 

if abs(int(N)) != N: 

raise ValueError("Filter order must be a nonnegative integer") 

elif N == 0: 

# Avoid divide-by-zero warning 

return numpy.array([]), numpy.array([]), 1 

 

# Ripple factor (epsilon) 

de = 1.0 / sqrt(10 ** (0.1 * rs) - 1) 

mu = arcsinh(1.0 / de) / N 

 

if N % 2: 

m = numpy.concatenate((numpy.arange(-N+1, 0, 2), 

numpy.arange(2, N, 2))) 

else: 

m = numpy.arange(-N+1, N, 2) 

 

z = -conjugate(1j / sin(m * pi / (2.0 * N))) 

 

# Poles around the unit circle like Butterworth 

p = -exp(1j * pi * numpy.arange(-N+1, N, 2) / (2 * N)) 

# Warp into Chebyshev II 

p = sinh(mu) * p.real + 1j * cosh(mu) * p.imag 

p = 1.0 / p 

 

k = (numpy.prod(-p, axis=0) / numpy.prod(-z, axis=0)).real 

return z, p, k 

 

 

EPSILON = 2e-16 

 

 

def _vratio(u, ineps, mp): 

[s, c, d, phi] = special.ellipj(u, mp) 

ret = abs(ineps - s / c) 

return ret 

 

 

def _kratio(m, k_ratio): 

m = float(m) 

if m < 0: 

m = 0.0 

if m > 1: 

m = 1.0 

if abs(m) > EPSILON and (abs(m) + EPSILON) < 1: 

k = special.ellipk([m, 1 - m]) 

r = k[0] / k[1] - k_ratio 

elif abs(m) > EPSILON: 

r = -k_ratio 

else: 

r = 1e20 

return abs(r) 

 

 

def ellipap(N, rp, rs): 

"""Return (z,p,k) of Nth-order elliptic analog lowpass filter. 

 

The filter is a normalized prototype that has `rp` decibels of ripple 

in the passband and a stopband `rs` decibels down. 

 

The filter's angular (e.g. rad/s) cutoff frequency is normalized to 1, 

defined as the point at which the gain first drops below ``-rp``. 

 

See Also 

-------- 

ellip : Filter design function using this prototype 

 

References 

---------- 

.. [1] Lutova, Tosic, and Evans, "Filter Design for Signal Processing", 

Chapters 5 and 12. 

 

""" 

if abs(int(N)) != N: 

raise ValueError("Filter order must be a nonnegative integer") 

elif N == 0: 

# Avoid divide-by-zero warning 

# Even order filters have DC gain of -rp dB 

return numpy.array([]), numpy.array([]), 10**(-rp/20) 

elif N == 1: 

p = -sqrt(1.0 / (10 ** (0.1 * rp) - 1.0)) 

k = -p 

z = [] 

return asarray(z), asarray(p), k 

 

eps = numpy.sqrt(10 ** (0.1 * rp) - 1) 

ck1 = eps / numpy.sqrt(10 ** (0.1 * rs) - 1) 

ck1p = numpy.sqrt(1 - ck1 * ck1) 

if ck1p == 1: 

raise ValueError("Cannot design a filter with given rp and rs" 

" specifications.") 

 

val = special.ellipk([ck1 * ck1, ck1p * ck1p]) 

if abs(1 - ck1p * ck1p) < EPSILON: 

krat = 0 

else: 

krat = N * val[0] / val[1] 

 

m = optimize.fmin(_kratio, [0.5], args=(krat,), maxfun=250, maxiter=250, 

disp=0) 

if m < 0 or m > 1: 

m = optimize.fminbound(_kratio, 0, 1, args=(krat,), maxfun=250, 

disp=0) 

 

capk = special.ellipk(m) 

 

j = numpy.arange(1 - N % 2, N, 2) 

jj = len(j) 

 

[s, c, d, phi] = special.ellipj(j * capk / N, m * numpy.ones(jj)) 

snew = numpy.compress(abs(s) > EPSILON, s, axis=-1) 

z = 1.0 / (sqrt(m) * snew) 

z = 1j * z 

z = numpy.concatenate((z, conjugate(z))) 

 

r = optimize.fmin(_vratio, special.ellipk(m), args=(1. / eps, ck1p * ck1p), 

maxfun=250, maxiter=250, disp=0) 

v0 = capk * r / (N * val[0]) 

 

[sv, cv, dv, phi] = special.ellipj(v0, 1 - m) 

p = -(c * d * sv * cv + 1j * s * dv) / (1 - (d * sv) ** 2.0) 

 

if N % 2: 

newp = numpy.compress(abs(p.imag) > EPSILON * 

numpy.sqrt(numpy.sum(p * numpy.conjugate(p), 

axis=0).real), 

p, axis=-1) 

p = numpy.concatenate((p, conjugate(newp))) 

else: 

p = numpy.concatenate((p, conjugate(p))) 

 

k = (numpy.prod(-p, axis=0) / numpy.prod(-z, axis=0)).real 

if N % 2 == 0: 

k = k / numpy.sqrt((1 + eps * eps)) 

 

return z, p, k 

 

 

# TODO: Make this a real public function scipy.misc.ff 

def _falling_factorial(x, n): 

r""" 

Return the factorial of `x` to the `n` falling. 

 

This is defined as: 

 

.. math:: x^\underline n = (x)_n = x (x-1) \cdots (x-n+1) 

 

This can more efficiently calculate ratios of factorials, since: 

 

n!/m! == falling_factorial(n, n-m) 

 

where n >= m 

 

skipping the factors that cancel out 

 

the usual factorial n! == ff(n, n) 

""" 

val = 1 

for k in range(x - n + 1, x + 1): 

val *= k 

return val 

 

 

def _bessel_poly(n, reverse=False): 

""" 

Return the coefficients of Bessel polynomial of degree `n` 

 

If `reverse` is true, a reverse Bessel polynomial is output. 

 

Output is a list of coefficients: 

[1] = 1 

[1, 1] = 1*s + 1 

[1, 3, 3] = 1*s^2 + 3*s + 3 

[1, 6, 15, 15] = 1*s^3 + 6*s^2 + 15*s + 15 

[1, 10, 45, 105, 105] = 1*s^4 + 10*s^3 + 45*s^2 + 105*s + 105 

etc. 

 

Output is a Python list of arbitrary precision long ints, so n is only 

limited by your hardware's memory. 

 

Sequence is http://oeis.org/A001498 , and output can be confirmed to 

match http://oeis.org/A001498/b001498.txt : 

 

>>> i = 0 

>>> for n in range(51): 

... for x in _bessel_poly(n, reverse=True): 

... print(i, x) 

... i += 1 

 

""" 

if abs(int(n)) != n: 

raise ValueError("Polynomial order must be a nonnegative integer") 

else: 

n = int(n) # np.int32 doesn't work, for instance 

 

out = [] 

for k in range(n + 1): 

num = _falling_factorial(2*n - k, n) 

den = 2**(n - k) * factorial(k, exact=True) 

out.append(num // den) 

 

if reverse: 

return out[::-1] 

else: 

return out 

 

 

def _campos_zeros(n): 

""" 

Return approximate zero locations of Bessel polynomials y_n(x) for order 

`n` using polynomial fit (Campos-Calderon 2011) 

""" 

if n == 1: 

return asarray([-1+0j]) 

 

s = npp_polyval(n, [0, 0, 2, 0, -3, 1]) 

b3 = npp_polyval(n, [16, -8]) / s 

b2 = npp_polyval(n, [-24, -12, 12]) / s 

b1 = npp_polyval(n, [8, 24, -12, -2]) / s 

b0 = npp_polyval(n, [0, -6, 0, 5, -1]) / s 

 

r = npp_polyval(n, [0, 0, 2, 1]) 

a1 = npp_polyval(n, [-6, -6]) / r 

a2 = 6 / r 

 

k = np.arange(1, n+1) 

x = npp_polyval(k, [0, a1, a2]) 

y = npp_polyval(k, [b0, b1, b2, b3]) 

 

return x + 1j*y 

 

 

def _aberth(f, fp, x0, tol=1e-15, maxiter=50): 

""" 

Given a function `f`, its first derivative `fp`, and a set of initial 

guesses `x0`, simultaneously find the roots of the polynomial using the 

Aberth-Ehrlich method. 

 

``len(x0)`` should equal the number of roots of `f`. 

 

(This is not a complete implementation of Bini's algorithm.) 

""" 

 

N = len(x0) 

 

x = array(x0, complex) 

beta = np.empty_like(x0) 

 

for iteration in range(maxiter): 

alpha = -f(x) / fp(x) # Newton's method 

 

# Model "repulsion" between zeros 

for k in range(N): 

beta[k] = np.sum(1/(x[k] - x[k+1:])) 

beta[k] += np.sum(1/(x[k] - x[:k])) 

 

x += alpha / (1 + alpha * beta) 

 

if not all(np.isfinite(x)): 

raise RuntimeError('Root-finding calculation failed') 

 

# Mekwi: The iterative process can be stopped when |hn| has become 

# less than the largest error one is willing to permit in the root. 

if all(abs(alpha) <= tol): 

break 

else: 

raise Exception('Zeros failed to converge') 

 

return x 

 

 

def _bessel_zeros(N): 

""" 

Find zeros of ordinary Bessel polynomial of order `N`, by root-finding of 

modified Bessel function of the second kind 

""" 

if N == 0: 

return asarray([]) 

 

# Generate starting points 

x0 = _campos_zeros(N) 

 

# Zeros are the same for exp(1/x)*K_{N+0.5}(1/x) and Nth-order ordinary 

# Bessel polynomial y_N(x) 

def f(x): 

return special.kve(N+0.5, 1/x) 

 

# First derivative of above 

def fp(x): 

return (special.kve(N-0.5, 1/x)/(2*x**2) - 

special.kve(N+0.5, 1/x)/(x**2) + 

special.kve(N+1.5, 1/x)/(2*x**2)) 

 

# Starting points converge to true zeros 

x = _aberth(f, fp, x0) 

 

# Improve precision using Newton's method on each 

for i in range(len(x)): 

x[i] = optimize.newton(f, x[i], fp, tol=1e-15) 

 

# Average complex conjugates to make them exactly symmetrical 

x = np.mean((x, x[::-1].conj()), 0) 

 

# Zeros should sum to -1 

if abs(np.sum(x) + 1) > 1e-15: 

raise RuntimeError('Generated zeros are inaccurate') 

 

return x 

 

 

def _norm_factor(p, k): 

""" 

Numerically find frequency shift to apply to delay-normalized filter such 

that -3 dB point is at 1 rad/sec. 

 

`p` is an array_like of polynomial poles 

`k` is a float gain 

 

First 10 values are listed in "Bessel Scale Factors" table, 

"Bessel Filters Polynomials, Poles and Circuit Elements 2003, C. Bond." 

""" 

p = asarray(p, dtype=complex) 

 

def G(w): 

""" 

Gain of filter 

""" 

return abs(k / prod(1j*w - p)) 

 

def cutoff(w): 

""" 

When gain = -3 dB, return 0 

""" 

return G(w) - 1/np.sqrt(2) 

 

return optimize.newton(cutoff, 1.5) 

 

 

def besselap(N, norm='phase'): 

""" 

Return (z,p,k) for analog prototype of an Nth-order Bessel filter. 

 

Parameters 

---------- 

N : int 

The order of the filter. 

norm : {'phase', 'delay', 'mag'}, optional 

Frequency normalization: 

 

``phase`` 

The filter is normalized such that the phase response reaches its 

midpoint at an angular (e.g. rad/s) cutoff frequency of 1. This 

happens for both low-pass and high-pass filters, so this is the 

"phase-matched" case. [6]_ 

 

The magnitude response asymptotes are the same as a Butterworth 

filter of the same order with a cutoff of `Wn`. 

 

This is the default, and matches MATLAB's implementation. 

 

``delay`` 

The filter is normalized such that the group delay in the passband 

is 1 (e.g. 1 second). This is the "natural" type obtained by 

solving Bessel polynomials 

 

``mag`` 

The filter is normalized such that the gain magnitude is -3 dB at 

angular frequency 1. This is called "frequency normalization" by 

Bond. [1]_ 

 

.. versionadded:: 0.18.0 

 

Returns 

------- 

z : ndarray 

Zeros of the transfer function. Is always an empty array. 

p : ndarray 

Poles of the transfer function. 

k : scalar 

Gain of the transfer function. For phase-normalized, this is always 1. 

 

See Also 

-------- 

bessel : Filter design function using this prototype 

 

Notes 

----- 

To find the pole locations, approximate starting points are generated [2]_ 

for the zeros of the ordinary Bessel polynomial [3]_, then the 

Aberth-Ehrlich method [4]_ [5]_ is used on the Kv(x) Bessel function to 

calculate more accurate zeros, and these locations are then inverted about 

the unit circle. 

 

References 

---------- 

.. [1] C.R. Bond, "Bessel Filter Constants", 

http://www.crbond.com/papers/bsf.pdf 

.. [2] Campos and Calderon, "Approximate closed-form formulas for the 

zeros of the Bessel Polynomials", :arXiv:`1105.0957`. 

.. [3] Thomson, W.E., "Delay Networks having Maximally Flat Frequency 

Characteristics", Proceedings of the Institution of Electrical 

Engineers, Part III, November 1949, Vol. 96, No. 44, pp. 487-490. 

.. [4] Aberth, "Iteration Methods for Finding all Zeros of a Polynomial 

Simultaneously", Mathematics of Computation, Vol. 27, No. 122, 

April 1973 

.. [5] Ehrlich, "A modified Newton method for polynomials", Communications 

of the ACM, Vol. 10, Issue 2, pp. 107-108, Feb. 1967, 

:DOI:`10.1145/363067.363115` 

.. [6] Miller and Bohn, "A Bessel Filter Crossover, and Its Relation to 

Others", RaneNote 147, 1998, http://www.rane.com/note147.html 

 

""" 

if abs(int(N)) != N: 

raise ValueError("Filter order must be a nonnegative integer") 

if N == 0: 

p = [] 

k = 1 

else: 

# Find roots of reverse Bessel polynomial 

p = 1/_bessel_zeros(N) 

 

a_last = _falling_factorial(2*N, N) // 2**N 

 

# Shift them to a different normalization if required 

if norm in ('delay', 'mag'): 

# Normalized for group delay of 1 

k = a_last 

if norm == 'mag': 

# -3 dB magnitude point is at 1 rad/sec 

norm_factor = _norm_factor(p, k) 

p /= norm_factor 

k = norm_factor**-N * a_last 

elif norm == 'phase': 

# Phase-matched (1/2 max phase shift at 1 rad/sec) 

# Asymptotes are same as Butterworth filter 

p *= 10**(-math.log10(a_last)/N) 

k = 1 

else: 

raise ValueError('normalization not understood') 

 

return asarray([]), asarray(p, dtype=complex), float(k) 

 

 

def iirnotch(w0, Q): 

""" 

Design second-order IIR notch digital filter. 

 

A notch filter is a band-stop filter with a narrow bandwidth 

(high quality factor). It rejects a narrow frequency band and 

leaves the rest of the spectrum little changed. 

 

Parameters 

---------- 

w0 : float 

Normalized frequency to remove from a signal. It is a 

scalar that must satisfy ``0 < w0 < 1``, with ``w0 = 1`` 

corresponding to half of the sampling frequency. 

Q : float 

Quality factor. Dimensionless parameter that characterizes 

notch filter -3 dB bandwidth ``bw`` relative to its center 

frequency, ``Q = w0/bw``. 

 

Returns 

------- 

b, a : ndarray, ndarray 

Numerator (``b``) and denominator (``a``) polynomials 

of the IIR filter. 

 

See Also 

-------- 

iirpeak 

 

Notes 

----- 

.. versionadded:: 0.19.0 

 

References 

---------- 

.. [1] Sophocles J. Orfanidis, "Introduction To Signal Processing", 

Prentice-Hall, 1996 

 

Examples 

-------- 

Design and plot filter to remove the 60Hz component from a 

signal sampled at 200Hz, using a quality factor Q = 30 

 

>>> from scipy import signal 

>>> import numpy as np 

>>> import matplotlib.pyplot as plt 

 

>>> fs = 200.0 # Sample frequency (Hz) 

>>> f0 = 60.0 # Frequency to be removed from signal (Hz) 

>>> Q = 30.0 # Quality factor 

>>> w0 = f0/(fs/2) # Normalized Frequency 

>>> # Design notch filter 

>>> b, a = signal.iirnotch(w0, Q) 

 

>>> # Frequency response 

>>> w, h = signal.freqz(b, a) 

>>> # Generate frequency axis 

>>> freq = w*fs/(2*np.pi) 

>>> # Plot 

>>> fig, ax = plt.subplots(2, 1, figsize=(8, 6)) 

>>> ax[0].plot(freq, 20*np.log10(abs(h)), color='blue') 

>>> ax[0].set_title("Frequency Response") 

>>> ax[0].set_ylabel("Amplitude (dB)", color='blue') 

>>> ax[0].set_xlim([0, 100]) 

>>> ax[0].set_ylim([-25, 10]) 

>>> ax[0].grid() 

>>> ax[1].plot(freq, np.unwrap(np.angle(h))*180/np.pi, color='green') 

>>> ax[1].set_ylabel("Angle (degrees)", color='green') 

>>> ax[1].set_xlabel("Frequency (Hz)") 

>>> ax[1].set_xlim([0, 100]) 

>>> ax[1].set_yticks([-90, -60, -30, 0, 30, 60, 90]) 

>>> ax[1].set_ylim([-90, 90]) 

>>> ax[1].grid() 

>>> plt.show() 

""" 

 

return _design_notch_peak_filter(w0, Q, "notch") 

 

 

def iirpeak(w0, Q): 

""" 

Design second-order IIR peak (resonant) digital filter. 

 

A peak filter is a band-pass filter with a narrow bandwidth 

(high quality factor). It rejects components outside a narrow 

frequency band. 

 

Parameters 

---------- 

w0 : float 

Normalized frequency to be retained in a signal. It is a 

scalar that must satisfy ``0 < w0 < 1``, with ``w0 = 1`` corresponding 

to half of the sampling frequency. 

Q : float 

Quality factor. Dimensionless parameter that characterizes 

peak filter -3 dB bandwidth ``bw`` relative to its center 

frequency, ``Q = w0/bw``. 

 

Returns 

------- 

b, a : ndarray, ndarray 

Numerator (``b``) and denominator (``a``) polynomials 

of the IIR filter. 

 

See Also 

-------- 

iirnotch 

 

Notes 

----- 

.. versionadded:: 0.19.0 

 

References 

---------- 

.. [1] Sophocles J. Orfanidis, "Introduction To Signal Processing", 

Prentice-Hall, 1996 

 

Examples 

-------- 

Design and plot filter to remove the frequencies other than the 300Hz 

component from a signal sampled at 1000Hz, using a quality factor Q = 30 

 

>>> from scipy import signal 

>>> import numpy as np 

>>> import matplotlib.pyplot as plt 

 

>>> fs = 1000.0 # Sample frequency (Hz) 

>>> f0 = 300.0 # Frequency to be retained (Hz) 

>>> Q = 30.0 # Quality factor 

>>> w0 = f0/(fs/2) # Normalized Frequency 

>>> # Design peak filter 

>>> b, a = signal.iirpeak(w0, Q) 

 

>>> # Frequency response 

>>> w, h = signal.freqz(b, a) 

>>> # Generate frequency axis 

>>> freq = w*fs/(2*np.pi) 

>>> # Plot 

>>> fig, ax = plt.subplots(2, 1, figsize=(8, 6)) 

>>> ax[0].plot(freq, 20*np.log10(abs(h)), color='blue') 

>>> ax[0].set_title("Frequency Response") 

>>> ax[0].set_ylabel("Amplitude (dB)", color='blue') 

>>> ax[0].set_xlim([0, 500]) 

>>> ax[0].set_ylim([-50, 10]) 

>>> ax[0].grid() 

>>> ax[1].plot(freq, np.unwrap(np.angle(h))*180/np.pi, color='green') 

>>> ax[1].set_ylabel("Angle (degrees)", color='green') 

>>> ax[1].set_xlabel("Frequency (Hz)") 

>>> ax[1].set_xlim([0, 500]) 

>>> ax[1].set_yticks([-90, -60, -30, 0, 30, 60, 90]) 

>>> ax[1].set_ylim([-90, 90]) 

>>> ax[1].grid() 

>>> plt.show() 

""" 

 

return _design_notch_peak_filter(w0, Q, "peak") 

 

 

def _design_notch_peak_filter(w0, Q, ftype): 

""" 

Design notch or peak digital filter. 

 

Parameters 

---------- 

w0 : float 

Normalized frequency to remove from a signal. It is a 

scalar that must satisfy ``0 < w0 < 1``, with ``w0 = 1`` 

corresponding to half of the sampling frequency. 

Q : float 

Quality factor. Dimensionless parameter that characterizes 

notch filter -3 dB bandwidth ``bw`` relative to its center 

frequency, ``Q = w0/bw``. 

ftype : str 

The type of IIR filter to design: 

 

- notch filter : ``notch`` 

- peak filter : ``peak`` 

 

Returns 

------- 

b, a : ndarray, ndarray 

Numerator (``b``) and denominator (``a``) polynomials 

of the IIR filter. 

""" 

 

# Guarantee that the inputs are floats 

w0 = float(w0) 

Q = float(Q) 

 

# Checks if w0 is within the range 

if w0 > 1.0 or w0 < 0.0: 

raise ValueError("w0 should be such that 0 < w0 < 1") 

 

# Get bandwidth 

bw = w0/Q 

 

# Normalize inputs 

bw = bw*np.pi 

w0 = w0*np.pi 

 

# Compute -3dB atenuation 

gb = 1/np.sqrt(2) 

 

if ftype == "notch": 

# Compute beta: formula 11.3.4 (p.575) from reference [1] 

beta = (np.sqrt(1.0-gb**2.0)/gb)*np.tan(bw/2.0) 

elif ftype == "peak": 

# Compute beta: formula 11.3.19 (p.579) from reference [1] 

beta = (gb/np.sqrt(1.0-gb**2.0))*np.tan(bw/2.0) 

else: 

raise ValueError("Unknown ftype.") 

 

# Compute gain: formula 11.3.6 (p.575) from reference [1] 

gain = 1.0/(1.0+beta) 

 

# Compute numerator b and denominator a 

# formulas 11.3.7 (p.575) and 11.3.21 (p.579) 

# from reference [1] 

if ftype == "notch": 

b = gain*np.array([1.0, -2.0*np.cos(w0), 1.0]) 

else: 

b = (1.0-gain)*np.array([1.0, 0.0, -1.0]) 

a = np.array([1.0, -2.0*gain*np.cos(w0), (2.0*gain-1.0)]) 

 

return b, a 

 

 

filter_dict = {'butter': [buttap, buttord], 

'butterworth': [buttap, buttord], 

 

'cauer': [ellipap, ellipord], 

'elliptic': [ellipap, ellipord], 

'ellip': [ellipap, ellipord], 

 

'bessel': [besselap], 

'bessel_phase': [besselap], 

'bessel_delay': [besselap], 

'bessel_mag': [besselap], 

 

'cheby1': [cheb1ap, cheb1ord], 

'chebyshev1': [cheb1ap, cheb1ord], 

'chebyshevi': [cheb1ap, cheb1ord], 

 

'cheby2': [cheb2ap, cheb2ord], 

'chebyshev2': [cheb2ap, cheb2ord], 

'chebyshevii': [cheb2ap, cheb2ord], 

} 

 

band_dict = {'band': 'bandpass', 

'bandpass': 'bandpass', 

'pass': 'bandpass', 

'bp': 'bandpass', 

 

'bs': 'bandstop', 

'bandstop': 'bandstop', 

'bands': 'bandstop', 

'stop': 'bandstop', 

 

'l': 'lowpass', 

'low': 'lowpass', 

'lowpass': 'lowpass', 

'lp': 'lowpass', 

 

'high': 'highpass', 

'highpass': 'highpass', 

'h': 'highpass', 

'hp': 'highpass', 

} 

 

bessel_norms = {'bessel': 'phase', 

'bessel_phase': 'phase', 

'bessel_delay': 'delay', 

'bessel_mag': 'mag'}