Source code for grond.problems.double_dc.problem

import numpy as num
import logging

from pyrocko import gf, util
from pyrocko.guts import String, Float, Dict

from grond.meta import Forbidden, expand_template, Parameter, \
    has_get_plot_classes

from ..base import Problem, ProblemConfig


guts_prefix = 'grond'
logger = logging.getLogger('grond.problems.double_dc.problem')
km = 1e3
as_km = dict(scale_factor=km, scale_unit='km')


[docs] class DoubleDCProblemConfig(ProblemConfig): ranges = Dict.T(String.T(), gf.Range.T()) distance_min = Float.T(default=0.0)
[docs] def get_problem(self, event, target_groups, targets): self.check_deprecations() if event.depth is None: event.depth = 0. base_source = gf.DoubleDCSource.from_pyrocko_event(event) base_source.stf = gf.HalfSinusoidSTF(duration=event.duration or 0.0) subs = dict( event_name=event.name, event_time=util.time_to_str(event.time)) problem = DoubleDCProblem( name=expand_template(self.name_template, subs), base_source=base_source, target_groups=target_groups, targets=targets, ranges=self.ranges, distance_min=self.distance_min, norm_exponent=self.norm_exponent) return problem
[docs] @has_get_plot_classes class DoubleDCProblem(Problem): problem_parameters = [ Parameter('time', 's', label='Time'), Parameter('north_shift', 'm', label='Northing', **as_km), Parameter('east_shift', 'm', label='Easting', **as_km), Parameter('depth', 'm', label='Depth', **as_km), Parameter('magnitude', label='Magnitude'), Parameter('strike1', 'deg', label='Strike 1'), Parameter('dip1', 'deg', label='Dip 1'), Parameter('rake1', 'deg', label='Rake 1'), Parameter('strike2', 'deg', label='Strike 2'), Parameter('dip2', 'deg', label='Dip 2'), Parameter('rake2', 'deg', label='Rake 2'), Parameter('delta_time', 's', label='$\\Delta$ Time'), Parameter('delta_depth', 'm', label='$\\Delta$ Depth'), Parameter('azimuth', 'deg', label='Azimuth'), Parameter('distance', 'm', label='Distance'), Parameter('mix', label='Mix'), Parameter('duration1', 's', label='Duration 1'), Parameter('duration2', 's', label='Duration 2')] dependants = [] distance_min = Float.T(default=0.0) def get_source(self, x): d = self.get_parameter_dict(x) p = {} for k in self.base_source.keys(): if k in d: p[k] = float( self.ranges[k].make_relative(self.base_source[k], d[k])) stf1 = gf.HalfSinusoidSTF(duration=float(d.duration1)) stf2 = gf.HalfSinusoidSTF(duration=float(d.duration2)) source = self.base_source.clone(stf1=stf1, stf2=stf2, **p) return source def make_dependant(self, xs, pname): if xs.ndim == 1: return self.make_dependant(xs[num.newaxis, :], pname)[0] raise KeyError(pname) def pack(self, source): arr = self.get_parameter_array(source) for ip, p in enumerate(self.parameters): if p.name == 'time': arr[ip] -= self.base_source.time if p.name == 'duration1': arr[ip] = source.stf1.duration if source.stf1 else 0.0 if p.name == 'duration2': arr[ip] = source.stf2.duration if source.stf2 else 0.0 return arr def random_uniform(self, xbounds, rstate, fixed_magnitude=None): x = num.zeros(self.nparameters) for i in range(self.nparameters): x[i] = rstate.uniform(xbounds[i, 0], xbounds[i, 1]) if fixed_magnitude is not None: x[4] = fixed_magnitude return x.tolist() def preconstrain(self, x, optimizer=False): source = self.get_source(x) if any(self.distance_min > source.distance_to(t) for t in self.waveform_targets): raise Forbidden() return num.array(x, dtype=float) @classmethod def get_plot_classes(cls): from .. import plot plots = super(DoubleDCProblem, cls).get_plot_classes() plots.extend([plot.HudsonPlot, plot.MTDecompositionPlot, plot.MTLocationPlot, plot.MTFuzzyPlot]) return plots
[docs] class TripleDCProblemConfig(ProblemConfig): ranges = Dict.T(String.T(), gf.Range.T()) distance_min = Float.T(default=0.0)
[docs] def get_problem(self, event, target_groups, targets): if event.depth is None: event.depth = 0. base_source = gf.TripleDCSource.from_pyrocko_event(event) base_source.stf = gf.HalfSinusoidSTF(duration=event.duration or 0.0) subs = dict( event_name=event.name, event_time=util.time_to_str(event.time)) problem = TripleDCProblem( name=expand_template(self.name_template, subs), base_source=base_source, target_groups=target_groups, targets=targets, ranges=self.ranges, distance_min=self.distance_min, norm_exponent=self.norm_exponent) return problem
[docs] @has_get_plot_classes class TripleDCProblem(Problem): problem_parameters = [ Parameter('delta_time1', 's', label=r'$\Delta$Time 1'), Parameter('north_shift1', 'm', label='Northing 1', **as_km), Parameter('east_shift1', 'm', label='Easting 1', **as_km), Parameter('depth1', 'm', label='Depth 1', **as_km), Parameter('magnitude1', label='Magnitude 1'), Parameter('strike1', 'deg', label='Strike 1'), Parameter('dip1', 'deg', label='Dip 1'), Parameter('rake1', 'deg', label='Rake 1'), Parameter('delta_time2', 's', label=r'$\Delta$Time 2'), Parameter('north_shift2', 'm', label='Northing 2', **as_km), Parameter('east_shift2', 'm', label='Easting 2', **as_km), Parameter('depth2', 'm', label='Depth 2', **as_km), Parameter('magnitude2', label='Magnitude 2'), Parameter('strike2', 'deg', label='Strike 2'), Parameter('dip2', 'deg', label='Dip 2'), Parameter('rake2', 'deg', label='Rake 2'), Parameter('delta_time3', 's', label=r'$\Delta$Time 3'), Parameter('north_shift3', 'm', label='Northing 3', **as_km), Parameter('east_shift3', 'm', label='Easting 3', **as_km), Parameter('depth3', 'm', label='Depth 3', **as_km), Parameter('magnitude3', label='Magnitude 3'), Parameter('strike3', 'deg', label='Strike 3'), Parameter('dip3', 'deg', label='Dip 3'), Parameter('rake3', 'deg', label='Rake 3'), Parameter('duration1', 's', label='Duration 1'), Parameter('duration2', 's', label='Duration 2'), Parameter('duration3', 's', label='Duration 3')] dependants = [] distance_min = Float.T(default=0.0) def get_source(self, x): d = self.get_parameter_dict(x) p = {} for k in self.base_source.keys(): if k in d: p[k] = float( self.ranges[k].make_relative(self.base_source[k], d[k])) stf1 = gf.HalfSinusoidSTF(duration=float(d.duration1)) stf2 = gf.HalfSinusoidSTF(duration=float(d.duration2)) stf3 = gf.HalfSinusoidSTF(duration=float(d.duration3)) source = self.base_source.clone(stf1=stf1, stf2=stf2, stf3=stf3, **p) return source def make_dependant(self, xs, pname): if xs.ndim == 1: return self.make_dependant(xs[num.newaxis, :], pname)[0] raise KeyError(pname) def pack(self, source): arr = self.get_parameter_array(source) for ip, p in enumerate(self.parameters): if p.name == 'duration1': arr[ip] = source.stf1.duration if source.stf1 else 0.0 if p.name == 'duration2': arr[ip] = source.stf2.duration if source.stf2 else 0.0 if p.name == 'duration3': arr[ip] = source.stf3.duration if source.stf3 else 0.0 return arr def random_uniform(self, xbounds, rstate, **kwargs): x = num.zeros(self.nparameters) for i in range(self.nparameters): x[i] = rstate.uniform(xbounds[i, 0], xbounds[i, 1]) return x.tolist() def preconstrain(self, x, optimizer=False): source = self.get_source(x) if any(self.distance_min > source.distance_to(t) for t in self.waveform_targets): raise Forbidden() return num.array(x, dtype=float) @classmethod def get_plot_classes(cls): from .. import plot plots = super(TripleDCProblem, cls).get_plot_classes() plots.extend([plot.HudsonPlot, plot.MTDecompositionPlot, plot.MTFuzzyPlot]) return plots
__all__ = ''' DoubleDCProblem DoubleDCProblemConfig TripleDCProblem TripleDCProblemConfig '''.split()