1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

import logging 

 

import numpy as num 

from matplotlib import cm, patches 

 

from pyrocko import orthodrome as pod 

from pyrocko.guts import Float, Bool, Tuple 

 

from pyrocko.plot import mpl_color, mpl_init, automap 

 

from grond.plot.section import SectionPlotConfig, SectionPlot 

from grond.plot.collection import PlotItem 

from grond.plot.config import PlotConfig 

from grond.problems.plot import fixlim 

from matplotlib import pyplot as plt 

 

logger = logging.getLogger('grond.problem.singleforce.plot') 

 

guts_prefix = 'grond' 

 

km = 1e3 

 

 

class SFLocationPlot(SectionPlotConfig): 

''' MT location plot of the best solutions in three cross-sections. ''' 

name = 'location_sf' 

normalisation_gamma = Float.T( 

default=3., 

help='Normalisation of colors and alpha as :math:`x^\\gamma`.' 

'A linear colormap/alpha with :math:`\\gamma=1`.') 

 

def make(self, environ): 

environ.setup_modelling() 

cm = environ.get_plot_collection_manager() 

history = environ.get_history(subset='harvest') 

mpl_init(fontsize=self.font_size) 

self._to_be_closed = [] 

cm.create_group_mpl( 

self, 

self.draw_figures(history), 

title=u'SF Location', 

section='solution', 

feather_icon='target', 

description=u''' 

Location plot of the ensemble of best solutions in three cross-sections. 

 

The coordinate range is defined by the search space given in the config file. 

Dots show best single force mechanisms, and colors indicate low (red) and 

high (blue) misfit. 

''') 

for obj in self._to_be_closed: 

obj.close() 

 

def draw_figures(self, history, color_p_axis=False): 

from matplotlib import colors 

 

color = 'black' 

fontsize = self.font_size 

markersize = fontsize * 1.5 

 

problem = history.problem 

sp = SectionPlot(config=self) 

self._to_be_closed.append(sp) 

 

fig = sp.fig 

axes_en = sp.axes_xy 

axes_dn = sp.axes_zy 

axes_ed = sp.axes_xz 

 

bounds = problem.get_combined_bounds() 

 

models = history.get_sorted_primary_models()[::-1] 

 

iorder = num.arange(history.nmodels) 

 

for parname, set_label, set_lim in [ 

['east_shift', sp.set_xlabel, sp.set_xlim], 

['north_shift', sp.set_ylabel, sp.set_ylim], 

['depth', sp.set_zlabel, sp.set_zlim]]: 

 

ipar = problem.name_to_index(parname) 

par = problem.combined[ipar] 

set_label(par.get_label()) 

xmin, xmax = fixlim(*par.scaled(bounds[ipar])) 

set_lim(xmin, xmax) 

 

def scale_size(source): 

return markersize * 1.5 

 

for axes, xparname, yparname in [ 

(axes_en, 'east_shift', 'north_shift'), 

(axes_dn, 'depth', 'north_shift'), 

(axes_ed, 'east_shift', 'depth')]: 

 

ixpar = problem.name_to_index(xparname) 

iypar = problem.name_to_index(yparname) 

 

xpar = problem.combined[ixpar] 

ypar = problem.combined[iypar] 

 

xmin, xmax = fixlim(*xpar.scaled(bounds[ixpar])) 

ymin, ymax = fixlim(*ypar.scaled(bounds[iypar])) 

 

try: 

axes.set_facecolor(mpl_color('aluminium1')) 

except AttributeError: 

axes.patch.set_facecolor(mpl_color('aluminium1')) 

 

rect = patches.Rectangle( 

(xmin, ymin), xmax-xmin, ymax-ymin, 

facecolor=mpl_color('white'), 

edgecolor=mpl_color('aluminium2'), 

zorder=1) 

 

axes.add_patch(rect) 

 

cmap = cm.ScalarMappable( 

norm=colors.PowerNorm( 

gamma=self.normalisation_gamma, 

vmin=iorder.min(), 

vmax=iorder.max()), 

 

cmap=plt.get_cmap('coolwarm')) 

 

for ix, x in enumerate(models): 

 

source = problem.get_source(x) 

fx = problem.extract(x, ixpar) 

fy = problem.extract(x, iypar) 

sx, sy = xpar.scaled(fx), ypar.scaled(fy) 

 

# TODO: Add rotation in cross-sections 

color = cmap.to_rgba(iorder[ix]) 

 

alpha = (iorder[ix] - iorder.min()) / \ 

float(iorder.max() - iorder.min()) 

alpha = alpha**self.normalisation_gamma 

 

axes.scatter( 

[sx], [sy], 

c=[color], 

s=[scale_size(source)], 

alpha=alpha, 

zorder=2) 

 

item = PlotItem(name='main') 

return [[item, fig]] 

 

 

class SFForcePlot(PlotConfig): 

''' Maps showing horizontal and vertical force 

of the best single force model ''' 

 

name = 'forces_singleforce' 

 

size_cm = Tuple.T( 

2, Float.T(), 

default=(15., 15.), 

help='width and length of the figure in cm') 

show_topo = Bool.T( 

default=False, 

help='show topography') 

show_grid = Bool.T( 

default=True, 

help='show the lat/lon grid') 

show_rivers = Bool.T( 

default=True, 

help='show rivers on the map') 

radius = Float.T( 

optional=True, 

help='radius of the map around campaign center lat/lon') 

 

def make(self, environ): 

cm = environ.get_plot_collection_manager() 

history = environ.get_history(subset='harvest') 

optimiser = environ.get_optimiser() 

ds = environ.get_dataset() 

 

environ.setup_modelling() 

 

cm.create_group_automap( 

self, 

self.draw_best_sf(ds, history, optimiser), 

title=u'Single Force Source Forces', 

section='solution', 

feather_icon='map', 

description=u''' 

Maps showing location and force vectors of the best Single Force Source model. 

 

Arrows show the modelled forces (red arrows). The top plot shows the horizontal 

forces and the bottom plot the vertical force. The dot indicates the location 

of the best single force source model. 

''') 

 

def draw_best_sf(self, ds, history, optimiser, vertical=False): 

from grond.core import make_stats 

 

source = history.get_best_source() 

 

problem = history.problem 

models = history.models 

 

stats = make_stats( 

problem, models, history.get_primary_chain_misfits()) 

 

def plot_sf(source, stats, ifig, vertical=False): 

orient = 'vertical' if vertical else 'horizontal' 

 

item = PlotItem( 

name='fig_%i' % ifig, 

attributes={}, 

title=u'Best %s single force model force vector' % orient, 

description=u''' 

Single force source %s force vector for the best model (red). The circle shows 

the 95%% confidence ellipse. 

''' % orient) 

 

event = source.pyrocko_event() 

 

radius = self.radius 

if radius is None or radius < 30.*km: 

logger.warn( 

'Radius too small, defaulting to 30 km') 

radius = 30*km 

 

m = automap.Map( 

width=self.size_cm[0], 

height=self.size_cm[1], 

lat=event.lat, 

lon=event.lon, 

radius=radius, 

show_topo=self.show_topo, 

show_grid=self.show_grid, 

show_rivers=self.show_rivers, 

color_wet=(216, 242, 254), 

color_dry=(238, 236, 230)) 

 

offset_scale = num.abs([source.fn, source.fe, source.fd]).sum() 

size = num.linalg.norm(self.size_cm) 

 

scale = (size / 5.) / offset_scale 

 

lat, lon = pod.ne_to_latlon( 

event.lat, 

event.lon, 

source.north_shift, 

source.east_shift) 

 

stats_dict = stats.get_values_dict() 

 

if vertical: 

rows = [lon, lat, 

0., -source.fd * scale, 

(stats_dict['fn.std'] + stats_dict['fe.std']) * scale, 

stats_dict['fd.std'] * scale, 

0.] 

 

else: 

rows = [lon, lat, 

source.fe * scale, source.fn * scale, 

stats_dict['fe.std'] * scale, 

stats_dict['fn.std'] * scale, 

0.] 

 

fontsize = 10. 

 

default_psxy_style = { 

'h': 0, 

'W': '2.0p,red', 

'A': '+p4p,black+e+a40', 

'G': 'red', 

't': 30, 

'L': True, 

'S': 'e1c/0.95/%d' % fontsize, 

} 

 

m.gmt.psvelo( 

in_rows=[rows], 

*m.jxyr, 

**default_psxy_style) 

 

m.gmt.psxy( 

S='c10p', 

in_rows=[[lon, lat]], 

W='1p,black', 

G='orange3', 

*m.jxyr) 

 

return (item, m) 

 

ifig = 0 

for vertical in (False, True): 

yield plot_sf(source, stats, ifig, vertical) 

ifig += 1