1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

# https://pyrocko.org - GPLv3 

# 

# The Pyrocko Developers, 21st Century 

# ---|P------/S----------~Lg---------- 

 

from __future__ import absolute_import, print_function, division 

 

import math 

import numpy as num 

from .geometry import arr_vertices, arr_faces, normalize, refine_triangles, \ 

vdot, vnorm, face_centers 

 

r2d = 180./math.pi 

 

 

def cube(): 

vertices = arr_vertices([ 

[-1, -1, -1], 

[-1, -1, 1], 

[-1, 1, -1], 

[-1, 1, 1], 

[1, -1, -1], 

[1, -1, 1], 

[1, 1, -1], 

[1, 1, 1]]) 

 

faces = arr_faces([ 

[0, 1, 3, 2], 

[0, 4, 5, 1], 

[4, 6, 7, 5], 

[2, 3, 7, 6], 

[1, 5, 7, 3], 

[0, 2, 6, 4]]) 

 

return vertices, faces 

 

 

def triangles_to_center(vertices, faces): 

 

vs = vertices 

fs = faces 

 

vcs = face_centers(vs, fs) 

 

nv = vs.shape[0] 

nf = fs.shape[0] 

nc = fs.shape[1] 

 

intc = (nv + num.arange(nf))[:, num.newaxis] 

f2s = num.vstack([ 

num.hstack([fs[:, (ic, (ic+1) % nc)], intc]) 

for ic in range(nc)]) 

 

v2s = num.vstack([vs, vcs]) 

return v2s, f2s 

 

 

def tcube(): 

vs, fs = cube() 

return triangles_to_center(vs, fs) 

 

 

def tetrahedron(): 

vertices = arr_vertices([ 

[math.sqrt(8./9.), 0., -1./3.], 

[-math.sqrt(2./9.), math.sqrt(2./3.), -1./3.], 

[-math.sqrt(2./9.), -math.sqrt(2./3.), -1./3.], 

[0., 0., 1.] 

]) 

 

faces = arr_faces([ 

[2, 1, 0], 

[3, 2, 0], 

[2, 3, 1], 

[3, 0, 1] 

]) 

return vertices, faces 

 

 

def icosahedron(): 

a = 0.5 * (math.sqrt(5) - 1.0) 

 

vertices = arr_vertices([ 

[0, 1, a], [a, 0, 1], [1, a, 0], 

[0, 1, -a], [-a, 0, 1], [1, -a, 0], 

[0, -1, -a], [-a, 0, -1], [-1, -a, 0], 

[0, -1, a], [a, 0, -1], [-1, a, 0] 

]) 

 

faces = arr_faces([ 

[6, 5, 9], [9, 8, 6], [8, 7, 6], [7, 10, 6], [10, 5, 6], 

[5, 10, 2], [2, 1, 5], [5, 1, 9], [9, 1, 4], [4, 8, 9], 

[4, 11, 8], [8, 11, 7], [7, 11, 3], [3, 10, 7], [3, 2, 10], 

[3, 0, 2], [0, 1, 2], [0, 4, 1], [0, 11, 4], [0, 3, 11] 

]) 

 

return vertices, faces 

 

 

def neighbors(vertices, faces): 

 

nv = vertices.shape[0] 

nf, nc = faces.shape 

fedges = num.zeros((nf*nc, 2), dtype=num.int) 

for ic in range(nc): 

fedges[ic::nc, :] = faces[:, (ic, (ic+1) % nc)] 

 

indface = num.repeat(num.arange(nf), nc) 

fedges1 = fedges[:, 0] + fedges[:, 1]*nv 

sortorder = fedges1.argsort() 

fedges1_rev = fedges[:, 1] + fedges[:, 0]*nv 

 

inds = num.searchsorted(fedges1, fedges1_rev, sorter=sortorder) 

# todo: handle cases without neighbors 

assert num.all(fedges1[sortorder[inds]] == fedges1_rev) 

neighbors = indface[sortorder[inds]].reshape((nf, nc)) 

return neighbors 

 

 

def adjacent_faces(vertices, faces): 

 

nv = vertices.shape[0] 

nf, nc = faces.shape 

 

iverts = faces.reshape(nf*nc) 

ifaces = num.repeat(num.arange(nf), nc) 

iverts_order = iverts.argsort() 

 

vs = vertices[faces] 

gs = num.zeros(vs.shape) 

gs[:, :-1, :] = vs[:, 1:, :] - vs[:, :-1, :] 

gs[:, -1, :] = vs[:, 0, :] - vs[:, -1, :] 

 

vecs = gs.reshape((nf*nc, 3)) 

iverts_ordered = iverts[iverts_order] 

ifirsts = nextval_indices(iverts_ordered) 

iselected = iverts_ordered[ifirsts] 

 

plane_en = normalize(vertices) 

plane_e1 = num.zeros((nv, 3)) 

plane_e1[iselected, :] = normalize( 

project_to_plane_nn(plane_en[iselected, :], vecs[ifirsts, :])) 

plane_e2 = num.zeros((nv, 3)) 

plane_e2[iselected, :] = num.cross( 

plane_en[iselected, :], plane_e1[iselected, :]) 

 

a1 = vdot(vecs[iverts_order, :], plane_e1[iverts_ordered, :]) 

a2 = vdot(vecs[iverts_order, :], plane_e2[iverts_ordered, :]) 

angles = num.arctan2(a1, a2) * r2d + 360. * iverts_ordered 

iverts_order2 = num.argsort(angles) 

 

return iverts_ordered, ifaces[iverts_order][iverts_order2] 

 

 

def nextval_indices(a): 

return num.concatenate( 

[[0], num.where(num.diff(a) != 0)[0] + 1]) 

 

 

def project_to_plane(vns, vas): 

return vas - (vdot(vas, vns) / vdot(vns, vns))[:, num.newaxis] * vns 

 

 

def project_to_plane_nn(vns, vas): 

return vas - (vdot(vas, vns))[:, num.newaxis] * vns 

 

 

def corner_handednesses(vertices, faces): 

vs = vertices[faces] 

gs = num.zeros(vs.shape) 

gs[:, :-1, :] = vs[:, 1:, :] - vs[:, :-1, :] 

gs[:, -1, :] = vs[:, 0, :] - vs[:, -1, :] 

hs = num.zeros((faces.shape[0], faces.shape[1])) 

hs[:, 1:] = vdot(num.cross(gs[:, :-1, :], gs[:, 1:, :]), vs[:, 1:, :]) 

hs[:, 0] = vdot(num.cross(gs[:, -1, :], gs[:, 0, :]), vs[:, 0, :]) 

return hs 

 

 

def truncate(vertices, faces): 

 

nv = vertices.shape[0] 

iverts, ifaces = adjacent_faces(vertices, faces) 

ifirsts = nextval_indices(iverts) 

ilengths = num.zeros(ifirsts.size, dtype=num.int) 

ilengths[:-1] = num.diff(ifirsts) 

ilengths[-1] = iverts.size - ifirsts[-1] 

nc = num.max(ilengths) 

nf = nv 

vertices_new = face_centers(vertices, faces) 

faces_new = num.zeros((nf, nc), dtype=num.int) 

for iface in range(nf): 

ifirst = ifirsts[iface] 

ilength = ilengths[iface] 

faces_new[iface, :ilength] = ifaces[ifirst:ifirst+ilength] 

faces_new[iface, ilength:] = ifaces[ifirst+ilength-1] 

 

faces_new = faces_new[:, ::-1] 

 

return vertices_new, faces_new 

 

 

def iter_icospheres(order, inflate=True): 

vertices, faces = icosahedron() 

vertices /= vnorm(vertices)[:, num.newaxis] 

yield (vertices, faces) 

 

for i in range(order): 

vertices, faces = refine_triangles(vertices, faces) 

if inflate: 

vertices = normalize(vertices) 

 

yield (vertices, faces) 

 

 

bases = { 

'icosahedron': icosahedron, 

'tetrahedron': tetrahedron, 

'tcube': tcube} 

 

 

def sphere( 

order, 

base=icosahedron, 

kind='kind1', 

inflate=True, 

radius=1.0, 

triangulate=True): 

 

if isinstance(base, str): 

base = bases[base] 

 

vertices, faces = base() 

vertices /= vnorm(vertices)[:, num.newaxis] 

 

for i in range(order): 

vertices, faces = refine_triangles(vertices, faces) 

if inflate: 

vertices = normalize(vertices) 

if radius != 1.0: 

vertices *= radius 

 

if kind == 'kind2': 

vertices, faces = truncate(vertices, faces) 

if triangulate: 

vertices, faces = triangles_to_center(vertices, faces) 

 

return vertices, faces