orthodrome
¶
- class Loc(lat, lon)[source]¶
Simple location representation.
- Attrib lat
Latitude in [deg].
- Attrib lon
Longitude in [deg].
- clip(x, mi, ma)[source]¶
Clip values of an array.
- Parameters
x (
numpy.ndarray
) – Continunous data to be clipped.mi (float) – Clip minimum.
ma (float) – Clip maximum.
- Returns
Clipped data.
- Return type
- wrap(x, mi, ma)[source]¶
Wrapping continuous data to fundamental phase values.
- Parameters
x (
numpy.ndarray
) – Continunous data to be wrapped.mi (float) – Minimum value of wrapped data.
ma (float) – Maximum value of wrapped data.
- Returns
Wrapped data.
- Return type
- cosdelta(*args)[source]¶
Cosine of the angular distance between two points
a
andb
on a sphere.This function (find implementation below) returns the cosine of the distance angle ‘delta’ between two points
a
andb
, coordinates of which are expected to be given in geographical coordinates and in degrees. For numerical stability a maximum of 1.0 is enforced.- Parameters
a (
pyrocko.orthodrome.Loc
) – Location point A.b (
pyrocko.orthodrome.Loc
) – Location point B.
- Returns
Cosdelta.
- Return type
- cosdelta_numpy(a_lats, a_lons, b_lats, b_lons)[source]¶
Cosine of the angular distance between two points
a
andb
on a sphere.This function returns the cosines of the distance angles delta between two points
a
andb
given asnumpy.ndarray
. The coordinates are expected to be given in geographical coordinates and in degrees. For numerical stability a maximum of1.0
is enforced.Please find the details of the implementation in the documentation of the function
pyrocko.orthodrome.cosdelta()
above.- Parameters
a_lats (
numpy.ndarray
) – Latitudes in [deg] point A.a_lons (
numpy.ndarray
) – Longitudes in [deg] point A.b_lats (
numpy.ndarray
) – Latitudes in [deg] point B.b_lons (
numpy.ndarray
,(N)
) – Longitudes in [deg] point B.
- Returns
Cosdelta.
- azimuth(*args)[source]¶
Azimuth calculation.
This function (find implementation below) returns azimuth … between points
a
andb
, coordinates of which are expected to be given in geographical coordinates and in degrees.- Parameters
a (
pyrocko.orthodrome.Loc
) – Location point A.b (
pyrocko.orthodrome.Loc
) – Location point B.
- Returns
Azimuth in degree
- azimuth_numpy(a_lats, a_lons, b_lats, b_lons, _cosdelta=None)[source]¶
Calculation of the azimuth (track angle) from a location A towards B.
This function returns azimuths (track angles) from locations A towards B given in
numpy.ndarray
. Coordinates are expected to be given in geographical coordinates and in degrees.Please find the details of the implementation in the documentation of the function
pyrocko.orthodrome.azimuth()
.- Parameters
a_lats (
numpy.ndarray
,(N)
) – Latitudes in [deg] point A.a_lons (
numpy.ndarray
,(N)
) – Longitudes in [deg] point A.b_lats (
numpy.ndarray
,(N)
) – Latitudes in [deg] point B.b_lons (
numpy.ndarray
,(N)
) – Longitudes in [deg] point B.
- Returns
Azimuths in [deg].
- Return type
numpy.ndarray
,(N)
- azibazi_numpy(a_lats, a_lons, b_lats, b_lons, implementation='c')[source]¶
Azimuth and backazimuth from location A towards B and back.
Arguments are given as
numpy.ndarray
.- Parameters
a_lats (
numpy.ndarray
) – Latitude(s) in [deg] of point A.a_lons (
numpy.ndarray
) – Longitude(s) in [deg] of point A.b_lats (
numpy.ndarray
) – Latitude(s) in [deg] of point B.b_lons (
numpy.ndarray
) – Longitude(s) in [deg] of point B.
- Returns
Azimuth(s) in [deg] from A to B, back azimuth(s) in [deg] from B to A.
- Return type
- azidist_numpy(*args)[source]¶
Calculation of the azimuth (track angle) and the distance from locations A towards B on a sphere.
The assisting functions used are
pyrocko.orthodrome.cosdelta()
andpyrocko.orthodrome.azimuth()
- Parameters
a_lats (
numpy.ndarray
,(N)
) – Latitudes in [deg] point A.a_lons (
numpy.ndarray
,(N)
) – Longitudes in [deg] point A.b_lats (
numpy.ndarray
,(N)
) – Latitudes in [deg] point B.b_lons (
numpy.ndarray
,(N)
) – Longitudes in [deg] point B.
- Returns
Azimuths in [deg], distances in [deg].
- Return type
numpy.ndarray
,(2xN)
- distance_accurate50m(*args, **kwargs)[source]¶
Accurate distance calculation based on a spheroid of rotation.
Function returns distance in meter between points A and B, coordinates of which must be given in geographical coordinates and in degrees. The returned distance should be accurate to 50 m using WGS84. Values for the Earth’s equator radius and the Earth’s oblateness (
f_oblate
) are defined in the pyrocko configuration filepyrocko.config
.From wikipedia (http://de.wikipedia.org/wiki/Orthodrome), based on:
Meeus, J.: Astronomical Algorithms, S 85, Willmann-Bell, Richmond 2000 (2nd ed., 2nd printing), ISBN 0-943396-61-1
The spherical-earth distance D between A and B, can be given with:
The oblateness of the Earth requires some correction with correction factors h1 and h2:
- Parameters
a (
pyrocko.orthodrome.Loc
) – Location point A.b (
pyrocko.orthodrome.Loc
) – Location point B.
- Returns
Distance in [m].
- Return type
- distance_accurate50m_numpy(a_lats, a_lons, b_lats, b_lons, implementation='c')[source]¶
Accurate distance calculation based on a spheroid of rotation.
Function returns distance in meter between points
a
andb
, coordinates of which must be given in geographical coordinates and in degrees. The returned distance should be accurate to 50 m using WGS84. Values for the Earth’s equator radius and the Earth’s oblateness (f_oblate
) are defined in the pyrocko configuration filepyrocko.config
.From wikipedia (http://de.wikipedia.org/wiki/Orthodrome), based on:
Meeus, J.: Astronomical Algorithms, S 85, Willmann-Bell, Richmond 2000 (2nd ed., 2nd printing), ISBN 0-943396-61-1
The spherical-earth distance
D
betweena
andb
, can be given with:The oblateness of the Earth requires some correction with correction factors
h1
andh2
:- Parameters
a_lats (
numpy.ndarray
,(N)
) – Latitudes in [deg] point A.a_lons (
numpy.ndarray
,(N)
) – Longitudes in [deg] point A.b_lats (
numpy.ndarray
,(N)
) – Latitudes in [deg] point B.b_lons (
numpy.ndarray
,(N)
) – Longitudes in [deg] point B.
- Returns
Distances in [m].
- Return type
numpy.ndarray
,(N)
- ne_to_latlon(lat0, lon0, north_m, east_m)[source]¶
Transform local cartesian coordinates to latitude and longitude.
From east and north coordinates (
x
andy
coordinatenumpy.ndarray
) relative to a reference differences in longitude and latitude are calculated, which are effectively changes in azimuth and distance, respectively:The projection used preserves the azimuths of the input points.
- Parameters
lat0 (float) – Latitude origin of the cartesian coordinate system in [deg].
lon0 (float) – Longitude origin of the cartesian coordinate system in [deg].
north_m (
numpy.ndarray
,(N)
) – Northing distances from origin in [m].east_m (
numpy.ndarray
,(N)
) – Easting distances from origin in [m].
- Returns
Array with latitudes and longitudes in [deg].
- Return type
numpy.ndarray
,(2xN)
- azidist_to_latlon(lat0, lon0, azimuth_deg, distance_deg)[source]¶
Absolute latitudes and longitudes are calculated from relative changes.
Convenience wrapper to
azidist_to_latlon_rad()
with azimuth and distance given in degrees.- Parameters
lat0 (float) – Latitude origin of the cartesian coordinate system in [deg].
lon0 (float) – Longitude origin of the cartesian coordinate system in [deg].
azimuth_deg (
numpy.ndarray
,(N)
) – Azimuth from origin in [deg].distance_deg (
numpy.ndarray
,(N)
) – Distances from origin in [deg].
- Returns
Array with latitudes and longitudes in [deg].
- Return type
numpy.ndarray
,(2xN)
- azidist_to_latlon_rad(lat0, lon0, azimuth_rad, distance_rad)[source]¶
Absolute latitudes and longitudes are calculated from relative changes.
For numerical stability a range between of
-1.0
and1.0
is enforced forc
andalpha
.- Parameters
lat0 (float) – Latitude origin of the cartesian coordinate system in [deg].
lon0 (float) – Longitude origin of the cartesian coordinate system in [deg].
distance_rad (
numpy.ndarray
,(N)
) – Distances from origin in [rad].azimuth_rad (
numpy.ndarray
,(N)
) – Azimuth from origin in [rad].
- Returns
Array with latitudes and longitudes in [deg].
- Return type
numpy.ndarray
,(2xN)
- ne_to_latlon_alternative_method(lat0, lon0, north_m, east_m)[source]¶
Transform local cartesian coordinates to latitude and longitude.
Like
pyrocko.orthodrome.ne_to_latlon()
, but this method (implementation below), although it should be numerically more stable, suffers problems at points which are across the pole as seen from the cartesian origin.- Parameters
lat0 (float) – Latitude origin of the cartesian coordinate system in [deg].
lon0 (float) – Longitude origin of the cartesian coordinate system in [deg].
north_m (
numpy.ndarray
,(N)
) – Northing distances from origin in [m].east_m (
numpy.ndarray
,(N)
) – Easting distances from origin in [m].
- Returns
Array with latitudes and longitudes in [deg].
- Return type
numpy.ndarray
,(2xN)
- latlon_to_ne(*args)[source]¶
Relative cartesian coordinates with respect to a reference location.
For two locations, a reference location A and another location B, given in geographical coordinates in degrees, the corresponding cartesian coordinates are calculated. Assisting functions are
pyrocko.orthodrome.azimuth()
andpyrocko.orthodrome.distance_accurate50m()
.- Parameters
refloc (
pyrocko.orthodrome.Loc
) – Location reference point.loc (
pyrocko.orthodrome.Loc
) – Location of interest.
- Returns
Northing and easting from refloc to location in [m].
- Return type
- latlon_to_ne_numpy(lat0, lon0, lat, lon)[source]¶
Relative cartesian coordinates with respect to a reference location.
For two locations, a reference location (
lat0
,lon0
) and another location B, given in geographical coordinates in degrees, the corresponding cartesian coordinates are calculated. Assisting functions areazimuth()
anddistance_accurate50m()
.- Parameters
lat0 – Latitude of the reference location in [deg].
lon0 – Longitude of the reference location in [deg].
lat – Latitude of the absolute location in [deg].
lon – Longitude of the absolute location in [deg].
- Returns
(n, e)
: relative north and east positions in [m].- Return type
numpy.ndarray
,(2xN)
Implemented formulations:
- positive_region(region)[source]¶
Normalize parameterization of a rectangular geographical region.
- Parameters
region (tuple of float) –
(west, east, south, north)
in [deg].- Returns
(west, east, south, north)
, wherewest <= east
and wherewest
andeast
are in the range[-180., 180.+360.]
.- Return type
tuple of float
- points_in_region(p, region)[source]¶
Check what points are contained in a rectangular geographical region.
- Parameters
p (
numpy.ndarray
(N, 2)
) –(lat, lon)
pairs in [deg].region (tuple of float) –
(west, east, south, north)
region boundaries in [deg].
- Returns
Mask, returning
True
for each point within the region.- Return type
numpy.ndarray
of bool, shape(N)
- point_in_region(p, region)[source]¶
Check if a point is contained in a rectangular geographical region.
- Parameters
p (tuple of float) –
(lat, lon)
in [deg].region (tuple of float) –
(west, east, south, north)
region boundaries in [deg].
- Returns
True
, if point is in region, elseFalse
.- Return type
- radius_to_region(lat, lon, radius)[source]¶
Get a rectangular region which fully contains a given circular region.
- Parameters
- Returns
Rectangular region as
(east, west, south, north)
in [deg] orNone
.- Return type
- geographic_midpoint(lats, lons, weights=None, depths=None, earthradius=6371000.0)[source]¶
Calculate geographic midpoints by finding the center of gravity.
This method suffers from instabilities if points are centered around the poles.
- Parameters
lats (
numpy.ndarray
,(N)
) – Latitudes in [deg].lons (
numpy.ndarray
,(N)
) – Longitudes in [deg].weights (optional,
numpy.ndarray
,(N)
) – Weighting factors.depths (optional,
numpy.ndarray
,(N)
) – Depths in [m].
- Returns
Latitudes and longitudes of the midpoint in [deg] (and depth [m] if depths are given).
- Return type
(lat, lon)
or(lat, lon, depth)
- geodetic_to_ecef(lat, lon, alt)[source]¶
Convert geodetic coordinates to Earth-Centered, Earth-Fixed (ECEF) Cartesian coordinates. 3 4
- Parameters
- Returns
ECEF Cartesian coordinates (X, Y, Z) in [m].
- Return type
- 3
- 4
https://en.wikipedia.org/wiki/Geographic_coordinate_conversion #From_geodetic_to_ECEF_coordinates
- ecef_to_geodetic(X, Y, Z)[source]¶
Convert Earth-Centered, Earth-Fixed (ECEF) Cartesian coordinates to geodetic coordinates (Ferrari’s solution).
- Parameters
Z (X, Y,) – Cartesian coordinates in ECEF system in [m].
- Returns
Geodetic coordinates (lat, lon, alt). Latitude and longitude are in [deg] and altitude is in [m] (positive for points outside the geoid).
- Return type
See also
https://en.wikipedia.org/wiki/Geographic_coordinate_conversion #The_application_of_Ferrari.27s_solution
- contains_points(polygon, points)[source]¶
Test which points are inside polygon on a sphere.
The inside of the polygon is defined as the area which is to the left hand side of an observer walking the polygon line, points in order, on the sphere. Lines between the polygon points are treated as great circle paths. The polygon may be arbitrarily complex, as long as it does not have any crossings or thin parts with zero width. The polygon may contain the poles and is allowed to wrap around the sphere multiple times.
The algorithm works by consecutive cutting of the polygon into (almost) hemispheres and subsequent Gnomonic projections to perform the point-in-polygon tests on a 2D plane.
- Parameters
polygon (
numpy.ndarray
of shape(N, 2)
, second index 0=lat, 1=lon) – Point coordinates defining the polygon [deg].points (
numpy.ndarray
of shape(N, 2)
, second index 0=lat, 1=lon) – Coordinates of points to test [deg].
- Returns
Boolean mask array.
- Return type
numpy.ndarray
of shape(N,)
.
- contains_point(polygon, point)[source]¶
Test if point is inside polygon on a sphere.
Convenience wrapper to
contains_points()
to test a single point.- Parameters
polygon (
numpy.ndarray
of shape(N, 2)
, second index 0=lat, 1=lon) – Point coordinates defining the polygon [deg].point (tuple of float) – Coordinates
(lat, lon)
of point to test [deg].
- Returns
True
, if point is located within polygon, elseFalse
.- Return type