1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

# http://pyrocko.org - GPLv3 

# 

# The Pyrocko Developers, 21st Century 

# ---|P------/S----------~Lg---------- 

''' 

This module contains functions to plot instrument response transfer functions 

in Bode plot style using Matplotlib. 

 

Example 

 

* :download:`test_response_plot.py </../../examples/test_response_plot.py>` 

 

:: 

 

from pyrocko.plot import response 

from pyrocko.example import get_example_data 

 

get_example_data('test_response.resp') 

 

resps, labels = response.load_response_information( 

'test_response.resp', 'resp') 

 

response.plot( 

responses=resps, labels=labels, filename='test_response.png', 

fmin=0.001, fmax=400., dpi=75.) 

 

 

.. figure :: /static/test_response.png 

:align: center 

 

Example response plot 

''' 

from __future__ import absolute_import 

 

import logging 

 

import numpy as num 

 

from pyrocko import util 

from pyrocko import guts 

 

 

logger = logging.getLogger('plot.response') 

 

 

def normalize_on_flat(f, tf, factor=10000.): 

df = num.diff(num.log(f)) 

tap = 1.0 / (1.0 + factor * (num.diff(num.log(num.abs(tf)))/df)**2) 

return tf / (num.sum(num.abs(tf[1:]) * tap) / num.sum(tap)) 

 

 

def draw( 

response, 

axes_amplitude=None, axes_phase=None, 

fmin=0.01, fmax=100., nf=100, 

normalize=False, 

style={}, 

label=None): 

 

''' 

Draw instrument response in Bode plot style to given Matplotlib axes 

 

:param response: instrument response as a 

:py:class:`pyrocko.trace.FrequencyResponse` object 

:param axes_amplitude: :py:class:`matplotlib.axes.Axes` object to use when 

drawing the amplitude response 

:param axes_phase: :py:class:`matplotlib.axes.Axes` object to use when 

drawing the phase response 

:param fmin: minimum frequency [Hz] 

:param fmax: maximum frequency [Hz] 

:param nf: number of frequencies where to evaluate the response 

:param style: :py:class:`dict` with keyword arguments to tune the line 

style 

:param label: string to be passed to the ``label`` argument of 

:py:meth:`matplotlib.axes.Axes.plot` 

''' 

 

f = num.exp(num.linspace(num.log(fmin), num.log(fmax), nf)) 

tf = response.evaluate(f) 

 

if normalize: 

tf = normalize_on_flat(f, tf) 

 

ta = num.abs(tf) 

 

if axes_amplitude: 

axes_amplitude.plot(f, ta, label=label, **style) 

 

if axes_phase: 

dta = num.diff(num.log(ta)) 

iflat = num.argmin(num.abs(num.diff(dta)) + num.abs(dta[:-1])) 

tp = num.unwrap(num.angle(tf)) 

ioff = int(num.round(tp[iflat] / (2.0*num.pi))) 

tp -= ioff * 2.0 * num.pi 

axes_phase.plot(f, tp/num.pi, label=label, **style) 

else: 

tp = [0.] 

 

return (num.min(ta), num.max(ta)), (num.min(tp)/num.pi, num.max(tp)/num.pi) 

 

 

def setup_axes(axes_amplitude=None, axes_phase=None): 

''' 

Configure axes in Bode plot style. 

''' 

 

if axes_amplitude is not None: 

axes_amplitude.set_ylabel('Amplitude ratio') 

axes_amplitude.set_xscale('log') 

axes_amplitude.set_yscale('log') 

axes_amplitude.grid(True) 

axes_amplitude.axhline(1.0, lw=0.5, color='black') 

if axes_phase is None: 

axes_amplitude.set_xlabel('Frequency [Hz]') 

axes_amplitude.set_xscale('log') 

else: 

axes_amplitude.xaxis.set_ticklabels([]) 

 

if axes_phase is not None: 

axes_phase.set_ylabel('Phase [$\\pi$]') 

axes_phase.set_xscale('log') 

axes_phase.set_xlabel('Frequency [Hz]') 

axes_phase.grid(True) 

axes_phase.axhline(0.0, lw=0.5, color='black') 

 

 

def plot( 

responses, 

filename=None, 

dpi=100, 

fmin=0.01, fmax=100., nf=100, 

normalize=False, 

fontsize=10., 

figsize=None, 

styles=None, 

labels=None): 

 

''' 

Draw instrument responses in Bode plot style. 

 

:param responses: instrument responses as 

:py:class:`pyrocko.trace.FrequencyResponse` objects 

:param fmin: minimum frequency [Hz] 

:param fmax: maximum frequency [Hz] 

:param nf: number of frequencies where to evaluate the response 

:param normalize: if ``True`` normalize flat part of response to be ``1`` 

:param styles: :py:class:`list` of :py:class:`dict` objects with keyword 

arguments to be passed to matplotlib's 

:py:meth:`matplotlib.axes.Axes.plot` function when drawing the response 

lines. Length must match number of responses. 

:param filename: file name to pass to matplotlib's ``savefig`` function. If 

``None``, the plot is shown with :py:func:`matplotlib.pyplot.show`. 

:param fontsize: font size in points used in axis labels and legend 

:param figsize: :py:class:`tuple`, ``(width, height)`` in inches 

:param labels: :py:class:`list` of names to show in legend. Length must 

correspond to number of responses. 

''' 

 

from matplotlib import pyplot as plt 

from pyrocko.plot import mpl_init, mpl_margins, mpl_papersize 

from pyrocko.plot import graph_colors, to01 

 

mpl_init(fontsize=fontsize) 

 

if figsize is None: 

figsize = mpl_papersize('a4', 'portrait') 

 

fig = plt.figure(figsize=figsize) 

labelpos = mpl_margins( 

fig, w=7., h=5., units=fontsize, nw=1, nh=2, hspace=2.) 

axes_amplitude = fig.add_subplot(2, 1, 1) 

labelpos(axes_amplitude, 2., 1.5) 

axes_phase = fig.add_subplot(2, 1, 2) 

labelpos(axes_phase, 2., 1.5) 

 

setup_axes(axes_amplitude, axes_phase) 

 

if styles is None: 

styles = [ 

dict(color=to01(graph_colors[i % len(graph_colors)])) 

for i in range(len(responses))] 

else: 

assert len(styles) == len(responses) 

 

if labels is None: 

labels = [None] * len(responses) 

else: 

assert len(labels) == len(responses) 

 

a_ranges, p_ranges = [], [] 

have_labels = False 

for style, resp, label in zip(styles, responses, labels): 

a_range, p_range = draw( 

response=resp, 

axes_amplitude=axes_amplitude, 

axes_phase=axes_phase, 

fmin=fmin, fmax=fmax, nf=nf, 

normalize=normalize, 

style=style, 

label=label) 

 

if label is not None: 

have_labels = True 

 

a_ranges.append(a_range) 

p_ranges.append(p_range) 

 

if have_labels: 

axes_amplitude.legend(loc='lower right', prop=dict(size=fontsize)) 

 

if a_ranges: 

a_ranges = num.array(a_ranges) 

p_ranges = num.array(p_ranges) 

 

amin, amax = num.min(a_ranges), num.max(a_ranges) 

pmin, pmax = num.min(p_ranges), num.max(p_ranges) 

 

amin *= 0.5 

amax *= 2.0 

 

pmin -= 0.5 

pmax += 0.5 

 

axes_amplitude.set_ylim(amin, amax) 

axes_phase.set_ylim(pmin, pmax) 

axes_amplitude.set_xlim(fmin, fmax) 

axes_phase.set_xlim(fmin, fmax) 

 

if filename is not None: 

fig.savefig(filename, dpi=dpi) 

else: 

plt.show() 

 

 

def tts(t): 

if t is None: 

return '?' 

else: 

return util.tts(t, format='%Y-%m-%d') 

 

 

def load_response_information( 

filename, format, nslc_patterns=None, fake_input_units=None): 

 

from pyrocko import pz, trace 

from pyrocko.io import resp as fresp 

 

resps = [] 

labels = [] 

if format == 'sacpz': 

if fake_input_units is not None: 

raise Exception( 

'cannot guess true input units from plain SAC PZ files') 

 

zeros, poles, constant = pz.read_sac_zpk(filename) 

resp = trace.PoleZeroResponse( 

zeros=zeros, poles=poles, constant=constant) 

 

resps.append(resp) 

labels.append(filename) 

 

elif format == 'pf': 

if fake_input_units is not None: 

raise Exception( 

'Cannot guess input units from plain response files.') 

 

resp = guts.load(filename=filename) 

resps.append(resp) 

labels.append(filename) 

 

elif format == 'resp': 

for resp in list(fresp.iload_filename(filename)): 

if nslc_patterns is not None and not util.match_nslc( 

nslc_patterns, resp.codes): 

continue 

 

units = '' 

if resp.response.instrument_sensitivity: 

s = resp.response.instrument_sensitivity 

if s.input_units and s.output_units: 

units = ', %s -> %s' % ( 

fake_input_units or s.input_units.name, 

s.output_units.name) 

 

resps.append(resp.response.get_pyrocko_response( 

resp.codes, fake_input_units=fake_input_units)) 

 

labels.append('%s (%s.%s.%s.%s, %s - %s%s)' % ( 

(filename, ) + resp.codes + 

(tts(resp.start_date), tts(resp.end_date), units))) 

 

elif format == 'stationxml': 

from pyrocko.fdsn import station as fs 

 

sx = fs.load_xml(filename=filename) 

for network in sx.network_list: 

for station in network.station_list: 

for channel in station.channel_list: 

nslc = ( 

network.code, 

station.code, 

channel.location_code, 

channel.code) 

 

if nslc_patterns is not None and not util.match_nslc( 

nslc_patterns, nslc): 

continue 

 

if not channel.response: 

logger.warn( 

'no response for channel %s.%s.%s.%s given.' 

% nslc) 

continue 

 

units = '' 

if channel.response.instrument_sensitivity: 

s = channel.response.instrument_sensitivity 

if s.input_units and s.output_units: 

units = ', %s -> %s' % ( 

fake_input_units or s.input_units.name, 

s.output_units.name) 

 

resps.append(channel.response.get_pyrocko_response( 

nslc, fake_input_units=fake_input_units)) 

 

labels.append( 

'%s (%s.%s.%s.%s, %s - %s%s)' % ( 

(filename, ) + nslc + 

(tts(channel.start_date), 

tts(channel.end_date), 

units))) 

 

return resps, labels 

 

 

if __name__ == '__main__': 

import sys 

from optparse import OptionParser 

 

util.setup_logging('pyrocko.plot.response.__main__', 'warning') 

 

usage = 'python -m pyrocko.plot.response <filename> ... [options]' 

 

description = '''Plot instrument responses (transfer functions).''' 

 

allowed_formats = ['sacpz', 'resp', 'stationxml', 'pf'] 

 

parser = OptionParser( 

usage=usage, 

description=description, 

formatter=util.BetterHelpFormatter()) 

 

parser.add_option( 

'--format', 

dest='format', 

default='sacpz', 

choices=allowed_formats, 

help='assume input files are of given FORMAT. Choices: %s' % ( 

', '.join(allowed_formats))) 

 

parser.add_option( 

'--fmin', 

dest='fmin', 

type='float', 

default=0.01, 

help='minimum frequency [Hz], default: %default') 

 

parser.add_option( 

'--fmax', 

dest='fmax', 

type='float', 

default=100., 

help='maximum frequency [Hz], default: %default') 

 

parser.add_option( 

'--normalize', 

dest='normalize', 

action='store_true', 

help='normalize response to be 1 on flat part') 

 

parser.add_option( 

'--save', 

dest='filename', 

help='save figure to file with name FILENAME') 

 

parser.add_option( 

'--dpi', 

dest='dpi', 

type='float', 

default=100., 

help='DPI setting for pixel image output, default: %default') 

 

parser.add_option( 

'--patterns', 

dest='nslc_patterns', 

metavar='NET.STA.LOC.CHA,...', 

help='show only responses of channels matching any of the given ' 

'patterns') 

 

parser.add_option( 

'--fake-input-units', 

dest='fake_input_units', 

choices=['M', 'M/S', 'M/S**2'], 

metavar='UNITS', 

help='show converted response for given input units, choices: ' 

'["M", "M/S", "M/S**2"]') 

 

(options, args) = parser.parse_args(sys.argv[1:]) 

 

if len(args) == 0: 

parser.print_help() 

sys.exit(1) 

 

fns = args 

 

resps = [] 

labels = [] 

 

for fn in fns: 

 

if options.nslc_patterns is not None: 

nslc_patterns = options.nslc_patterns.split(',') 

else: 

nslc_patterns = None 

 

resps_this, labels_this = load_response_information( 

fn, options.format, nslc_patterns, 

fake_input_units=options.fake_input_units) 

 

resps.extend(resps_this) 

labels.extend(labels_this) 

 

plot( 

resps, 

fmin=options.fmin, fmax=options.fmax, nf=200, 

normalize=options.normalize, 

labels=labels, filename=options.filename, dpi=options.dpi)