modelling
¶
pyrocko.modelling.okada
¶
-
class
AnalyticalSource
(**kwargs)[source]¶ Base class for analytical source models.
-
♦
name
¶ str
, optional, default:''
-
♦
time
¶ time_float, optional, default:
0.0
Source origin time
-
♦
vr
¶ float
, optional, default:0.0
Rupture velocity [m/s]
-
♦
-
class
AnalyticalRectangularSource
(**kwargs)[source]¶ Rectangular analytical source model.
Coordinates on the source plane are with respect to the origin point given by (lat, lon, east_shift, north_shift, depth).
-
♦
strike
¶ float
, default:0.0
Strike direction in [deg], measured clockwise from north
-
♦
dip
¶ float
, default:90.0
Dip angle in [deg], measured downward from horizontal
-
♦
rake
¶ float
, default:0.0
Rake angle in [deg], measured counter-clockwise from right-horizontal in on-plane view
-
♦
al1
¶ float
, default:0.0
Left edge source plane coordinate [m]
-
♦
al2
¶ float
, default:0.0
Right edge source plane coordinate [m]
-
♦
aw1
¶ float
, default:0.0
Lower edge source plane coordinate [m]
-
♦
aw2
¶ float
, default:0.0
Upper edge source plane coordinate [m]
-
♦
slip
¶ float
, optional, default:0.0
Slip on the rectangular source area [m]
-
♦
-
class
OkadaSource
(**kwargs)[source]¶ Rectangular Okada source model.
-
♦
opening
¶ float
, optional, default:0.0
Opening of the plane in [m]
-
♦
poisson
¶ float
, optional, default:0.25
Poisson’s ratio
-
♦
lamb
¶ float
, optionalFirst Lame’ s parameter [Pa]
-
♦
shearmod
¶ float
, optional, default:32000000000.0
Shear modulus along the plane [Pa]
-
poisson
Calculation of Poisson’ s ratio (if not given).
The Poisson’ s ratio can be calculated from the Lame parameters and using (e.g. Mueller 2007).
-
lamb
Calculation of first Lame’ s parameter (if not given).
Poisson’ s ratio and shear modulus must be available.
-
shearmod
Calculation of shear modulus (if not given).
Poisson ratio’ s must be available.
Important
We assume a perfect elastic solid with
Through this leads to
-
seismic_moment
¶ Scalar Seismic moment .
Code copied from Kite. It disregards the opening (as for now). We assume
Important
We assume a perfect elastic solid with
Through this leads to
Returns: Seismic moment release Return type: float
-
moment_magnitude
¶ Moment magnitude from Seismic moment.
We assume
Returns: Moment magnitude Return type: float
-
source_patch
()[source]¶ Build source information array for okada_ext.okada input.
Returns: array of the source data as input for okada_ext.okada Return type: numpy.ndarray
,(1, 9)
-
source_disloc
()[source]¶ Build source dislocation for okada_ext.okada input.
Returns: array of the source dislocation data as input for okada_ext.okada Return type: numpy.ndarray
,(1, 3)
-
discretize
(nlength, nwidth, *args, **kwargs)[source]¶ Discretize fault into rectilinear grid of fault patches.
Fault orientation, slip and elastic parameters are passed to the sub-faults unchanged.
Parameters: Returns: Discrete fault patches
Return type: list of
OkadaPatch
objects
-
♦
-
class
OkadaPatch
(parent=None, *args, **kwargs)[source]¶ Okada source with additional 2D indexes for bookkeeping.
-
♦
ix
¶ int
Relative index of the patch in x
-
♦
iy
¶ int
Relative index of the patch in y
-
♦
-
make_okada_coefficient_matrix
(source_patches_list, pure_shear=False, rotate_sdn=True, nthreads=1, variant='normal')[source]¶ Build coefficient matrix for given fault patches.
The boundary element method (BEM) for a discretized fault and the determination of the slip distribution from stress drop is based on the relation . Here the coefficient matrix is built, based on the displacements from Okada’s solution and their partial derivatives.
Parameters: - source_patches_list (list of
OkadaSource
objects) – Source patches, to be used in BEM. - pure_shear (optional, bool) – If
True
, only shear forces are taken into account. - rotate_sdn (optional, bool) – If
True
, rotate to strike, dip, normal. - nthreads (optional, int) – Number of threads.
Returns: Coefficient matrix for all source combinations.
Return type: numpy.ndarray
,(len(source_patches_list) * 3, len(source_patches_list) * 3)
- source_patches_list (list of
-
invert_fault_dislocations_bem
(stress_field, coef_mat=None, source_list=None, pure_shear=False, epsilon=None, nthreads=1, **kwargs)[source]¶ BEM least squares inversion to get fault dislocations given stress field.
Follows least squares inversion approach by Menke (1989) to calculate dislocations on a fault with several segments from a given stress field. The coefficient matrix connecting stresses and displacements of the fault patches can either be specified by the user (
coef_mat
) or it is calculated using the solution of Okada (1992) for a rectangular fault in a homogeneous half space (source_list
).Parameters: - stress_field (
numpy.ndarray
, shape(nsources, 3)
) – Stress change [Pa] for each source patch (asstress_field[isource, icomponent]
where isource indexes the source patch andicomponent
indexes component, ordered (strike, dip, tensile). - coef_mat (optional,
numpy.ndarray
, shape(len(source_list) * 3, len(source_list) * 3)
) – Coefficient matrix connecting source patch dislocations and the stress field. - source_list (optional, list of
OkadaSource
objects) – list of all source patches to be used for BEM. - epsilon (optional, float) – If given, values in
coef_mat
smaller thanepsilon
are set to zero. - nthreads (int) – Number of threads allowed.
Returns: Inverted displacements as
displacements[isource, icomponent]
where isource indexes the source patch andicomponent
indexes component, ordered (strike, dip, tensile).Return type: numpy.ndarray
,(nsources, 3)
- stress_field (
pyrocko.modelling.cracksol
¶
-
class
GriffithCrack
(**kwargs)[source]¶ Analytical Griffith crack model
-
♦
width
¶ float
, default:1.0
Width equals to
-
♦
poisson
¶ float
, default:0.25
Poisson ratio
-
♦
shearmod
¶ float
, default:1000000000.0
Shear modulus [Pa]
-
♦
stressdrop
¶ numpy.ndarray
(pyrocko.guts_array.Array
), default:array([0., 0., 0.])
Stress drop array:[, , ] []
-
a
¶ Half width of the crack
-
disloc_infinite2d
(x_obs)[source]¶ Calculation of dislocation at crack surface along x2 axis
Follows equations by Pollard and Segall (1987) to calculate dislocations for an infinite 2D crack extended in x3 direction, opening in x1 direction and the crack extending in x2 direction.
Parameters: x_obs ( numpy.ndarray
,(N,)
) – Observation point coordinates along x2-axis. If or , output dislocations are zeroReturns: dislocations at each observation point in strike, dip and tensile direction. Return type: numpy.ndarray
,(N, 3)
-
disloc_circular
(x_obs)[source]¶ Calculation of dislocation at crack surface along x2 axis
Follows equations by Pollard and Segall (1987) to calculate displacements for a circulat crack extended in x2 and x3 direction and opening in x1 direction.
Parameters: x_obs ( numpy.ndarray
,(N,)
) – Observation point coordinates along axis through crack centre. If or , output dislocations are zeroReturns: dislocations at each observation point in strike, dip and tensile direction. Return type: numpy.ndarray
,(N, 3)
-
displ_infinite2d
(x1_obs, x2_obs)[source]¶ Calculation of displacement at crack surface along different axis
Follows equations by Pollard and Segall (1987) to calculate displacements for an infinite 2D crack extended in x3 direction, opening in x1 direction and the crack tip in x2 direction.
Parameters: - x1_obs (
numpy.ndarray
,(M,)
) – Observation point coordinates along x1-axis. If , displacment is calculated along x2-axis - x2_obs (
numpy.ndarray
,(N,)
) – Observation point coordinates along x2-axis. If , displacment is calculated along x1-axis
Returns: displacements at each observation point in strike, dip and tensile direction.
Return type: numpy.ndarray
,(M, 3)
or(N, 3)
- x1_obs (
-
♦