Coverage for /usr/local/lib/python3.11/dist-packages/pyrocko/trace.py: 76%

1747 statements  

« prev     ^ index     » next       coverage.py v6.5.0, created at 2024-07-05 06:26 +0000

1# https://pyrocko.org - GPLv3 

2# 

3# The Pyrocko Developers, 21st Century 

4# ---|P------/S----------~Lg---------- 

5 

6''' 

7Basic signal processing for seismic waveforms. 

8''' 

9 

10import time 

11import math 

12import copy 

13import logging 

14import hashlib 

15from collections import defaultdict 

16 

17import numpy as num 

18from scipy import signal 

19 

20from pyrocko import util, orthodrome, pchain, model, signal_ext 

21from pyrocko.util import reuse 

22from pyrocko.guts import Object, Float, Int, String, List, \ 

23 StringChoice, Timestamp 

24from pyrocko.guts_array import Array 

25from pyrocko.model import squirrel_content 

26 

27# backward compatibility 

28from pyrocko.util import UnavailableDecimation # noqa 

29from pyrocko.response import ( # noqa 

30 FrequencyResponse, Evalresp, InverseEvalresp, PoleZeroResponse, 

31 ButterworthResponse, SampledResponse, IntegrationResponse, 

32 DifferentiationResponse, MultiplyResponse) 

33 

34 

35guts_prefix = 'pf' 

36 

37logger = logging.getLogger('pyrocko.trace') 

38 

39 

40g_tapered_coeffs_cache = {} 

41g_one_response = FrequencyResponse() 

42 

43 

44@squirrel_content 

45class Trace(Object): 

46 

47 ''' 

48 Create new trace object. 

49 

50 A ``Trace`` object represents a single continuous strip of evenly sampled 

51 time series data. It is built from a 1D NumPy array containing the data 

52 samples and some attributes describing its beginning and ending time, its 

53 sampling rate and four string identifiers (its network, station, location 

54 and channel code). 

55 

56 :param network: network code 

57 :param station: station code 

58 :param location: location code 

59 :param channel: channel code 

60 :param extra: extra code 

61 :param tmin: system time of first sample in [s] 

62 :param tmax: system time of last sample in [s] (if set to ``None`` it is 

63 computed from length of ``ydata``) 

64 :param deltat: sampling interval in [s] 

65 :param ydata: 1D numpy array with data samples (can be ``None`` when 

66 ``tmax`` is not ``None``) 

67 :param mtime: optional modification time 

68 

69 :param meta: additional meta information (not used, but maintained by the 

70 library) 

71 

72 The length of the network, station, location and channel codes is not 

73 resricted by this software, but data formats like SAC, Mini-SEED or GSE 

74 have different limits on the lengths of these codes. The codes set here are 

75 silently truncated when the trace is stored 

76 ''' 

77 

78 network = String.T(default='', help='Deployment/network code (1-8)') 

79 station = String.T(default='STA', help='Station code (1-5)') 

80 location = String.T(default='', help='Location code (0-2)') 

81 channel = String.T(default='', help='Channel code (3)') 

82 extra = String.T(default='', help='Extra/custom code') 

83 

84 tmin = Timestamp.T(default=Timestamp.D('1970-01-01 00:00:00')) 

85 tmax = Timestamp.T() 

86 

87 deltat = Float.T(default=1.0) 

88 ydata = Array.T(optional=True, shape=(None,), serialize_as='base64+meta') 

89 

90 mtime = Timestamp.T(optional=True) 

91 

92 cached_frequencies = {} 

93 

94 def __init__(self, network='', station='STA', location='', channel='', 

95 tmin=0., tmax=None, deltat=1., ydata=None, mtime=None, 

96 meta=None, extra=''): 

97 

98 Object.__init__(self, init_props=False) 

99 

100 time_float = util.get_time_float() 

101 

102 if not isinstance(tmin, time_float): 

103 tmin = Trace.tmin.regularize_extra(tmin) 

104 

105 if tmax is not None and not isinstance(tmax, time_float): 

106 tmax = Trace.tmax.regularize_extra(tmax) 

107 

108 if mtime is not None and not isinstance(mtime, time_float): 

109 mtime = Trace.mtime.regularize_extra(mtime) 

110 

111 if ydata is not None and not isinstance(ydata, num.ndarray): 

112 ydata = Trace.ydata.regularize_extra(ydata) 

113 

114 self._growbuffer = None 

115 

116 tmin = time_float(tmin) 

117 if tmax is not None: 

118 tmax = time_float(tmax) 

119 

120 if mtime is None: 

121 mtime = time_float(time.time()) 

122 

123 self.network, self.station, self.location, self.channel, \ 

124 self.extra = [ 

125 reuse(x) for x in ( 

126 network, station, location, channel, extra)] 

127 

128 self.tmin = tmin 

129 self.deltat = deltat 

130 

131 if tmax is None: 

132 if ydata is not None: 

133 self.tmax = self.tmin + (ydata.size-1)*self.deltat 

134 else: 

135 raise Exception( 

136 'fixme: trace must be created with tmax or ydata') 

137 else: 

138 n = int(round((tmax - self.tmin) / self.deltat)) + 1 

139 self.tmax = self.tmin + (n - 1) * self.deltat 

140 

141 self.meta = meta 

142 self.ydata = ydata 

143 self.mtime = mtime 

144 self._update_ids() 

145 self.file = None 

146 self._pchain = None 

147 

148 def __str__(self): 

149 fmt = min(9, max(0, -int(math.floor(math.log10(self.deltat))))) 

150 s = 'Trace (%s, %s, %s, %s)\n' % self.nslc_id 

151 s += ' timerange: %s - %s\n' % ( 

152 util.time_to_str(self.tmin, format=fmt), 

153 util.time_to_str(self.tmax, format=fmt)) 

154 

155 s += ' delta t: %g\n' % self.deltat 

156 if self.meta: 

157 for k in sorted(self.meta.keys()): 

158 s += ' %s: %s\n' % (k, self.meta[k]) 

159 return s 

160 

161 @property 

162 def codes(self): 

163 from pyrocko.squirrel import model 

164 return model.CodesNSLCE( 

165 self.network, self.station, self.location, self.channel, 

166 self.extra) 

167 

168 @property 

169 def time_span(self): 

170 return self.tmin, self.tmax 

171 

172 @property 

173 def summary_entries(self): 

174 return ( 

175 self.__class__.__name__, 

176 str(self.codes), 

177 self.str_time_span, 

178 '%g' % (1.0/self.deltat)) 

179 

180 @property 

181 def summary_stats_entries(self): 

182 return tuple('%13.7g' % v for v in ( 

183 self.ydata.min(), 

184 self.ydata.max(), 

185 self.ydata.mean(), 

186 self.ydata.std())) 

187 

188 @property 

189 def summary(self): 

190 return util.fmt_summary(self.summary_entries, (10, 20, 55, 0)) 

191 

192 @property 

193 def summary_stats(self): 

194 return self.summary + ' | ' + util.fmt_summary( 

195 self.summary_stats_entries, (12, 12, 12, 12)) 

196 

197 def __getstate__(self): 

198 return (self.network, self.station, self.location, self.channel, 

199 self.tmin, self.tmax, self.deltat, self.mtime, 

200 self.ydata, self.meta, self.extra) 

201 

202 def __setstate__(self, state): 

203 if len(state) == 11: 

204 self.network, self.station, self.location, self.channel, \ 

205 self.tmin, self.tmax, self.deltat, self.mtime, \ 

206 self.ydata, self.meta, self.extra = state 

207 

208 elif len(state) == 12: 

209 # backward compatibility 0 

210 self.network, self.station, self.location, self.channel, \ 

211 self.tmin, self.tmax, self.deltat, self.mtime, \ 

212 self.ydata, self.meta, _, self.extra = state 

213 

214 elif len(state) == 10: 

215 # backward compatibility 1 

216 self.network, self.station, self.location, self.channel, \ 

217 self.tmin, self.tmax, self.deltat, self.mtime, \ 

218 self.ydata, self.meta = state 

219 

220 self.extra = '' 

221 

222 else: 

223 # backward compatibility 2 

224 self.network, self.station, self.location, self.channel, \ 

225 self.tmin, self.tmax, self.deltat, self.mtime = state 

226 self.ydata = None 

227 self.meta = None 

228 self.extra = '' 

229 

230 self._growbuffer = None 

231 self._update_ids() 

232 

233 def hash(self, unsafe=False): 

234 sha1 = hashlib.sha1() 

235 for code in self.nslc_id: 

236 sha1.update(code.encode()) 

237 sha1.update(self.tmin.hex().encode()) 

238 sha1.update(self.tmax.hex().encode()) 

239 sha1.update(self.deltat.hex().encode()) 

240 

241 if self.ydata is not None: 

242 if not unsafe: 

243 sha1.update(memoryview(self.ydata)) 

244 else: 

245 sha1.update(memoryview(self.ydata[:32])) 

246 sha1.update(memoryview(self.ydata[-32:])) 

247 

248 return sha1.hexdigest() 

249 

250 def name(self): 

251 ''' 

252 Get a short string description. 

253 ''' 

254 

255 s = '%s.%s.%s.%s, %s, %s' % (self.nslc_id + ( 

256 util.time_to_str(self.tmin), 

257 util.time_to_str(self.tmax))) 

258 

259 return s 

260 

261 def __eq__(self, other): 

262 return ( 

263 isinstance(other, Trace) 

264 and self.network == other.network 

265 and self.station == other.station 

266 and self.location == other.location 

267 and self.channel == other.channel 

268 and (abs(self.deltat - other.deltat) 

269 < (self.deltat + other.deltat)*1e-6) 

270 and abs(self.tmin-other.tmin) < self.deltat*0.01 

271 and abs(self.tmax-other.tmax) < self.deltat*0.01 

272 and num.all(self.ydata == other.ydata)) 

273 

274 def almost_equal(self, other, rtol=1e-5, atol=0.0): 

275 return ( 

276 self.network == other.network 

277 and self.station == other.station 

278 and self.location == other.location 

279 and self.channel == other.channel 

280 and (abs(self.deltat - other.deltat) 

281 < (self.deltat + other.deltat)*1e-6) 

282 and abs(self.tmin-other.tmin) < self.deltat*0.01 

283 and abs(self.tmax-other.tmax) < self.deltat*0.01 

284 and num.allclose(self.ydata, other.ydata, rtol=rtol, atol=atol)) 

285 

286 def assert_almost_equal(self, other, rtol=1e-5, atol=0.0): 

287 

288 assert self.network == other.network, \ 

289 'network codes differ: %s, %s' % (self.network, other.network) 

290 assert self.station == other.station, \ 

291 'station codes differ: %s, %s' % (self.station, other.station) 

292 assert self.location == other.location, \ 

293 'location codes differ: %s, %s' % (self.location, other.location) 

294 assert self.channel == other.channel, 'channel codes differ' 

295 assert (abs(self.deltat - other.deltat) 

296 < (self.deltat + other.deltat)*1e-6), \ 

297 'sampling intervals differ %g, %g' % (self.deltat, other.delta) 

298 assert abs(self.tmin-other.tmin) < self.deltat*0.01, \ 

299 'start times differ: %s, %s' % ( 

300 util.time_to_str(self.tmin), util.time_to_str(other.tmin)) 

301 assert abs(self.tmax-other.tmax) < self.deltat*0.01, \ 

302 'end times differ: %s, %s' % ( 

303 util.time_to_str(self.tmax), util.time_to_str(other.tmax)) 

304 

305 assert num.allclose(self.ydata, other.ydata, rtol=rtol, atol=atol), \ 

306 'trace values differ' 

307 

308 def __hash__(self): 

309 return id(self) 

310 

311 def __call__(self, t, clip=False, snap=round): 

312 it = int(snap((t-self.tmin)/self.deltat)) 

313 if clip: 

314 it = max(0, min(it, self.ydata.size-1)) 

315 else: 

316 if it < 0 or self.ydata.size <= it: 

317 raise IndexError() 

318 

319 return self.tmin+it*self.deltat, self.ydata[it] 

320 

321 def interpolate(self, t, clip=False): 

322 ''' 

323 Value of trace between supporting points through linear interpolation. 

324 

325 :param t: time instant 

326 :param clip: whether to clip indices to trace ends 

327 ''' 

328 

329 t0, y0 = self(t, clip=clip, snap=math.floor) 

330 t1, y1 = self(t, clip=clip, snap=math.ceil) 

331 if t0 == t1: 

332 return y0 

333 else: 

334 return y0+(t-t0)/(t1-t0)*(y1-y0) 

335 

336 def index_clip(self, i): 

337 ''' 

338 Clip index to valid range. 

339 ''' 

340 

341 return min(max(0, i), self.ydata.size) 

342 

343 def add(self, other, interpolate=True, left=0., right=0.): 

344 ''' 

345 Add values of other trace (self += other). 

346 

347 Add values of ``other`` trace to the values of ``self``, where it 

348 intersects with ``other``. This method does not change the extent of 

349 ``self``. If ``interpolate`` is ``True`` (the default), the values of 

350 ``other`` to be added are interpolated at sampling instants of 

351 ``self``. Linear interpolation is performed. In this case the sampling 

352 rate of ``other`` must be equal to or lower than that of ``self``. If 

353 ``interpolate`` is ``False``, the sampling rates of the two traces must 

354 match. 

355 ''' 

356 

357 if interpolate: 

358 assert self.deltat <= other.deltat \ 

359 or same_sampling_rate(self, other) 

360 

361 other_xdata = other.get_xdata() 

362 xdata = self.get_xdata() 

363 self.ydata += num.interp( 

364 xdata, other_xdata, other.ydata, left=left, right=left) 

365 else: 

366 assert self.deltat == other.deltat 

367 ioff = int(round((other.tmin-self.tmin)/self.deltat)) 

368 ibeg = max(0, ioff) 

369 iend = min(self.data_len(), ioff+other.data_len()) 

370 self.ydata[ibeg:iend] += other.ydata[ibeg-ioff:iend-ioff] 

371 

372 def mult(self, other, interpolate=True): 

373 ''' 

374 Muliply with values of other trace ``(self *= other)``. 

375 

376 Multiply values of ``other`` trace to the values of ``self``, where it 

377 intersects with ``other``. This method does not change the extent of 

378 ``self``. If ``interpolate`` is ``True`` (the default), the values of 

379 ``other`` to be multiplied are interpolated at sampling instants of 

380 ``self``. Linear interpolation is performed. In this case the sampling 

381 rate of ``other`` must be equal to or lower than that of ``self``. If 

382 ``interpolate`` is ``False``, the sampling rates of the two traces must 

383 match. 

384 ''' 

385 

386 if interpolate: 

387 assert self.deltat <= other.deltat or \ 

388 same_sampling_rate(self, other) 

389 

390 other_xdata = other.get_xdata() 

391 xdata = self.get_xdata() 

392 self.ydata *= num.interp( 

393 xdata, other_xdata, other.ydata, left=0., right=0.) 

394 else: 

395 assert self.deltat == other.deltat 

396 ibeg1 = int(round((other.tmin-self.tmin)/self.deltat)) 

397 ibeg2 = int(round((self.tmin-other.tmin)/self.deltat)) 

398 iend1 = int(round((other.tmax-self.tmin)/self.deltat))+1 

399 iend2 = int(round((self.tmax-other.tmin)/self.deltat))+1 

400 

401 ibeg1 = self.index_clip(ibeg1) 

402 iend1 = self.index_clip(iend1) 

403 ibeg2 = self.index_clip(ibeg2) 

404 iend2 = self.index_clip(iend2) 

405 

406 self.ydata[ibeg1:iend1] *= other.ydata[ibeg2:iend2] 

407 

408 def max(self): 

409 ''' 

410 Get time and value of data maximum. 

411 ''' 

412 

413 i = num.argmax(self.ydata) 

414 return self.tmin + i*self.deltat, self.ydata[i] 

415 

416 def min(self): 

417 ''' 

418 Get time and value of data minimum. 

419 ''' 

420 

421 i = num.argmin(self.ydata) 

422 return self.tmin + i*self.deltat, self.ydata[i] 

423 

424 def absmax(self): 

425 ''' 

426 Get time and value of maximum of the absolute of data. 

427 ''' 

428 

429 tmi, mi = self.min() 

430 tma, ma = self.max() 

431 if abs(mi) > abs(ma): 

432 return tmi, abs(mi) 

433 else: 

434 return tma, abs(ma) 

435 

436 def set_codes( 

437 self, network=None, station=None, location=None, channel=None, 

438 extra=None): 

439 

440 ''' 

441 Set network, station, location, and channel codes. 

442 ''' 

443 

444 if network is not None: 

445 self.network = network 

446 if station is not None: 

447 self.station = station 

448 if location is not None: 

449 self.location = location 

450 if channel is not None: 

451 self.channel = channel 

452 if extra is not None: 

453 self.extra = extra 

454 

455 self._update_ids() 

456 

457 def set_network(self, network): 

458 self.network = network 

459 self._update_ids() 

460 

461 def set_station(self, station): 

462 self.station = station 

463 self._update_ids() 

464 

465 def set_location(self, location): 

466 self.location = location 

467 self._update_ids() 

468 

469 def set_channel(self, channel): 

470 self.channel = channel 

471 self._update_ids() 

472 

473 def overlaps(self, tmin, tmax): 

474 ''' 

475 Check if trace has overlap with a given time span. 

476 ''' 

477 return not (tmax < self.tmin or self.tmax < tmin) 

478 

479 def is_relevant(self, tmin, tmax, selector=None): 

480 ''' 

481 Check if trace has overlap with a given time span and matches a 

482 condition callback. (internal use) 

483 ''' 

484 

485 return not (tmax <= self.tmin or self.tmax < tmin) \ 

486 and (selector is None or selector(self)) 

487 

488 def _update_ids(self): 

489 ''' 

490 Update dependent ids. 

491 ''' 

492 

493 self.full_id = ( 

494 self.network, self.station, self.location, self.channel, self.tmin) 

495 self.nslc_id = reuse( 

496 (self.network, self.station, self.location, self.channel)) 

497 

498 def prune_from_reuse_cache(self): 

499 util.deuse(self.nslc_id) 

500 util.deuse(self.network) 

501 util.deuse(self.station) 

502 util.deuse(self.location) 

503 util.deuse(self.channel) 

504 

505 def set_mtime(self, mtime): 

506 ''' 

507 Set modification time of the trace. 

508 ''' 

509 

510 self.mtime = mtime 

511 

512 def get_xdata(self): 

513 ''' 

514 Create array for time axis. 

515 ''' 

516 

517 if self.ydata is None: 

518 raise NoData() 

519 

520 return self.tmin \ 

521 + num.arange(len(self.ydata), dtype=num.float64) * self.deltat 

522 

523 def get_ydata(self): 

524 ''' 

525 Get data array. 

526 ''' 

527 

528 if self.ydata is None: 

529 raise NoData() 

530 

531 return self.ydata 

532 

533 def set_ydata(self, new_ydata): 

534 ''' 

535 Replace data array. 

536 ''' 

537 

538 self.drop_growbuffer() 

539 self.ydata = new_ydata 

540 self.tmax = self.tmin+(len(self.ydata)-1)*self.deltat 

541 

542 def data_len(self): 

543 if self.ydata is not None: 

544 return self.ydata.size 

545 else: 

546 return int(round((self.tmax-self.tmin)/self.deltat)) + 1 

547 

548 def drop_data(self): 

549 ''' 

550 Forget data, make dataless trace. 

551 ''' 

552 

553 self.drop_growbuffer() 

554 self.ydata = None 

555 

556 def drop_growbuffer(self): 

557 ''' 

558 Detach the traces grow buffer. 

559 ''' 

560 

561 self._growbuffer = None 

562 self._pchain = None 

563 

564 def copy(self, data=True): 

565 ''' 

566 Make a deep copy of the trace. 

567 ''' 

568 

569 tracecopy = copy.copy(self) 

570 tracecopy.drop_growbuffer() 

571 if data: 

572 tracecopy.ydata = self.ydata.copy() 

573 tracecopy.meta = copy.deepcopy(self.meta) 

574 return tracecopy 

575 

576 def crop_zeros(self): 

577 ''' 

578 Remove any zeros at beginning and end. 

579 ''' 

580 

581 indices = num.where(self.ydata != 0.0)[0] 

582 if indices.size == 0: 

583 raise NoData() 

584 

585 ibeg = indices[0] 

586 iend = indices[-1]+1 

587 if ibeg == 0 and iend == self.ydata.size-1: 

588 return 

589 

590 self.drop_growbuffer() 

591 self.ydata = self.ydata[ibeg:iend].copy() 

592 self.tmin = self.tmin+ibeg*self.deltat 

593 self.tmax = self.tmin+(len(self.ydata)-1)*self.deltat 

594 self._update_ids() 

595 

596 def append(self, data): 

597 ''' 

598 Append data to the end of the trace. 

599 

600 To make this method efficient when successively very few or even single 

601 samples are appended, a larger grow buffer is allocated upon first 

602 invocation. The traces data is then changed to be a view into the 

603 currently filled portion of the grow buffer array. 

604 ''' 

605 

606 assert self.ydata.dtype == data.dtype 

607 newlen = data.size + self.ydata.size 

608 if self._growbuffer is None or self._growbuffer.size < newlen: 

609 self._growbuffer = num.empty(newlen*2, dtype=self.ydata.dtype) 

610 self._growbuffer[:self.ydata.size] = self.ydata 

611 self._growbuffer[self.ydata.size:newlen] = data 

612 self.ydata = self._growbuffer[:newlen] 

613 self.tmax = self.tmin + (newlen-1)*self.deltat 

614 

615 def chop( 

616 self, tmin, tmax, inplace=True, include_last=False, 

617 snap=(round, round), want_incomplete=True): 

618 

619 ''' 

620 Cut the trace to given time span. 

621 

622 If the ``inplace`` argument is True (the default) the trace is cut in 

623 place, otherwise a new trace with the cut part is returned. By 

624 default, the indices where to start and end the trace data array are 

625 determined by rounding of ``tmin`` and ``tmax`` to sampling instances 

626 using Python's :py:func:`round` function. This behaviour can be changed 

627 with the ``snap`` argument, which takes a tuple of two functions (one 

628 for the lower and one for the upper end) to be used instead of 

629 :py:func:`round`. The last sample is by default not included unless 

630 ``include_last`` is set to True. If the given time span exceeds the 

631 available time span of the trace, the available part is returned, 

632 unless ``want_incomplete`` is set to False - in that case, a 

633 :py:exc:`NoData` exception is raised. This exception is always raised, 

634 when the requested time span does dot overlap with the trace's time 

635 span. 

636 ''' 

637 

638 if want_incomplete: 

639 if tmax <= self.tmin-self.deltat or self.tmax+self.deltat < tmin: 

640 raise NoData() 

641 else: 

642 if tmin < self.tmin or self.tmax < tmax: 

643 raise NoData() 

644 

645 ibeg = max(0, t2ind(tmin-self.tmin, self.deltat, snap[0])) 

646 iplus = 0 

647 if include_last: 

648 iplus = 1 

649 

650 iend = min( 

651 self.data_len(), 

652 t2ind(tmax-self.tmin, self.deltat, snap[1])+iplus) 

653 

654 if ibeg >= iend: 

655 raise NoData() 

656 

657 obj = self 

658 if not inplace: 

659 obj = self.copy(data=False) 

660 

661 self.drop_growbuffer() 

662 if self.ydata is not None: 

663 obj.ydata = self.ydata[ibeg:iend].copy() 

664 else: 

665 obj.ydata = None 

666 

667 obj.tmin = obj.tmin+ibeg*obj.deltat 

668 obj.tmax = obj.tmin+((iend-ibeg)-1)*obj.deltat 

669 

670 obj._update_ids() 

671 

672 return obj 

673 

674 def downsample( 

675 self, ndecimate, snap=False, demean=False, ftype='fir-remez', 

676 cut=False): 

677 

678 ''' 

679 Downsample (decimate) trace by a given integer factor. 

680 

681 Antialiasing filter details: 

682 

683 * ``iir``: A Chebyshev type I digital filter of order 8 with maximum 

684 ripple of 0.05 dB in the passband. 

685 * ``fir``: A FIR filter using a Hamming window and 31 taps and a 

686 well-behaved phase response. 

687 * ``fir-remez``: A FIR filter based on the Remez exchange algorithm 

688 with ``45*ndecimate`` taps and a cutoff at 75% Nyquist frequency. 

689 

690 Comparison of the digital filters: 

691 

692 .. figure :: ../../static/downsampling-filter-comparison.png 

693 :width: 60% 

694 :alt: Comparison of the downsampling filters. 

695 

696 See also :py:meth:`Trace.downsample_to`. 

697 

698 :param ndecimate: 

699 Decimation factor, avoid values larger than 8. 

700 :type ndecimate: 

701 int 

702 

703 :param snap: 

704 Whether to put the new sampling instants closest to multiples of 

705 the sampling rate (according to absolute time). 

706 :type snap: 

707 bool 

708 

709 :param demean: 

710 Whether to demean the signal before filtering. 

711 :type demean: 

712 bool 

713 

714 :param ftype: 

715 Which FIR filter to use, choose from ``'iir'``, ``'fir'``, 

716 ``'fir-remez'``. Default is ``'fir-remez'``. 

717 

718 :param cut: 

719 Whether to cut off samples in the beginning of the trace which 

720 are polluted by artifacts of the anti-aliasing filter. 

721 :type cut: 

722 bool 

723 ''' 

724 newdeltat = self.deltat*ndecimate 

725 b, a, n = util.decimate_coeffs(ndecimate, None, ftype) 

726 if snap: 

727 ilag = int(round((math.ceil( 

728 (self.tmin+(n//2 if cut else 0)*self.deltat) / 

729 newdeltat) * newdeltat - self.tmin) / self.deltat)) 

730 else: 

731 ilag = (n//2 if cut else 0) 

732 

733 data = self.ydata.astype(num.float64) 

734 if data.size != 0: 

735 if demean: 

736 data -= num.mean(data) 

737 y = signal.lfilter(b, a, data) 

738 self.ydata = y[n//2+ilag::ndecimate].copy() 

739 else: 

740 self.ydata = data 

741 

742 self.tmin += ilag * self.deltat 

743 self.deltat = reuse(self.deltat*ndecimate) 

744 self.tmax = self.tmin+(len(self.ydata)-1)*self.deltat 

745 self._update_ids() 

746 

747 def downsample_to( 

748 self, deltat, snap=False, allow_upsample_max=1, demean=False, 

749 ftype='fir-remez', cut=False): 

750 

751 ''' 

752 Downsample to given sampling rate. 

753 

754 Tries to downsample the trace to a target sampling interval of 

755 ``deltat``. This runs :py:meth:`downsample` one or several times. If 

756 ``allow_upsample_max`` is set to a value larger than 1, intermediate 

757 upsampling steps are allowed, in order to increase the number of 

758 possible downsampling ratios. 

759 

760 If the requested ratio is not supported, an exception of type 

761 :py:exc:`pyrocko.util.UnavailableDecimation` is raised. 

762 

763 The downsampled trace will be shorter than the input trace because the 

764 anti-aliasing filter introduces edge effects. If `cut` is selected, 

765 additionally, polluted samples in the beginning of the trace are 

766 removed. The approximate amount of cutoff which will be produced by a 

767 given downsampling configuration can be estimated with 

768 :py:func:`downsample_tpad`. 

769 

770 See also: :meth:`Trace.downsample`. 

771 

772 :param deltat: 

773 Desired sampling interval in [s]. 

774 :type deltat: 

775 float 

776 

777 :param allow_upsample_max: 

778 Maximum allowed upsampling factor of the signal to achieve the 

779 desired sampling interval. Default is ``1``. 

780 :type allow_upsample_max: 

781 int 

782 

783 :param snap: 

784 Whether to put the new sampling instants closest to multiples of 

785 the sampling rate (according to absolute time). 

786 :type snap: 

787 bool 

788 

789 :param demean: 

790 Whether to demean the signal before filtering. 

791 :type demean: 

792 bool 

793 

794 :param ftype: 

795 Which FIR filter to use, choose from ``'iir'``, ``'fir'``, 

796 ``'fir-remez'``. Default is ``'fir-remez'``. 

797 

798 :param cut: 

799 Whether to cut off samples in the beginning of the trace which 

800 are polluted by artifacts of the anti-aliasing filter. 

801 :type demean: 

802 bool 

803 ''' 

804 

805 upsratio, deci_seq = _configure_downsampling( 

806 self.deltat, deltat, allow_upsample_max) 

807 

808 if demean: 

809 self.drop_growbuffer() 

810 self.ydata = self.ydata.astype(num.float64) 

811 self.ydata -= num.mean(self.ydata) 

812 

813 if upsratio > 1: 

814 self.drop_growbuffer() 

815 ydata = self.ydata 

816 self.ydata = num.zeros( 

817 ydata.size*upsratio-(upsratio-1), ydata.dtype) 

818 self.ydata[::upsratio] = ydata 

819 for i in range(1, upsratio): 

820 self.ydata[i::upsratio] = \ 

821 float(i)/upsratio * ydata[:-1] \ 

822 + float(upsratio-i)/upsratio * ydata[1:] 

823 self.deltat = self.deltat/upsratio 

824 

825 for i, ndecimate in enumerate(deci_seq): 

826 self.downsample( 

827 ndecimate, snap=snap, demean=False, ftype=ftype, cut=cut) 

828 

829 def resample(self, deltat): 

830 ''' 

831 Resample to given sampling rate ``deltat``. 

832 

833 Resampling is performed in the frequency domain. 

834 ''' 

835 

836 ndata = self.ydata.size 

837 ntrans = nextpow2(ndata) 

838 fntrans2 = ntrans * self.deltat/deltat 

839 ntrans2 = int(round(fntrans2)) 

840 deltat2 = self.deltat * float(ntrans)/float(ntrans2) 

841 ndata2 = int(round(ndata*self.deltat/deltat2)) 

842 if abs(fntrans2 - ntrans2) > 1e-7: 

843 logger.warning( 

844 'resample: requested deltat %g could not be matched exactly: ' 

845 '%g' % (deltat, deltat2)) 

846 

847 data = self.ydata 

848 data_pad = num.zeros(ntrans, dtype=float) 

849 data_pad[:ndata] = data 

850 fdata = num.fft.rfft(data_pad) 

851 fdata2 = num.zeros((ntrans2+1)//2, dtype=fdata.dtype) 

852 n = min(fdata.size, fdata2.size) 

853 fdata2[:n] = fdata[:n] 

854 data2 = num.fft.irfft(fdata2) 

855 data2 = data2[:ndata2] 

856 data2 *= float(ntrans2) / float(ntrans) 

857 self.deltat = deltat2 

858 self.set_ydata(data2) 

859 

860 def resample_simple(self, deltat): 

861 tyear = 3600*24*365. 

862 

863 if deltat == self.deltat: 

864 return 

865 

866 if abs(self.deltat - deltat) * tyear/deltat < deltat: 

867 logger.warning( 

868 'resample_simple: less than one sample would have to be ' 

869 'inserted/deleted per year. Doing nothing.') 

870 return 

871 

872 ninterval = int(round(deltat / (self.deltat - deltat))) 

873 if abs(ninterval) < 20: 

874 logger.error( 

875 'resample_simple: sample insertion/deletion interval less ' 

876 'than 20. results would be erroneous.') 

877 raise ResamplingFailed() 

878 

879 delete = False 

880 if ninterval < 0: 

881 ninterval = - ninterval 

882 delete = True 

883 

884 tyearbegin = util.year_start(self.tmin) 

885 

886 nmin = int(round((self.tmin - tyearbegin)/deltat)) 

887 

888 ibegin = (((nmin-1)//ninterval)+1) * ninterval - nmin 

889 nindices = (len(self.ydata) - ibegin - 1) / ninterval + 1 

890 if nindices > 0: 

891 indices = ibegin + num.arange(nindices) * ninterval 

892 data_split = num.split(self.ydata, indices) 

893 data = [] 

894 for ln, h in zip(data_split[:-1], data_split[1:]): 

895 if delete: 

896 ln = ln[:-1] 

897 

898 data.append(ln) 

899 if not delete: 

900 if ln.size == 0: 

901 v = h[0] 

902 else: 

903 v = 0.5*(ln[-1] + h[0]) 

904 data.append(num.array([v], dtype=ln.dtype)) 

905 

906 data.append(data_split[-1]) 

907 

908 ydata_new = num.concatenate(data) 

909 

910 self.tmin = tyearbegin + nmin * deltat 

911 self.deltat = deltat 

912 self.set_ydata(ydata_new) 

913 

914 def stretch(self, tmin_new, tmax_new): 

915 ''' 

916 Stretch signal while preserving sample rate using sinc interpolation. 

917 

918 :param tmin_new: new time of first sample 

919 :param tmax_new: new time of last sample 

920 

921 This method can be used to correct for a small linear time drift or to 

922 introduce sub-sample time shifts. The amount of stretching is limited 

923 to 10% by the implementation and is expected to be much smaller than 

924 that by the approximations used. 

925 ''' 

926 

927 i_control = num.array([0, self.ydata.size-1], dtype=num.int64) 

928 t_control = num.array([tmin_new, tmax_new], dtype=float) 

929 

930 r = (tmax_new - tmin_new) / self.deltat + 1.0 

931 n_new = int(round(r)) 

932 if abs(n_new - r) > 0.001: 

933 n_new = int(math.floor(r)) 

934 

935 assert n_new >= 2 

936 

937 tmax_new = tmin_new + (n_new-1) * self.deltat 

938 

939 ydata_new = num.empty(n_new, dtype=float) 

940 signal_ext.antidrift(i_control, t_control, 

941 self.ydata.astype(float), 

942 tmin_new, self.deltat, ydata_new) 

943 

944 self.tmin = tmin_new 

945 self.set_ydata(ydata_new) 

946 self._update_ids() 

947 

948 def nyquist_check(self, frequency, intro='Corner frequency', warn=True, 

949 raise_exception=False): 

950 

951 ''' 

952 Check if a given frequency is above the Nyquist frequency of the trace. 

953 

954 :param intro: string used to introduce the warning/error message 

955 :param warn: whether to emit a warning 

956 :param raise_exception: whether to raise an :py:exc:`AboveNyquist` 

957 exception. 

958 ''' 

959 

960 if frequency >= 0.5/self.deltat: 

961 message = '%s (%g Hz) is equal to or higher than nyquist ' \ 

962 'frequency (%g Hz). (Trace %s)' \ 

963 % (intro, frequency, 0.5/self.deltat, self.name()) 

964 if warn: 

965 logger.warning(message) 

966 if raise_exception: 

967 raise AboveNyquist(message) 

968 

969 def lowpass(self, order, corner, nyquist_warn=True, 

970 nyquist_exception=False, demean=True): 

971 

972 ''' 

973 Apply Butterworth lowpass to the trace. 

974 

975 :param order: order of the filter 

976 :param corner: corner frequency of the filter 

977 

978 Mean is removed before filtering. 

979 ''' 

980 

981 self.nyquist_check( 

982 corner, 'Corner frequency of lowpass', nyquist_warn, 

983 nyquist_exception) 

984 

985 (b, a) = _get_cached_filter_coeffs( 

986 order, [corner*2.0*self.deltat], btype='low') 

987 

988 if len(a) != order+1 or len(b) != order+1: 

989 logger.warning( 

990 'Erroneous filter coefficients returned by ' 

991 'scipy.signal.butter(). You may need to downsample the ' 

992 'signal before filtering.') 

993 

994 data = self.ydata.astype(num.float64) 

995 if demean: 

996 data -= num.mean(data) 

997 self.drop_growbuffer() 

998 self.ydata = signal.lfilter(b, a, data) 

999 

1000 def highpass(self, order, corner, nyquist_warn=True, 

1001 nyquist_exception=False, demean=True): 

1002 

1003 ''' 

1004 Apply butterworth highpass to the trace. 

1005 

1006 :param order: order of the filter 

1007 :param corner: corner frequency of the filter 

1008 

1009 Mean is removed before filtering. 

1010 ''' 

1011 

1012 self.nyquist_check( 

1013 corner, 'Corner frequency of highpass', nyquist_warn, 

1014 nyquist_exception) 

1015 

1016 (b, a) = _get_cached_filter_coeffs( 

1017 order, [corner*2.0*self.deltat], btype='high') 

1018 

1019 data = self.ydata.astype(num.float64) 

1020 if len(a) != order+1 or len(b) != order+1: 

1021 logger.warning( 

1022 'Erroneous filter coefficients returned by ' 

1023 'scipy.signal.butter(). You may need to downsample the ' 

1024 'signal before filtering.') 

1025 if demean: 

1026 data -= num.mean(data) 

1027 self.drop_growbuffer() 

1028 self.ydata = signal.lfilter(b, a, data) 

1029 

1030 def bandpass(self, order, corner_hp, corner_lp, demean=True): 

1031 ''' 

1032 Apply butterworth bandpass to the trace. 

1033 

1034 :param order: order of the filter 

1035 :param corner_hp: lower corner frequency of the filter 

1036 :param corner_lp: upper corner frequency of the filter 

1037 

1038 Mean is removed before filtering. 

1039 ''' 

1040 

1041 self.nyquist_check(corner_hp, 'Lower corner frequency of bandpass') 

1042 self.nyquist_check(corner_lp, 'Higher corner frequency of bandpass') 

1043 (b, a) = _get_cached_filter_coeffs( 

1044 order, 

1045 [corner*2.0*self.deltat for corner in (corner_hp, corner_lp)], 

1046 btype='band') 

1047 data = self.ydata.astype(num.float64) 

1048 if demean: 

1049 data -= num.mean(data) 

1050 self.drop_growbuffer() 

1051 self.ydata = signal.lfilter(b, a, data) 

1052 

1053 def bandstop(self, order, corner_hp, corner_lp, demean=True): 

1054 ''' 

1055 Apply bandstop (attenuates frequencies in band) to the trace. 

1056 

1057 :param order: order of the filter 

1058 :param corner_hp: lower corner frequency of the filter 

1059 :param corner_lp: upper corner frequency of the filter 

1060 

1061 Mean is removed before filtering. 

1062 ''' 

1063 

1064 self.nyquist_check(corner_hp, 'Lower corner frequency of bandstop') 

1065 self.nyquist_check(corner_lp, 'Higher corner frequency of bandstop') 

1066 (b, a) = _get_cached_filter_coeffs( 

1067 order, 

1068 [corner*2.0*self.deltat for corner in (corner_hp, corner_lp)], 

1069 btype='bandstop') 

1070 data = self.ydata.astype(num.float64) 

1071 if demean: 

1072 data -= num.mean(data) 

1073 self.drop_growbuffer() 

1074 self.ydata = signal.lfilter(b, a, data) 

1075 

1076 def envelope(self, inplace=True): 

1077 ''' 

1078 Calculate the envelope of the trace. 

1079 

1080 :param inplace: calculate envelope in place 

1081 

1082 The calculation follows: 

1083 

1084 .. math:: 

1085 

1086 Y' = \\sqrt{Y^2+H(Y)^2} 

1087 

1088 where H is the Hilbert-Transform of the signal Y. 

1089 ''' 

1090 

1091 y = self.ydata.astype(float) 

1092 env = num.abs(hilbert(y)) 

1093 if inplace: 

1094 self.drop_growbuffer() 

1095 self.ydata = env 

1096 else: 

1097 tr = self.copy(data=False) 

1098 tr.ydata = env 

1099 return tr 

1100 

1101 def taper(self, taperer, inplace=True, chop=False): 

1102 ''' 

1103 Apply a :py:class:`Taper` to the trace. 

1104 

1105 :param taperer: instance of :py:class:`Taper` subclass 

1106 :param inplace: apply taper inplace 

1107 :param chop: if ``True``: exclude tapered parts from the resulting 

1108 trace 

1109 ''' 

1110 

1111 if not inplace: 

1112 tr = self.copy() 

1113 else: 

1114 tr = self 

1115 

1116 if chop: 

1117 i, n = taperer.span(tr.ydata, tr.tmin, tr.deltat) 

1118 tr.shift(i*tr.deltat) 

1119 tr.set_ydata(tr.ydata[i:i+n]) 

1120 

1121 taperer(tr.ydata, tr.tmin, tr.deltat) 

1122 

1123 if not inplace: 

1124 return tr 

1125 

1126 def whiten(self, order=6): 

1127 ''' 

1128 Whiten signal in time domain using autoregression and recursive filter. 

1129 

1130 :param order: order of the autoregression process 

1131 ''' 

1132 

1133 b, a = self.whitening_coefficients(order) 

1134 self.drop_growbuffer() 

1135 self.ydata = signal.lfilter(b, a, self.ydata) 

1136 

1137 def whitening_coefficients(self, order=6): 

1138 ar = yulewalker(self.ydata, order) 

1139 b, a = [1.] + ar.tolist(), [1.] 

1140 return b, a 

1141 

1142 def ampspec_whiten( 

1143 self, 

1144 width, 

1145 td_taper='auto', 

1146 fd_taper='auto', 

1147 pad_to_pow2=True, 

1148 demean=True): 

1149 

1150 ''' 

1151 Whiten signal via frequency domain using moving average on amplitude 

1152 spectra. 

1153 

1154 :param width: width of smoothing kernel [Hz] 

1155 :param td_taper: time domain taper, object of type :py:class:`Taper` or 

1156 ``None`` or ``'auto'``. 

1157 :param fd_taper: frequency domain taper, object of type 

1158 :py:class:`Taper` or ``None`` or ``'auto'``. 

1159 :param pad_to_pow2: whether to pad the signal with zeros up to a length 

1160 of 2^n 

1161 :param demean: whether to demean the signal before tapering 

1162 

1163 The signal is first demeaned and then tapered using ``td_taper``. Then, 

1164 the spectrum is calculated and inversely weighted with a smoothed 

1165 version of its amplitude spectrum. A moving average is used for the 

1166 smoothing. The smoothed spectrum is then tapered using ``fd_taper``. 

1167 Finally, the smoothed and tapered spectrum is back-transformed into the 

1168 time domain. 

1169 

1170 If ``td_taper`` is set to ``'auto'``, ``CosFader(1.0/width)`` is used. 

1171 If ``fd_taper`` is set to ``'auto'``, ``CosFader(width)`` is used. 

1172 ''' 

1173 

1174 ndata = self.data_len() 

1175 

1176 if pad_to_pow2: 

1177 ntrans = nextpow2(ndata) 

1178 else: 

1179 ntrans = ndata 

1180 

1181 df = 1./(ntrans*self.deltat) 

1182 nw = int(round(width/df)) 

1183 if ndata//2+1 <= nw: 

1184 raise TraceTooShort( 

1185 'Samples in trace: %s, samples needed: %s' % (ndata, nw)) 

1186 

1187 if td_taper == 'auto': 

1188 td_taper = CosFader(1./width) 

1189 

1190 if fd_taper == 'auto': 

1191 fd_taper = CosFader(width) 

1192 

1193 if td_taper: 

1194 self.taper(td_taper) 

1195 

1196 ydata = self.get_ydata().astype(float) 

1197 if demean: 

1198 ydata -= ydata.mean() 

1199 

1200 spec = num.fft.rfft(ydata, ntrans) 

1201 

1202 amp = num.abs(spec) 

1203 nspec = amp.size 

1204 csamp = num.cumsum(amp) 

1205 amp_smoothed = num.empty(nspec, dtype=csamp.dtype) 

1206 n1, n2 = nw//2, nw//2 + nspec - nw 

1207 amp_smoothed[n1:n2] = (csamp[nw:] - csamp[:-nw]) / nw 

1208 amp_smoothed[:n1] = amp_smoothed[n1] 

1209 amp_smoothed[n2:] = amp_smoothed[n2-1] 

1210 

1211 denom = amp_smoothed * amp 

1212 numer = amp 

1213 eps = num.mean(denom) * 1e-9 

1214 if eps == 0.0: 

1215 eps = 1e-9 

1216 

1217 numer += eps 

1218 denom += eps 

1219 spec *= numer/denom 

1220 

1221 if fd_taper: 

1222 fd_taper(spec, 0., df) 

1223 

1224 ydata = num.fft.irfft(spec) 

1225 self.set_ydata(ydata[:ndata]) 

1226 

1227 def _get_cached_freqs(self, nf, deltaf): 

1228 ck = (nf, deltaf) 

1229 if ck not in Trace.cached_frequencies: 

1230 Trace.cached_frequencies[ck] = deltaf * num.arange( 

1231 nf, dtype=float) 

1232 

1233 return Trace.cached_frequencies[ck] 

1234 

1235 def bandpass_fft(self, corner_hp, corner_lp): 

1236 ''' 

1237 Apply boxcar bandbpass to trace (in spectral domain). 

1238 ''' 

1239 

1240 n = len(self.ydata) 

1241 n2 = nextpow2(n) 

1242 data = num.zeros(n2, dtype=num.float64) 

1243 data[:n] = self.ydata 

1244 fdata = num.fft.rfft(data) 

1245 freqs = self._get_cached_freqs(len(fdata), 1./(self.deltat*n2)) 

1246 fdata[0] = 0.0 

1247 fdata *= num.logical_and(corner_hp < freqs, freqs < corner_lp) 

1248 data = num.fft.irfft(fdata) 

1249 self.drop_growbuffer() 

1250 self.ydata = data[:n] 

1251 

1252 def shift(self, tshift): 

1253 ''' 

1254 Time shift the trace. 

1255 ''' 

1256 

1257 self.tmin += tshift 

1258 self.tmax += tshift 

1259 self._update_ids() 

1260 

1261 def snap(self, inplace=True, interpolate=False): 

1262 ''' 

1263 Shift trace samples to nearest even multiples of the sampling rate. 

1264 

1265 :param inplace: (boolean) snap traces inplace 

1266 

1267 If ``inplace`` is ``False`` and the difference of tmin and tmax of 

1268 both, the snapped and the original trace is smaller than 0.01 x deltat, 

1269 :py:func:`snap` returns the unsnapped instance of the original trace. 

1270 ''' 

1271 

1272 tmin = round(self.tmin/self.deltat)*self.deltat 

1273 tmax = tmin + (self.ydata.size-1)*self.deltat 

1274 

1275 if inplace: 

1276 xself = self 

1277 else: 

1278 if abs(self.tmin - tmin) < 1e-2*self.deltat and \ 

1279 abs(self.tmax - tmax) < 1e-2*self.deltat: 

1280 return self 

1281 

1282 xself = self.copy() 

1283 

1284 if interpolate: 

1285 n = xself.data_len() 

1286 ydata_new = num.empty(n, dtype=float) 

1287 i_control = num.array([0, n-1], dtype=num.int64) 

1288 tref = tmin 

1289 t_control = num.array( 

1290 [float(xself.tmin-tref), float(xself.tmax-tref)], 

1291 dtype=float) 

1292 

1293 signal_ext.antidrift(i_control, t_control, 

1294 xself.ydata.astype(float), 

1295 float(tmin-tref), xself.deltat, ydata_new) 

1296 

1297 xself.ydata = ydata_new 

1298 

1299 xself.tmin = tmin 

1300 xself.tmax = tmax 

1301 xself._update_ids() 

1302 

1303 return xself 

1304 

1305 def fix_deltat_rounding_errors(self): 

1306 ''' 

1307 Try to undo sampling rate rounding errors. 

1308 

1309 See :py:func:`fix_deltat_rounding_errors`. 

1310 ''' 

1311 

1312 self.deltat = fix_deltat_rounding_errors(self.deltat) 

1313 self.tmax = self.tmin + (self.data_len() - 1) * self.deltat 

1314 

1315 def sta_lta_centered(self, tshort, tlong, quad=True, scalingmethod=1): 

1316 ''' 

1317 Run special STA/LTA filter where the short time window is centered on 

1318 the long time window. 

1319 

1320 :param tshort: length of short time window in [s] 

1321 :param tlong: length of long time window in [s] 

1322 :param quad: whether to square the data prior to applying the STA/LTA 

1323 filter 

1324 :param scalingmethod: integer key to select how output values are 

1325 scaled / normalized (``1``, ``2``, or ``3``) 

1326 

1327 ============= ====================================== =========== 

1328 Scalingmethod Implementation Range 

1329 ============= ====================================== =========== 

1330 ``1`` As/Al* Ts/Tl [0,1] 

1331 ``2`` (As/Al - 1) / (Tl/Ts - 1) [-Ts/Tl,1] 

1332 ``3`` Like ``2`` but clipping range at zero [0,1] 

1333 ============= ====================================== =========== 

1334 

1335 ''' 

1336 

1337 nshort = int(round(tshort/self.deltat)) 

1338 nlong = int(round(tlong/self.deltat)) 

1339 

1340 assert nshort < nlong 

1341 if nlong > len(self.ydata): 

1342 raise TraceTooShort( 

1343 'Samples in trace: %s, samples needed: %s' 

1344 % (len(self.ydata), nlong)) 

1345 

1346 if quad: 

1347 sqrdata = self.ydata**2 

1348 else: 

1349 sqrdata = self.ydata 

1350 

1351 mavg_short = moving_avg(sqrdata, nshort) 

1352 mavg_long = moving_avg(sqrdata, nlong) 

1353 

1354 self.drop_growbuffer() 

1355 

1356 if scalingmethod not in (1, 2, 3): 

1357 raise Exception('Invalid argument to scalingrange argument.') 

1358 

1359 if scalingmethod == 1: 

1360 self.ydata = mavg_short/mavg_long * float(nshort)/float(nlong) 

1361 elif scalingmethod in (2, 3): 

1362 self.ydata = (mavg_short/mavg_long - 1.) \ 

1363 / ((float(nlong)/float(nshort)) - 1) 

1364 

1365 if scalingmethod == 3: 

1366 self.ydata = num.maximum(self.ydata, 0.) 

1367 

1368 def sta_lta_right(self, tshort, tlong, quad=True, scalingmethod=1): 

1369 ''' 

1370 Run special STA/LTA filter where the short time window is overlapping 

1371 with the last part of the long time window. 

1372 

1373 :param tshort: length of short time window in [s] 

1374 :param tlong: length of long time window in [s] 

1375 :param quad: whether to square the data prior to applying the STA/LTA 

1376 filter 

1377 :param scalingmethod: integer key to select how output values are 

1378 scaled / normalized (``1``, ``2``, or ``3``) 

1379 

1380 ============= ====================================== =========== 

1381 Scalingmethod Implementation Range 

1382 ============= ====================================== =========== 

1383 ``1`` As/Al* Ts/Tl [0,1] 

1384 ``2`` (As/Al - 1) / (Tl/Ts - 1) [-Ts/Tl,1] 

1385 ``3`` Like ``2`` but clipping range at zero [0,1] 

1386 ============= ====================================== =========== 

1387 

1388 With ``scalingmethod=1``, the values produced by this variant of the 

1389 STA/LTA are equivalent to 

1390 

1391 .. math:: 

1392 s_i = \\frac{s}{l} \\frac{\\frac{1}{s}\\sum_{j=i}^{i+s-1} f_j} 

1393 {\\frac{1}{l}\\sum_{j=i+s-l}^{i+s-1} f_j} 

1394 

1395 where :math:`f_j` are the input samples, :math:`s` are the number of 

1396 samples in the short time window and :math:`l` are the number of 

1397 samples in the long time window. 

1398 ''' 

1399 

1400 n = self.data_len() 

1401 tmin = self.tmin 

1402 

1403 nshort = max(1, int(round(tshort/self.deltat))) 

1404 nlong = max(1, int(round(tlong/self.deltat))) 

1405 

1406 assert nshort < nlong 

1407 

1408 if nlong > len(self.ydata): 

1409 raise TraceTooShort( 

1410 'Samples in trace: %s, samples needed: %s' 

1411 % (len(self.ydata), nlong)) 

1412 

1413 if quad: 

1414 sqrdata = self.ydata**2 

1415 else: 

1416 sqrdata = self.ydata 

1417 

1418 nshift = int(math.floor(0.5 * (nlong - nshort))) 

1419 if nlong % 2 != 0 and nshort % 2 == 0: 

1420 nshift += 1 

1421 

1422 mavg_short = moving_avg(sqrdata, nshort)[nshift:] 

1423 mavg_long = moving_avg(sqrdata, nlong)[:sqrdata.size-nshift] 

1424 

1425 self.drop_growbuffer() 

1426 

1427 if scalingmethod not in (1, 2, 3): 

1428 raise Exception('Invalid argument to scalingrange argument.') 

1429 

1430 if scalingmethod == 1: 

1431 ydata = mavg_short/mavg_long * nshort/nlong 

1432 elif scalingmethod in (2, 3): 

1433 ydata = (mavg_short/mavg_long - 1.) \ 

1434 / ((float(nlong)/float(nshort)) - 1) 

1435 

1436 if scalingmethod == 3: 

1437 ydata = num.maximum(ydata, 0.) 

1438 

1439 self.set_ydata(ydata) 

1440 

1441 self.shift((math.ceil(0.5*nlong) - nshort + 1) * self.deltat) 

1442 

1443 self.chop( 

1444 tmin + (nlong - nshort) * self.deltat, 

1445 tmin + (n - nshort) * self.deltat) 

1446 

1447 def peaks(self, threshold, tsearch, 

1448 deadtime=False, 

1449 nblock_duration_detection=100): 

1450 

1451 ''' 

1452 Detect peaks above a given threshold (method 1). 

1453 

1454 From every instant, where the signal rises above ``threshold``, a time 

1455 length of ``tsearch`` seconds is searched for a maximum. A list with 

1456 tuples (time, value) for each detected peak is returned. The 

1457 ``deadtime`` argument turns on a special deadtime duration detection 

1458 algorithm useful in combination with recursive STA/LTA filters. 

1459 ''' 

1460 

1461 y = self.ydata 

1462 above = num.where(y > threshold, 1, 0) 

1463 deriv = num.zeros(y.size, dtype=num.int8) 

1464 deriv[1:] = above[1:]-above[:-1] 

1465 itrig_positions = num.nonzero(deriv > 0)[0] 

1466 tpeaks = [] 

1467 apeaks = [] 

1468 tzeros = [] 

1469 tzero = self.tmin 

1470 

1471 for itrig_pos in itrig_positions: 

1472 ibeg = itrig_pos 

1473 iend = min( 

1474 len(self.ydata), 

1475 itrig_pos + int(math.ceil(tsearch/self.deltat))) 

1476 ipeak = num.argmax(y[ibeg:iend]) 

1477 tpeak = self.tmin + (ipeak+ibeg)*self.deltat 

1478 apeak = y[ibeg+ipeak] 

1479 

1480 if tpeak < tzero: 

1481 continue 

1482 

1483 if deadtime: 

1484 ibeg = itrig_pos 

1485 iblock = 0 

1486 nblock = nblock_duration_detection 

1487 totalsum = 0. 

1488 while True: 

1489 if ibeg+iblock*nblock >= len(y): 

1490 tzero = self.tmin + (len(y)-1) * self.deltat 

1491 break 

1492 

1493 logy = num.log( 

1494 y[ibeg+iblock*nblock:ibeg+(iblock+1)*nblock]) 

1495 logy[0] += totalsum 

1496 ysum = num.cumsum(logy) 

1497 totalsum = ysum[-1] 

1498 below = num.where(ysum <= 0., 1, 0) 

1499 deriv = num.zeros(ysum.size, dtype=num.int8) 

1500 deriv[1:] = below[1:]-below[:-1] 

1501 izero_positions = num.nonzero(deriv > 0)[0] + iblock*nblock 

1502 if len(izero_positions) > 0: 

1503 tzero = self.tmin + self.deltat * ( 

1504 ibeg + izero_positions[0]) 

1505 break 

1506 iblock += 1 

1507 else: 

1508 tzero = ibeg*self.deltat + self.tmin + tsearch 

1509 

1510 tpeaks.append(tpeak) 

1511 apeaks.append(apeak) 

1512 tzeros.append(tzero) 

1513 

1514 if deadtime: 

1515 return tpeaks, apeaks, tzeros 

1516 else: 

1517 return tpeaks, apeaks 

1518 

1519 def peaks2(self, threshold, tsearch): 

1520 

1521 ''' 

1522 Detect peaks above a given threshold (method 2). 

1523 

1524 This variant of peak detection is a bit more robust (and slower) than 

1525 the one implemented in :py:meth:`Trace.peaks`. First all samples with 

1526 ``a[i-1] < a[i] > a[i+1]`` are masked as potential peaks. From these, 

1527 iteratively the one with the maximum amplitude ``a[j]`` and time 

1528 ``t[j]`` is choosen and potential peaks within 

1529 ``t[j] - tsearch, t[j] + tsearch`` 

1530 are discarded. The algorithm stops, when ``a[j] < threshold`` or when 

1531 no more potential peaks are left. 

1532 ''' 

1533 

1534 a = num.copy(self.ydata) 

1535 

1536 amin = num.min(a) 

1537 

1538 a[0] = amin 

1539 a[1: -1][num.diff(a, 2) <= 0.] = amin 

1540 a[-1] = amin 

1541 

1542 data = [] 

1543 while True: 

1544 imax = num.argmax(a) 

1545 amax = a[imax] 

1546 

1547 if amax < threshold or amax == amin: 

1548 break 

1549 

1550 data.append((self.tmin + imax * self.deltat, amax)) 

1551 

1552 ntsearch = int(round(tsearch / self.deltat)) 

1553 a[max(imax-ntsearch//2, 0):min(imax+ntsearch//2, a.size)] = amin 

1554 

1555 if data: 

1556 data.sort() 

1557 tpeaks, apeaks = list(zip(*data)) 

1558 else: 

1559 tpeaks, apeaks = [], [] 

1560 

1561 return tpeaks, apeaks 

1562 

1563 def extend(self, tmin=None, tmax=None, fillmethod='zeros'): 

1564 ''' 

1565 Extend trace to given span. 

1566 

1567 :param tmin: begin time of new span 

1568 :param tmax: end time of new span 

1569 :param fillmethod: ``'zeros'``, ``'repeat'``, ``'mean'``, or 

1570 ``'median'`` 

1571 ''' 

1572 

1573 nold = self.ydata.size 

1574 

1575 if tmin is not None: 

1576 nl = min(0, int(round((tmin-self.tmin)/self.deltat))) 

1577 else: 

1578 nl = 0 

1579 

1580 if tmax is not None: 

1581 nh = max(nold - 1, int(round((tmax-self.tmin)/self.deltat))) 

1582 else: 

1583 nh = nold - 1 

1584 

1585 n = nh - nl + 1 

1586 data = num.zeros(n, dtype=self.ydata.dtype) 

1587 data[-nl:-nl + nold] = self.ydata 

1588 if self.ydata.size >= 1: 

1589 if fillmethod == 'repeat': 

1590 data[:-nl] = self.ydata[0] 

1591 data[-nl + nold:] = self.ydata[-1] 

1592 elif fillmethod == 'median': 

1593 v = num.median(self.ydata) 

1594 data[:-nl] = v 

1595 data[-nl + nold:] = v 

1596 elif fillmethod == 'mean': 

1597 v = num.mean(self.ydata) 

1598 data[:-nl] = v 

1599 data[-nl + nold:] = v 

1600 

1601 self.drop_growbuffer() 

1602 self.ydata = data 

1603 

1604 self.tmin += nl * self.deltat 

1605 self.tmax = self.tmin + (self.ydata.size - 1) * self.deltat 

1606 

1607 self._update_ids() 

1608 

1609 def transfer(self, 

1610 tfade=0., 

1611 freqlimits=None, 

1612 transfer_function=None, 

1613 cut_off_fading=True, 

1614 demean=True, 

1615 invert=False): 

1616 

1617 ''' 

1618 Return new trace with transfer function applied (convolution). 

1619 

1620 :param tfade: rise/fall time in seconds of taper applied in timedomain 

1621 at both ends of trace. 

1622 :param freqlimits: 4-tuple with corner frequencies in Hz. 

1623 :param transfer_function: FrequencyResponse object; must provide a 

1624 method 'evaluate(freqs)', which returns the transfer function 

1625 coefficients at the frequencies 'freqs'. 

1626 :param cut_off_fading: whether to cut off rise/fall interval in output 

1627 trace. 

1628 :param demean: remove mean before applying transfer function 

1629 :param invert: set to True to do a deconvolution 

1630 ''' 

1631 

1632 if transfer_function is None: 

1633 transfer_function = g_one_response 

1634 

1635 if self.tmax - self.tmin <= tfade*2.: 

1636 raise TraceTooShort( 

1637 'Trace %s.%s.%s.%s too short for fading length setting. ' 

1638 'trace length = %g, fading length = %g' 

1639 % (self.nslc_id + (self.tmax-self.tmin, tfade))) 

1640 

1641 if freqlimits is None and ( 

1642 transfer_function is None or transfer_function.is_scalar()): 

1643 

1644 # special case for flat responses 

1645 

1646 output = self.copy() 

1647 data = self.ydata 

1648 ndata = data.size 

1649 

1650 if transfer_function is not None: 

1651 c = num.abs(transfer_function.evaluate(num.ones(1))[0]) 

1652 

1653 if invert: 

1654 c = 1.0/c 

1655 

1656 data *= c 

1657 

1658 if tfade != 0.0: 

1659 data *= costaper( 

1660 0., tfade, self.deltat*(ndata-1)-tfade, self.deltat*ndata, 

1661 ndata, self.deltat) 

1662 

1663 output.ydata = data 

1664 

1665 else: 

1666 ndata = self.ydata.size 

1667 ntrans = nextpow2(ndata*1.2) 

1668 coeffs = self._get_tapered_coeffs( 

1669 ntrans, freqlimits, transfer_function, invert=invert, 

1670 demean=demean) 

1671 

1672 data = self.ydata 

1673 

1674 data_pad = num.zeros(ntrans, dtype=float) 

1675 data_pad[:ndata] = data 

1676 if demean: 

1677 data_pad[:ndata] -= data.mean() 

1678 

1679 if tfade != 0.0: 

1680 data_pad[:ndata] *= costaper( 

1681 0., tfade, self.deltat*(ndata-1)-tfade, self.deltat*ndata, 

1682 ndata, self.deltat) 

1683 

1684 fdata = num.fft.rfft(data_pad) 

1685 fdata *= coeffs 

1686 ddata = num.fft.irfft(fdata) 

1687 output = self.copy() 

1688 output.ydata = ddata[:ndata] 

1689 

1690 if cut_off_fading and tfade != 0.0: 

1691 try: 

1692 output.chop(output.tmin+tfade, output.tmax-tfade, inplace=True) 

1693 except NoData: 

1694 raise TraceTooShort( 

1695 'Trace %s.%s.%s.%s too short for fading length setting. ' 

1696 'trace length = %g, fading length = %g' 

1697 % (self.nslc_id + (self.tmax-self.tmin, tfade))) 

1698 else: 

1699 output.ydata = output.ydata.copy() 

1700 

1701 return output 

1702 

1703 def differentiate(self, n=1, order=4, inplace=True): 

1704 ''' 

1705 Approximate first or second derivative of the trace. 

1706 

1707 :param n: 1 for first derivative, 2 for second 

1708 :param order: order of the approximation 2 and 4 are supported 

1709 :param inplace: if ``True`` the trace is differentiated in place, 

1710 otherwise a new trace object with the derivative is returned. 

1711 

1712 Raises :py:exc:`ValueError` for unsupported `n` or `order`. 

1713 

1714 See :py:func:`~pyrocko.util.diff_fd` for implementation details. 

1715 ''' 

1716 

1717 ddata = util.diff_fd(n, order, self.deltat, self.ydata) 

1718 

1719 if inplace: 

1720 self.ydata = ddata 

1721 else: 

1722 output = self.copy(data=False) 

1723 output.set_ydata(ddata) 

1724 return output 

1725 

1726 def drop_chain_cache(self): 

1727 if self._pchain: 

1728 self._pchain.clear() 

1729 

1730 def init_chain(self): 

1731 self._pchain = pchain.Chain( 

1732 do_downsample, 

1733 do_extend, 

1734 do_pre_taper, 

1735 do_fft, 

1736 do_filter, 

1737 do_ifft) 

1738 

1739 def run_chain(self, tmin, tmax, deltat, setup, nocache): 

1740 if setup.domain == 'frequency_domain': 

1741 _, _, data = self._pchain( 

1742 (self, deltat), 

1743 (tmin, tmax), 

1744 (setup.taper,), 

1745 (setup.filter,), 

1746 (setup.filter,), 

1747 nocache=nocache) 

1748 

1749 return num.abs(data), num.abs(data) 

1750 

1751 else: 

1752 processed = self._pchain( 

1753 (self, deltat), 

1754 (tmin, tmax), 

1755 (setup.taper,), 

1756 (setup.filter,), 

1757 (setup.filter,), 

1758 (), 

1759 nocache=nocache) 

1760 

1761 if setup.domain == 'time_domain': 

1762 data = processed.get_ydata() 

1763 

1764 elif setup.domain == 'envelope': 

1765 processed = processed.envelope(inplace=False) 

1766 

1767 elif setup.domain == 'absolute': 

1768 processed.set_ydata(num.abs(processed.get_ydata())) 

1769 

1770 return processed.get_ydata(), processed 

1771 

1772 def misfit(self, candidate, setup, nocache=False, debug=False): 

1773 ''' 

1774 Calculate misfit and normalization factor against candidate trace. 

1775 

1776 :param candidate: :py:class:`Trace` object 

1777 :param setup: :py:class:`MisfitSetup` object 

1778 :returns: tuple ``(m, n)``, where m is the misfit value and n is the 

1779 normalization divisor 

1780 

1781 If the sampling rates of ``self`` and ``candidate`` differ, the trace 

1782 with the higher sampling rate will be downsampled. 

1783 ''' 

1784 

1785 a = self 

1786 b = candidate 

1787 

1788 for tr in (a, b): 

1789 if not tr._pchain: 

1790 tr.init_chain() 

1791 

1792 deltat = max(a.deltat, b.deltat) 

1793 tmin = min(a.tmin, b.tmin) - deltat 

1794 tmax = max(a.tmax, b.tmax) + deltat 

1795 

1796 adata, aproc = a.run_chain(tmin, tmax, deltat, setup, nocache) 

1797 bdata, bproc = b.run_chain(tmin, tmax, deltat, setup, nocache) 

1798 

1799 if setup.domain != 'cc_max_norm': 

1800 m, n = Lx_norm(bdata, adata, norm=setup.norm) 

1801 else: 

1802 ctr = correlate(aproc, bproc, mode='full', normalization='normal') 

1803 ccmax = ctr.max()[1] 

1804 m = 0.5 - 0.5 * ccmax 

1805 n = 0.5 

1806 

1807 if debug: 

1808 return m, n, aproc, bproc 

1809 else: 

1810 return m, n 

1811 

1812 def spectrum(self, pad_to_pow2=False, tfade=None, ntrans_min=None): 

1813 ''' 

1814 Get FFT spectrum of trace. 

1815 

1816 :param pad_to_pow2: whether to zero-pad the data to next larger 

1817 power-of-two length 

1818 :param tfade: ``None`` or a time length in seconds, to apply cosine 

1819 shaped tapers to both 

1820 

1821 :returns: a tuple with (frequencies, values) 

1822 ''' 

1823 

1824 if ntrans_min is None: 

1825 ndata = self.ydata.size 

1826 else: 

1827 ndata = ntrans_min 

1828 

1829 if pad_to_pow2: 

1830 ntrans = nextpow2(ndata) 

1831 else: 

1832 ntrans = ndata 

1833 

1834 if tfade is None: 

1835 ydata = self.ydata 

1836 else: 

1837 ydata = self.ydata * costaper( 

1838 0., tfade, self.deltat*(ndata-1)-tfade, self.deltat*ndata, 

1839 ndata, self.deltat) 

1840 

1841 fydata = num.fft.rfft(ydata, ntrans) 

1842 df = 1./(ntrans*self.deltat) 

1843 fxdata = num.arange(len(fydata))*df 

1844 return fxdata, fydata 

1845 

1846 def multi_filter(self, filter_freqs, bandwidth): 

1847 

1848 class Gauss(FrequencyResponse): 

1849 f0 = Float.T() 

1850 a = Float.T(default=1.0) 

1851 

1852 def __init__(self, f0, a=1.0, **kwargs): 

1853 FrequencyResponse.__init__(self, f0=f0, a=a, **kwargs) 

1854 

1855 def evaluate(self, freqs): 

1856 omega0 = 2.*math.pi*self.f0 

1857 omega = 2.*math.pi*freqs 

1858 return num.exp(-((omega-omega0) 

1859 / (self.a*omega0))**2) 

1860 

1861 freqs, coeffs = self.spectrum() 

1862 n = self.data_len() 

1863 nfilt = len(filter_freqs) 

1864 signal_tf = num.zeros((nfilt, n)) 

1865 centroid_freqs = num.zeros(nfilt) 

1866 for ifilt, f0 in enumerate(filter_freqs): 

1867 taper = Gauss(f0, a=bandwidth) 

1868 weights = taper.evaluate(freqs) 

1869 nhalf = freqs.size 

1870 analytic_spec = num.zeros(n, dtype=complex) 

1871 analytic_spec[:nhalf] = coeffs*weights 

1872 

1873 enorm = num.abs(analytic_spec[:nhalf])**2 

1874 enorm /= num.sum(enorm) 

1875 

1876 if n % 2 == 0: 

1877 analytic_spec[1:nhalf-1] *= 2. 

1878 else: 

1879 analytic_spec[1:nhalf] *= 2. 

1880 

1881 analytic = num.fft.ifft(analytic_spec) 

1882 signal_tf[ifilt, :] = num.abs(analytic) 

1883 

1884 enorm = num.abs(analytic_spec[:nhalf])**2 

1885 enorm /= num.sum(enorm) 

1886 centroid_freqs[ifilt] = num.sum(freqs*enorm) 

1887 

1888 return centroid_freqs, signal_tf 

1889 

1890 def _get_tapered_coeffs( 

1891 self, ntrans, freqlimits, transfer_function, invert=False, 

1892 demean=True): 

1893 

1894 cache_key = ( 

1895 ntrans, self.deltat, freqlimits, transfer_function.uuid, invert, 

1896 demean) 

1897 

1898 if cache_key in g_tapered_coeffs_cache: 

1899 return g_tapered_coeffs_cache[cache_key] 

1900 

1901 deltaf = 1./(self.deltat*ntrans) 

1902 nfreqs = ntrans//2 + 1 

1903 transfer = num.ones(nfreqs, dtype=complex) 

1904 hi = snapper(nfreqs, deltaf) 

1905 if freqlimits is not None: 

1906 kmin, kmax = hi(freqlimits[0]), hi(freqlimits[3]) 

1907 freqs = num.arange(kmin, kmax)*deltaf 

1908 coeffs = transfer_function.evaluate(freqs) 

1909 if invert: 

1910 if num.any(coeffs == 0.0): 

1911 raise InfiniteResponse('%s.%s.%s.%s' % self.nslc_id) 

1912 

1913 transfer[kmin:kmax] = 1.0 / coeffs 

1914 else: 

1915 transfer[kmin:kmax] = coeffs 

1916 

1917 tapered_transfer = costaper(*freqlimits, nfreqs, deltaf) * transfer 

1918 else: 

1919 if invert: 

1920 raise Exception( 

1921 'transfer: `freqlimits` must be given when `invert` is ' 

1922 'set to `True`') 

1923 

1924 freqs = num.arange(nfreqs) * deltaf 

1925 tapered_transfer = transfer_function.evaluate(freqs) 

1926 

1927 g_tapered_coeffs_cache[cache_key] = tapered_transfer 

1928 

1929 if demean: 

1930 tapered_transfer[0] = 0.0 # don't introduce static offsets 

1931 

1932 return tapered_transfer 

1933 

1934 def fill_template(self, template, **additional): 

1935 ''' 

1936 Fill string template with trace metadata. 

1937 

1938 Uses normal python '%(placeholder)s' string templates. The following 

1939 placeholders are considered: ``network``, ``station``, ``location``, 

1940 ``channel``, ``tmin`` (time of first sample), ``tmax`` (time of last 

1941 sample), ``tmin_ms``, ``tmax_ms``, ``tmin_us``, ``tmax_us``, 

1942 ``tmin_year``, ``tmax_year``, ``tmin_month``, ``tmax_month``, 

1943 ``tmin_day``, ``tmax_day``, ``julianday``. The variants ending with 

1944 ``'_ms'`` include milliseconds, those with ``'_us'`` include 

1945 microseconds, those with ``'_year'`` contain only the year. 

1946 ''' 

1947 

1948 template = template.replace('%n', '%(network)s')\ 

1949 .replace('%s', '%(station)s')\ 

1950 .replace('%l', '%(location)s')\ 

1951 .replace('%c', '%(channel)s')\ 

1952 .replace('%b', '%(tmin)s')\ 

1953 .replace('%e', '%(tmax)s')\ 

1954 .replace('%j', '%(julianday)s') 

1955 

1956 params = dict( 

1957 zip(('network', 'station', 'location', 'channel'), self.nslc_id)) 

1958 params['tmin'] = util.time_to_str( 

1959 self.tmin, format='%Y-%m-%d_%H-%M-%S') 

1960 params['tmax'] = util.time_to_str( 

1961 self.tmax, format='%Y-%m-%d_%H-%M-%S') 

1962 params['tmin_ms'] = util.time_to_str( 

1963 self.tmin, format='%Y-%m-%d_%H-%M-%S.3FRAC') 

1964 params['tmax_ms'] = util.time_to_str( 

1965 self.tmax, format='%Y-%m-%d_%H-%M-%S.3FRAC') 

1966 params['tmin_us'] = util.time_to_str( 

1967 self.tmin, format='%Y-%m-%d_%H-%M-%S.6FRAC') 

1968 params['tmax_us'] = util.time_to_str( 

1969 self.tmax, format='%Y-%m-%d_%H-%M-%S.6FRAC') 

1970 params['tmin_year'], params['tmin_month'], params['tmin_day'] \ 

1971 = util.time_to_str(self.tmin, format='%Y-%m-%d').split('-') 

1972 params['tmax_year'], params['tmax_month'], params['tmax_day'] \ 

1973 = util.time_to_str(self.tmax, format='%Y-%m-%d').split('-') 

1974 params['julianday'] = util.julian_day_of_year(self.tmin) 

1975 params.update(additional) 

1976 return template % params 

1977 

1978 def plot(self): 

1979 ''' 

1980 Show trace with matplotlib. 

1981 

1982 See also: :py:meth:`Trace.snuffle`. 

1983 ''' 

1984 

1985 import pylab 

1986 pylab.plot(self.get_xdata(), self.get_ydata()) 

1987 name = '%s %s %s - %s' % ( 

1988 self.channel, 

1989 self.station, 

1990 time.strftime('%d-%m-%y %H:%M:%S', time.gmtime(self.tmin)), 

1991 time.strftime('%d-%m-%y %H:%M:%S', time.gmtime(self.tmax))) 

1992 

1993 pylab.title(name) 

1994 pylab.show() 

1995 

1996 def snuffle(self, **kwargs): 

1997 ''' 

1998 Show trace in a snuffler window. 

1999 

2000 :param stations: list of :py:class:`pyrocko.model.station.Station` 

2001 objects or ``None`` 

2002 :param events: list of :py:class:`pyrocko.model.event.Event` objects or 

2003 ``None`` 

2004 :param markers: list of :py:class:`pyrocko.gui.snuffler.marker.Marker` 

2005 objects or ``None`` 

2006 :param ntracks: float, number of tracks to be shown initially (default: 

2007 12) 

2008 :param follow: time interval (in seconds) for real time follow mode or 

2009 ``None`` 

2010 :param controls: bool, whether to show the main controls (default: 

2011 ``True``) 

2012 :param opengl: bool, whether to use opengl (default: ``False``) 

2013 ''' 

2014 

2015 return snuffle([self], **kwargs) 

2016 

2017 

2018def snuffle(traces, **kwargs): 

2019 ''' 

2020 Show traces in a snuffler window. 

2021 

2022 :param stations: list of :py:class:`pyrocko.model.station.Station` objects 

2023 or ``None`` 

2024 :param events: list of :py:class:`pyrocko.model.event.Event` objects or 

2025 ``None`` 

2026 :param markers: list of :py:class:`pyrocko.gui.snuffler.marker.Marker` 

2027 objects or ``None`` 

2028 :param ntracks: int, number of tracks to be shown initially (default: 12) 

2029 :param follow: time interval (in seconds) for real time follow mode or 

2030 ``None`` 

2031 :param controls: bool, whether to show the main controls (default: 

2032 ``True``) 

2033 :param opengl: bool, whether to use opengl (default: ``False``) 

2034 ''' 

2035 

2036 from pyrocko import pile 

2037 from pyrocko.gui.snuffler import snuffler 

2038 p = pile.Pile() 

2039 if traces: 

2040 trf = pile.MemTracesFile(None, traces) 

2041 p.add_file(trf) 

2042 return snuffler.snuffle(p, **kwargs) 

2043 

2044 

2045def downsample_tpad( 

2046 deltat_in, deltat_out, allow_upsample_max=1, ftype='fir-remez'): 

2047 ''' 

2048 Get approximate amount of cutoff which will be produced by downsampling. 

2049 

2050 The :py:meth:`Trace.downsample_to` method removes some samples at the 

2051 beginning and end of the trace which is downsampled. This function 

2052 estimates the approximate length [s] which will be cut off for a given set 

2053 of parameters supplied to :py:meth:`Trace.downsample_to`. 

2054 

2055 :param deltat_in: 

2056 Input sampling interval [s]. 

2057 :type deltat_in: 

2058 float 

2059 

2060 :param deltat_out: 

2061 Output samling interval [s]. 

2062 :type deltat_out: 

2063 float 

2064 

2065 :returns: 

2066 Approximate length [s] which will be cut off. 

2067 

2068 See :py:meth:`Trace.downsample_to` for details. 

2069 ''' 

2070 

2071 upsratio, deci_seq = _configure_downsampling( 

2072 deltat_in, deltat_out, allow_upsample_max) 

2073 

2074 tpad = 0.0 

2075 deltat = deltat_in / upsratio 

2076 for deci in deci_seq: 

2077 b, a, n = util.decimate_coeffs(deci, None, ftype) 

2078 # n//2 for the antialiasing 

2079 # +deci for possible snap to multiples 

2080 # +1 for rounding errors 

2081 tpad += (n//2 + deci + 1) * deltat 

2082 deltat = deltat * deci 

2083 

2084 return tpad 

2085 

2086 

2087def _configure_downsampling(deltat_in, deltat_out, allow_upsample_max): 

2088 for upsratio in range(1, allow_upsample_max+1): 

2089 dratio = (upsratio/deltat_in) / (1./deltat_out) 

2090 deci_seq = util.decitab(int(round(dratio))) 

2091 if abs(dratio - round(dratio)) / dratio < 0.0001 and deci_seq: 

2092 return upsratio, [deci for deci in deci_seq if deci != 1] 

2093 

2094 raise util.UnavailableDecimation('ratio = %g' % (deltat_out / deltat_in)) 

2095 

2096 

2097def _all_same(xs): 

2098 return all(x == xs[0] for x in xs) 

2099 

2100 

2101def _incompatibilities(traces): 

2102 if not traces: 

2103 return None 

2104 

2105 params = [ 

2106 (tr.ydata.size, tr.ydata.dtype, tr.deltat, tr.tmin) 

2107 for tr in traces] 

2108 

2109 if not _all_same(params): 

2110 return params 

2111 else: 

2112 return None 

2113 

2114 

2115def _raise_incompatible_traces(params): 

2116 raise IncompatibleTraces( 

2117 'Given traces are incompatible. Sampling rate, start time, ' 

2118 'number of samples and data type must match.\n%s\n%s' % ( 

2119 ' %10s %-10s %12s %22s' % ( 

2120 'nsamples', 'dtype', 'deltat', 'tmin'), 

2121 '\n'.join( 

2122 ' %10i %-10s %12.5e %22s' % ( 

2123 nsamples, dtype, deltat, util.time_to_str(tmin)) 

2124 for (nsamples, dtype, deltat, tmin) in params))) 

2125 

2126 

2127def _ensure_compatible(traces): 

2128 params = _incompatibilities(traces) 

2129 if params: 

2130 _raise_incompatible_traces(params) 

2131 

2132 

2133def _almost_equal(a, b, atol): 

2134 return abs(a-b) < atol 

2135 

2136 

2137def get_traces_data_as_array(traces): 

2138 ''' 

2139 Merge data samples from multiple traces into a 2D array. 

2140 

2141 :param traces: 

2142 Input waveforms. 

2143 :type traces: 

2144 list of :py:class:`pyrocko.Trace <pyrocko.trace.Trace>` objects 

2145 

2146 :raises: 

2147 :py:class:`IncompatibleTraces` if traces have different time 

2148 span, sample rate or data type, or if traces is an empty list. 

2149 

2150 :returns: 

2151 2D array as ``data[itrace, isample]``. 

2152 :rtype: 

2153 :py:class:`numpy.ndarray` 

2154 ''' 

2155 

2156 if not traces: 

2157 raise IncompatibleTraces('Need at least one trace.') 

2158 

2159 _ensure_compatible(traces) 

2160 

2161 return num.vstack([tr.ydata for tr in traces]) 

2162 

2163 

2164def make_traces_compatible( 

2165 traces, 

2166 dtype=None, 

2167 deltat=None, 

2168 enforce_global_snap=True, 

2169 warn_snap=False): 

2170 

2171 ''' 

2172 Homogenize sampling rate, time span, sampling instants, and data type. 

2173 

2174 This function takes a group of traces and tries to make them compatible in 

2175 terms of data type and sampling rate, time span, and sampling instants of 

2176 time. 

2177 

2178 If necessary, traces are (in order): 

2179 

2180 - casted to the same data type. 

2181 - downsampled to a common sampling rate, using decimation cascades. 

2182 - resampled to common sampling instants in time, using Sinc interpolation. 

2183 - cut to the same time span. The longest time span covered by all traces is 

2184 used. 

2185 

2186 :param traces: 

2187 Input waveforms. 

2188 :type traces: 

2189 :py:class:`list` of :py:class:`Trace` 

2190 

2191 :param dtype: 

2192 Force traces to be casted to the given data type. If not specified, the 

2193 traces are cast to :py:class:`float`. 

2194 :type dtype: 

2195 :py:class:`numpy.dtype` 

2196 

2197 :param deltat: 

2198 Sampling interval [s]. If not specified, the longest sampling interval 

2199 among the input traces is chosen. 

2200 :type deltat: 

2201 float 

2202 

2203 :param enforce_global_snap: 

2204 If ``True``, choose sampling instants to be even multiples of the 

2205 sampling rate in system time. When set to ``False`` traces are still 

2206 resampled to common time instants (if necessary), but they may be 

2207 offset to the system time sampling rate multiples. 

2208 :type enforce_global_snap: 

2209 bool 

2210 

2211 :param warn_snap: 

2212 If set to ``True`` warn, when resampling has to be performed. 

2213 :type warn_snap: 

2214 bool 

2215 ''' 

2216 

2217 eps_snap = 1e-3 

2218 

2219 if not traces: 

2220 return [] 

2221 

2222 traces = list(traces) 

2223 

2224 dtypes = [tr.ydata.dtype for tr in traces] 

2225 if not _all_same(dtypes) or dtype is not None: 

2226 

2227 if dtype is None: 

2228 dtype = float 

2229 logger.warning( 

2230 'make_traces_compatible: Inconsistent data types - converting ' 

2231 'sample datatype to %s.' % str(dtype)) 

2232 

2233 for itr, tr in enumerate(traces): 

2234 tr_copy = tr.copy(data=False) 

2235 tr_copy.set_ydata(tr.ydata.astype(dtype)) 

2236 traces[itr] = tr_copy 

2237 

2238 deltats = [tr.deltat for tr in traces] 

2239 if not _all_same(deltats) or deltat is not None: 

2240 if deltat is None: 

2241 deltat = max(deltats) 

2242 logger.warning( 

2243 'make_traces_compatible: Inconsistent sampling rates - ' 

2244 'downsampling to lowest rate among input traces: %g Hz.' 

2245 % (1.0 / deltat)) 

2246 

2247 for itr, tr in enumerate(traces): 

2248 if tr.deltat != deltat: 

2249 tr_copy = tr.copy() 

2250 tr_copy.downsample_to(deltat, snap=True, cut=True) 

2251 traces[itr] = tr_copy 

2252 

2253 tmins = num.array([tr.tmin for tr in traces]) 

2254 is_aligned = num.abs(num.round(tmins / deltat) * deltat - tmins) \ 

2255 > deltat * eps_snap 

2256 

2257 if enforce_global_snap or any(is_aligned): 

2258 tref = util.to_time_float(0.0) 

2259 else: 

2260 # to keep a common subsample shift 

2261 tref = num.max(tmins) 

2262 

2263 tmins_snap = num.round((tmins - tref) / deltat) * deltat + tref 

2264 need_snap = num.abs(tmins_snap - tmins) > deltat * eps_snap 

2265 if num.any(need_snap): 

2266 if warn_snap: 

2267 logger.warning( 

2268 'make_traces_compatible: Misaligned sampling - introducing ' 

2269 'subsample shifts for proper alignment.') 

2270 

2271 for itr, tr in enumerate(traces): 

2272 if need_snap[itr]: 

2273 tr_copy = tr.copy() 

2274 if tref != 0.0: 

2275 tr_copy.shift(-tref) 

2276 

2277 tr_copy.snap(interpolate=True) 

2278 if tref != 0.0: 

2279 tr_copy.shift(tref) 

2280 

2281 traces[itr] = tr_copy 

2282 

2283 tmins = num.array([tr.tmin for tr in traces]) 

2284 nsamples = num.array([tr.ydata.size for tr in traces]) 

2285 tmaxs = tmins + (nsamples - 1) * deltat 

2286 

2287 tmin = num.max(tmins) 

2288 tmax = num.min(tmaxs) 

2289 

2290 if tmin > tmax: 

2291 raise IncompatibleTraces('Traces do not overlap.') 

2292 

2293 nsamples_must = int(round((tmax - tmin) / deltat)) + 1 

2294 for itr, tr in enumerate(traces): 

2295 if not (_almost_equal(tr.tmin, tmin, deltat*eps_snap) 

2296 and _almost_equal(tr.tmax, tmax, deltat*eps_snap)): 

2297 

2298 traces[itr] = tr.chop( 

2299 tmin, tmax, 

2300 inplace=False, 

2301 want_incomplete=False, 

2302 include_last=True) 

2303 

2304 xtr = traces[itr] 

2305 assert _almost_equal(xtr.tmin, tmin, deltat*eps_snap) 

2306 assert int(round((xtr.tmax - xtr.tmin) / deltat)) + 1 == nsamples_must 

2307 xtr.tmin = tmin 

2308 xtr.tmax = tmax 

2309 xtr.deltat = deltat 

2310 xtr._update_ids() 

2311 

2312 return traces 

2313 

2314 

2315class IncompatibleTraces(Exception): 

2316 ''' 

2317 Raised when traces have incompatible sampling rate, time span or data type. 

2318 ''' 

2319 

2320 

2321class InfiniteResponse(Exception): 

2322 ''' 

2323 This exception is raised by :py:class:`Trace` operations when deconvolution 

2324 of a frequency response (instrument response transfer function) would 

2325 result in a division by zero. 

2326 ''' 

2327 

2328 

2329class MisalignedTraces(Exception): 

2330 ''' 

2331 This exception is raised by some :py:class:`Trace` operations when tmin, 

2332 tmax or number of samples do not match. 

2333 ''' 

2334 

2335 pass 

2336 

2337 

2338class NoData(Exception): 

2339 ''' 

2340 This exception is raised by some :py:class:`Trace` operations when no or 

2341 not enough data is available. 

2342 ''' 

2343 

2344 pass 

2345 

2346 

2347class AboveNyquist(Exception): 

2348 ''' 

2349 This exception is raised by some :py:class:`Trace` operations when given 

2350 frequencies are above the Nyquist frequency. 

2351 ''' 

2352 

2353 pass 

2354 

2355 

2356class TraceTooShort(Exception): 

2357 ''' 

2358 This exception is raised by some :py:class:`Trace` operations when the 

2359 trace is too short. 

2360 ''' 

2361 

2362 pass 

2363 

2364 

2365class ResamplingFailed(Exception): 

2366 pass 

2367 

2368 

2369def minmax(traces, key=None, mode='minmax', outer_mode='minmax'): 

2370 

2371 ''' 

2372 Get data range given traces grouped by selected pattern. 

2373 

2374 :param key: a callable which takes as single argument a trace and returns a 

2375 key for the grouping of the results. If this is ``None``, the default, 

2376 ``lambda tr: (tr.network, tr.station, tr.location, tr.channel)`` is 

2377 used. 

2378 :param mode: ``'minmax'`` or floating point number. If this is 

2379 ``'minmax'``, minimum and maximum of the traces are used, if it is a 

2380 number, mean +- standard deviation times ``mode`` is used. 

2381 

2382 param outer_mode: ``'minmax'`` to use mininum and maximum of the 

2383 single-trace ranges, or ``'robust'`` to use the interval to discard 10% 

2384 extreme values on either end. 

2385 

2386 :returns: a dict with the combined data ranges. 

2387 

2388 Examples:: 

2389 

2390 ranges = minmax(traces, lambda tr: tr.channel) 

2391 print ranges['N'] # print min & max of all traces with channel == 'N' 

2392 print ranges['E'] # print min & max of all traces with channel == 'E' 

2393 

2394 ranges = minmax(traces, lambda tr: (tr.network, tr.station)) 

2395 print ranges['GR', 'HAM3'] # print min & max of all traces with 

2396 # network == 'GR' and station == 'HAM3' 

2397 

2398 ranges = minmax(traces, lambda tr: None) 

2399 print ranges[None] # prints min & max of all traces 

2400 ''' 

2401 

2402 if key is None: 

2403 key = _default_key 

2404 

2405 ranges = defaultdict(list) 

2406 for trace in traces: 

2407 if isinstance(mode, str) and mode == 'minmax': 

2408 mi, ma = num.nanmin(trace.ydata), num.nanmax(trace.ydata) 

2409 else: 

2410 mean = trace.ydata.mean() 

2411 std = trace.ydata.std() 

2412 mi, ma = mean-std*mode, mean+std*mode 

2413 

2414 k = key(trace) 

2415 ranges[k].append((mi, ma)) 

2416 

2417 for k in ranges: 

2418 mins, maxs = num.array(ranges[k]).T 

2419 if outer_mode == 'minmax': 

2420 ranges[k] = num.nanmin(mins), num.nanmax(maxs) 

2421 elif outer_mode == 'robust': 

2422 ranges[k] = num.percentile(mins, 10.), num.percentile(maxs, 90.) 

2423 

2424 return ranges 

2425 

2426 

2427def minmaxtime(traces, key=None): 

2428 

2429 ''' 

2430 Get time range given traces grouped by selected pattern. 

2431 

2432 :param key: a callable which takes as single argument a trace and returns a 

2433 key for the grouping of the results. If this is ``None``, the default, 

2434 ``lambda tr: (tr.network, tr.station, tr.location, tr.channel)`` is 

2435 used. 

2436 

2437 :returns: a dict with the combined data ranges. 

2438 ''' 

2439 

2440 if key is None: 

2441 key = _default_key 

2442 

2443 ranges = {} 

2444 for trace in traces: 

2445 mi, ma = trace.tmin, trace.tmax 

2446 k = key(trace) 

2447 if k not in ranges: 

2448 ranges[k] = mi, ma 

2449 else: 

2450 tmi, tma = ranges[k] 

2451 ranges[k] = min(tmi, mi), max(tma, ma) 

2452 

2453 return ranges 

2454 

2455 

2456def degapper( 

2457 traces, 

2458 maxgap=5, 

2459 fillmethod='interpolate', 

2460 deoverlap='use_second', 

2461 maxlap=None): 

2462 

2463 ''' 

2464 Try to connect traces and remove gaps. 

2465 

2466 This method will combine adjacent traces, which match in their network, 

2467 station, location and channel attributes. Overlapping parts are handled 

2468 according to the ``deoverlap`` argument. 

2469 

2470 :param traces: input traces, must be sorted by their full_id attribute. 

2471 :param maxgap: maximum number of samples to interpolate. 

2472 :param fillmethod: what to put into the gaps: 'interpolate' or 'zeros'. 

2473 :param deoverlap: how to handle overlaps: 'use_second' to use data from 

2474 second trace (default), 'use_first' to use data from first trace, 

2475 'crossfade_cos' to crossfade with cosine taper, 'add' to add amplitude 

2476 values. 

2477 :param maxlap: maximum number of samples of overlap which are removed 

2478 

2479 :returns: list of traces 

2480 ''' 

2481 

2482 in_traces = traces 

2483 out_traces = [] 

2484 if not in_traces: 

2485 return out_traces 

2486 out_traces.append(in_traces.pop(0)) 

2487 while in_traces: 

2488 

2489 a = out_traces[-1] 

2490 b = in_traces.pop(0) 

2491 

2492 avirt, bvirt = a.ydata is None, b.ydata is None 

2493 assert avirt == bvirt, \ 

2494 'traces given to degapper() must either all have data or have ' \ 

2495 'no data.' 

2496 

2497 virtual = avirt and bvirt 

2498 

2499 if (a.nslc_id == b.nslc_id and a.deltat == b.deltat 

2500 and a.data_len() >= 1 and b.data_len() >= 1 

2501 and (virtual or a.ydata.dtype == b.ydata.dtype)): 

2502 

2503 dist = (b.tmin-(a.tmin+(a.data_len()-1)*a.deltat))/a.deltat 

2504 idist = int(round(dist)) 

2505 if abs(dist - idist) > 0.05 and idist <= maxgap: 

2506 # logger.warning('Cannot degap traces with displaced sampling ' 

2507 # '(%s, %s, %s, %s)' % a.nslc_id) 

2508 pass 

2509 else: 

2510 if 1 < idist <= maxgap: 

2511 if not virtual: 

2512 if fillmethod == 'interpolate': 

2513 filler = a.ydata[-1] + ( 

2514 ((1.0 + num.arange(idist-1, dtype=float)) 

2515 / idist) * (b.ydata[0]-a.ydata[-1]) 

2516 ).astype(a.ydata.dtype) 

2517 elif fillmethod == 'zeros': 

2518 filler = num.zeros(idist-1, dtype=a.ydata.dtype) 

2519 a.ydata = num.concatenate((a.ydata, filler, b.ydata)) 

2520 a.tmax = b.tmax 

2521 if a.mtime and b.mtime: 

2522 a.mtime = max(a.mtime, b.mtime) 

2523 continue 

2524 

2525 elif idist == 1: 

2526 if not virtual: 

2527 a.ydata = num.concatenate((a.ydata, b.ydata)) 

2528 a.tmax = b.tmax 

2529 if a.mtime and b.mtime: 

2530 a.mtime = max(a.mtime, b.mtime) 

2531 continue 

2532 

2533 elif idist <= 0 and (maxlap is None or -maxlap < idist): 

2534 if b.tmax > a.tmax: 

2535 if not virtual: 

2536 na = a.ydata.size 

2537 n = -idist+1 

2538 if deoverlap == 'use_second': 

2539 a.ydata = num.concatenate( 

2540 (a.ydata[:-n], b.ydata)) 

2541 elif deoverlap in ('use_first', 'crossfade_cos'): 

2542 a.ydata = num.concatenate( 

2543 (a.ydata, b.ydata[n:])) 

2544 elif deoverlap == 'add': 

2545 a.ydata[-n:] += b.ydata[:n] 

2546 a.ydata = num.concatenate( 

2547 (a.ydata, b.ydata[n:])) 

2548 else: 

2549 assert False, 'unknown deoverlap method' 

2550 

2551 if deoverlap == 'crossfade_cos': 

2552 n = -idist+1 

2553 taper = 0.5-0.5*num.cos( 

2554 (1.+num.arange(n))/(1.+n)*num.pi) 

2555 a.ydata[na-n:na] *= 1.-taper 

2556 a.ydata[na-n:na] += b.ydata[:n] * taper 

2557 

2558 a.tmax = b.tmax 

2559 if a.mtime and b.mtime: 

2560 a.mtime = max(a.mtime, b.mtime) 

2561 continue 

2562 else: 

2563 # make short second trace vanish 

2564 continue 

2565 

2566 if b.data_len() >= 1: 

2567 out_traces.append(b) 

2568 

2569 for tr in out_traces: 

2570 tr._update_ids() 

2571 

2572 return out_traces 

2573 

2574 

2575def rotate(traces, azimuth, in_channels, out_channels): 

2576 ''' 

2577 2D rotation of traces. 

2578 

2579 :param traces: list of input traces 

2580 :param azimuth: difference of the azimuths of the component directions 

2581 (azimuth of out_channels[0]) - (azimuth of in_channels[0]) 

2582 :param in_channels: names of the input channels (e.g. 'N', 'E') 

2583 :param out_channels: names of the output channels (e.g. 'R', 'T') 

2584 :returns: list of rotated traces 

2585 ''' 

2586 

2587 phi = azimuth/180.*math.pi 

2588 cphi = math.cos(phi) 

2589 sphi = math.sin(phi) 

2590 rotated = [] 

2591 in_channels = tuple(_channels_to_names(in_channels)) 

2592 out_channels = tuple(_channels_to_names(out_channels)) 

2593 for a in traces: 

2594 for b in traces: 

2595 if ((a.channel, b.channel) == in_channels and 

2596 a.nslc_id[:3] == b.nslc_id[:3] and 

2597 abs(a.deltat-b.deltat) < a.deltat*0.001): 

2598 tmin = max(a.tmin, b.tmin) 

2599 tmax = min(a.tmax, b.tmax) 

2600 

2601 if tmin < tmax: 

2602 ac = a.chop(tmin, tmax, inplace=False, include_last=True) 

2603 bc = b.chop(tmin, tmax, inplace=False, include_last=True) 

2604 if abs(ac.tmin - bc.tmin) > ac.deltat*0.01: 

2605 logger.warning( 

2606 'Cannot rotate traces with displaced sampling ' 

2607 '(%s, %s, %s, %s)' % a.nslc_id) 

2608 continue 

2609 

2610 acydata = ac.get_ydata()*cphi+bc.get_ydata()*sphi 

2611 bcydata = -ac.get_ydata()*sphi+bc.get_ydata()*cphi 

2612 ac.set_ydata(acydata) 

2613 bc.set_ydata(bcydata) 

2614 

2615 ac.set_codes(channel=out_channels[0]) 

2616 bc.set_codes(channel=out_channels[1]) 

2617 rotated.append(ac) 

2618 rotated.append(bc) 

2619 

2620 return rotated 

2621 

2622 

2623def rotate_to_rt(n, e, source, receiver, out_channels=('R', 'T')): 

2624 ''' 

2625 Rotate traces from NE to RT system. 

2626 

2627 :param n: 

2628 North trace. 

2629 :type n: 

2630 :py:class:`~pyrocko.trace.Trace` 

2631 

2632 :param e: 

2633 East trace. 

2634 :type e: 

2635 :py:class:`~pyrocko.trace.Trace` 

2636 

2637 :param source: 

2638 Source of the recorded signal. 

2639 :type source: 

2640 :py:class:`pyrocko.gf.seismosizer.Source` 

2641 

2642 :param receiver: 

2643 Receiver of the recorded signal. 

2644 :type receiver: 

2645 :py:class:`pyrocko.model.location.Location` 

2646 

2647 :param out_channels: 

2648 Channel codes of the output channels (radial, transversal). 

2649 Default is ('R', 'T'). 

2650 

2651 :type out_channels 

2652 optional, tuple[str, str] 

2653 

2654 :returns: 

2655 Rotated traces (radial, transversal). 

2656 :rtype: 

2657 tuple[ 

2658 :py:class:`~pyrocko.trace.Trace`, 

2659 :py:class:`~pyrocko.trace.Trace`] 

2660 ''' 

2661 azimuth = orthodrome.azimuth(receiver, source) + 180. 

2662 in_channels = n.channel, e.channel 

2663 out = rotate( 

2664 [n, e], azimuth, 

2665 in_channels=in_channels, 

2666 out_channels=out_channels) 

2667 

2668 assert len(out) == 2 

2669 for tr in out: 

2670 if tr.channel == out_channels[0]: 

2671 r = tr 

2672 elif tr.channel == out_channels[1]: 

2673 t = tr 

2674 else: 

2675 assert False 

2676 

2677 return r, t 

2678 

2679 

2680def rotate_to_lqt(traces, backazimuth, incidence, in_channels, 

2681 out_channels=('L', 'Q', 'T')): 

2682 ''' 

2683 Rotate traces from ZNE to LQT system. 

2684 

2685 :param traces: list of traces in arbitrary order 

2686 :param backazimuth: backazimuth in degrees clockwise from north 

2687 :param incidence: incidence angle in degrees from vertical 

2688 :param in_channels: input channel names 

2689 :param out_channels: output channel names (default: ('L', 'Q', 'T')) 

2690 :returns: list of transformed traces 

2691 ''' 

2692 i = incidence/180.*num.pi 

2693 b = backazimuth/180.*num.pi 

2694 

2695 ci = num.cos(i) 

2696 cb = num.cos(b) 

2697 si = num.sin(i) 

2698 sb = num.sin(b) 

2699 

2700 rotmat = num.array( 

2701 [[ci, -cb*si, -sb*si], [si, cb*ci, sb*ci], [0., sb, -cb]]) 

2702 return project(traces, rotmat, in_channels, out_channels) 

2703 

2704 

2705def _decompose(a): 

2706 ''' 

2707 Decompose matrix into independent submatrices. 

2708 ''' 

2709 

2710 def depends(iout, a): 

2711 row = a[iout, :] 

2712 return set(num.arange(row.size).compress(row != 0.0)) 

2713 

2714 def provides(iin, a): 

2715 col = a[:, iin] 

2716 return set(num.arange(col.size).compress(col != 0.0)) 

2717 

2718 a = num.asarray(a) 

2719 outs = set(range(a.shape[0])) 

2720 systems = [] 

2721 while outs: 

2722 iout = outs.pop() 

2723 

2724 gout = set() 

2725 for iin in depends(iout, a): 

2726 gout.update(provides(iin, a)) 

2727 

2728 if not gout: 

2729 continue 

2730 

2731 gin = set() 

2732 for iout2 in gout: 

2733 gin.update(depends(iout2, a)) 

2734 

2735 if not gin: 

2736 continue 

2737 

2738 for iout2 in gout: 

2739 if iout2 in outs: 

2740 outs.remove(iout2) 

2741 

2742 gin = list(gin) 

2743 gin.sort() 

2744 gout = list(gout) 

2745 gout.sort() 

2746 

2747 systems.append((gin, gout, a[gout, :][:, gin])) 

2748 

2749 return systems 

2750 

2751 

2752def _channels_to_names(channels): 

2753 from pyrocko import squirrel 

2754 names = [] 

2755 for ch in channels: 

2756 if isinstance(ch, model.Channel): 

2757 names.append(ch.name) 

2758 elif isinstance(ch, squirrel.Channel): 

2759 names.append(ch.codes.channel) 

2760 else: 

2761 names.append(ch) 

2762 

2763 return names 

2764 

2765 

2766def project(traces, matrix, in_channels, out_channels): 

2767 ''' 

2768 Affine transform of three-component traces. 

2769 

2770 Compute matrix-vector product of three-component traces, to e.g. rotate 

2771 traces into a different basis. The traces are distinguished and ordered by 

2772 their channel attribute. The tranform is applied to overlapping parts of 

2773 any appropriate combinations of the input traces. This should allow this 

2774 function to be robust with data gaps. It also tries to apply the 

2775 tranformation to subsets of the channels, if this is possible, so that, if 

2776 for example a vertical compontent is missing, horizontal components can 

2777 still be rotated. 

2778 

2779 :param traces: list of traces in arbitrary order 

2780 :param matrix: tranformation matrix 

2781 :param in_channels: input channel names 

2782 :param out_channels: output channel names 

2783 :returns: list of transformed traces 

2784 ''' 

2785 

2786 in_channels = tuple(_channels_to_names(in_channels)) 

2787 out_channels = tuple(_channels_to_names(out_channels)) 

2788 systems = _decompose(matrix) 

2789 

2790 # fallback to full matrix if some are not quadratic 

2791 for iins, iouts, submatrix in systems: 

2792 if submatrix.shape[0] != submatrix.shape[1]: 

2793 if len(in_channels) != 3 or len(out_channels) != 3: 

2794 return [] 

2795 else: 

2796 return _project3(traces, matrix, in_channels, out_channels) 

2797 

2798 projected = [] 

2799 for iins, iouts, submatrix in systems: 

2800 in_cha = tuple([in_channels[iin] for iin in iins]) 

2801 out_cha = tuple([out_channels[iout] for iout in iouts]) 

2802 if submatrix.shape[0] == 1: 

2803 projected.extend(_project1(traces, submatrix, in_cha, out_cha)) 

2804 elif submatrix.shape[1] == 2: 

2805 projected.extend(_project2(traces, submatrix, in_cha, out_cha)) 

2806 else: 

2807 projected.extend(_project3(traces, submatrix, in_cha, out_cha)) 

2808 

2809 return projected 

2810 

2811 

2812def project_dependencies(matrix, in_channels, out_channels): 

2813 ''' 

2814 Figure out what dependencies project() would produce. 

2815 ''' 

2816 

2817 in_channels = tuple(_channels_to_names(in_channels)) 

2818 out_channels = tuple(_channels_to_names(out_channels)) 

2819 systems = _decompose(matrix) 

2820 

2821 subpro = [] 

2822 for iins, iouts, submatrix in systems: 

2823 if submatrix.shape[0] != submatrix.shape[1]: 

2824 subpro.append((matrix, in_channels, out_channels)) 

2825 

2826 if not subpro: 

2827 for iins, iouts, submatrix in systems: 

2828 in_cha = tuple([in_channels[iin] for iin in iins]) 

2829 out_cha = tuple([out_channels[iout] for iout in iouts]) 

2830 subpro.append((submatrix, in_cha, out_cha)) 

2831 

2832 deps = {} 

2833 for mat, in_cha, out_cha in subpro: 

2834 for oc in out_cha: 

2835 if oc not in deps: 

2836 deps[oc] = [] 

2837 

2838 for ic in in_cha: 

2839 deps[oc].append(ic) 

2840 

2841 return deps 

2842 

2843 

2844def _project1(traces, matrix, in_channels, out_channels): 

2845 assert len(in_channels) == 1 

2846 assert len(out_channels) == 1 

2847 assert matrix.shape == (1, 1) 

2848 

2849 projected = [] 

2850 for a in traces: 

2851 if not (a.channel,) == in_channels: 

2852 continue 

2853 

2854 ac = a.copy() 

2855 ac.set_ydata(matrix[0, 0]*a.get_ydata()) 

2856 ac.set_codes(channel=out_channels[0]) 

2857 projected.append(ac) 

2858 

2859 return projected 

2860 

2861 

2862def _project2(traces, matrix, in_channels, out_channels): 

2863 assert len(in_channels) == 2 

2864 assert len(out_channels) == 2 

2865 assert matrix.shape == (2, 2) 

2866 projected = [] 

2867 for a in traces: 

2868 for b in traces: 

2869 if not ((a.channel, b.channel) == in_channels and 

2870 a.nslc_id[:3] == b.nslc_id[:3] and 

2871 abs(a.deltat-b.deltat) < a.deltat*0.001): 

2872 continue 

2873 

2874 tmin = max(a.tmin, b.tmin) 

2875 tmax = min(a.tmax, b.tmax) 

2876 

2877 if tmin > tmax: 

2878 continue 

2879 

2880 ac = a.chop(tmin, tmax, inplace=False, include_last=True) 

2881 bc = b.chop(tmin, tmax, inplace=False, include_last=True) 

2882 if abs(ac.tmin - bc.tmin) > ac.deltat*0.01: 

2883 logger.warning( 

2884 'Cannot project traces with displaced sampling ' 

2885 '(%s, %s, %s, %s)' % a.nslc_id) 

2886 continue 

2887 

2888 acydata = num.dot(matrix[0], (ac.get_ydata(), bc.get_ydata())) 

2889 bcydata = num.dot(matrix[1], (ac.get_ydata(), bc.get_ydata())) 

2890 

2891 ac.set_ydata(acydata) 

2892 bc.set_ydata(bcydata) 

2893 

2894 ac.set_codes(channel=out_channels[0]) 

2895 bc.set_codes(channel=out_channels[1]) 

2896 

2897 projected.append(ac) 

2898 projected.append(bc) 

2899 

2900 return projected 

2901 

2902 

2903def _project3(traces, matrix, in_channels, out_channels): 

2904 assert len(in_channels) == 3 

2905 assert len(out_channels) == 3 

2906 assert matrix.shape == (3, 3) 

2907 projected = [] 

2908 for a in traces: 

2909 for b in traces: 

2910 for c in traces: 

2911 if not ((a.channel, b.channel, c.channel) == in_channels 

2912 and a.nslc_id[:3] == b.nslc_id[:3] 

2913 and b.nslc_id[:3] == c.nslc_id[:3] 

2914 and abs(a.deltat-b.deltat) < a.deltat*0.001 

2915 and abs(b.deltat-c.deltat) < b.deltat*0.001): 

2916 

2917 continue 

2918 

2919 tmin = max(a.tmin, b.tmin, c.tmin) 

2920 tmax = min(a.tmax, b.tmax, c.tmax) 

2921 

2922 if tmin >= tmax: 

2923 continue 

2924 

2925 ac = a.chop(tmin, tmax, inplace=False, include_last=True) 

2926 bc = b.chop(tmin, tmax, inplace=False, include_last=True) 

2927 cc = c.chop(tmin, tmax, inplace=False, include_last=True) 

2928 if (abs(ac.tmin - bc.tmin) > ac.deltat*0.01 

2929 or abs(bc.tmin - cc.tmin) > bc.deltat*0.01): 

2930 

2931 logger.warning( 

2932 'Cannot project traces with displaced sampling ' 

2933 '(%s, %s, %s, %s)' % a.nslc_id) 

2934 continue 

2935 

2936 acydata = num.dot( 

2937 matrix[0], 

2938 (ac.get_ydata(), bc.get_ydata(), cc.get_ydata())) 

2939 bcydata = num.dot( 

2940 matrix[1], 

2941 (ac.get_ydata(), bc.get_ydata(), cc.get_ydata())) 

2942 ccydata = num.dot( 

2943 matrix[2], 

2944 (ac.get_ydata(), bc.get_ydata(), cc.get_ydata())) 

2945 

2946 ac.set_ydata(acydata) 

2947 bc.set_ydata(bcydata) 

2948 cc.set_ydata(ccydata) 

2949 

2950 ac.set_codes(channel=out_channels[0]) 

2951 bc.set_codes(channel=out_channels[1]) 

2952 cc.set_codes(channel=out_channels[2]) 

2953 

2954 projected.append(ac) 

2955 projected.append(bc) 

2956 projected.append(cc) 

2957 

2958 return projected 

2959 

2960 

2961def correlate(a, b, mode='valid', normalization=None, use_fft=False): 

2962 ''' 

2963 Cross correlation of two traces. 

2964 

2965 :param a,b: input traces 

2966 :param mode: ``'valid'``, ``'full'``, or ``'same'`` 

2967 :param normalization: ``'normal'``, ``'gliding'``, or ``None`` 

2968 :param use_fft: bool, whether to do cross correlation in spectral domain 

2969 

2970 :returns: trace containing cross correlation coefficients 

2971 

2972 This function computes the cross correlation between two traces. It 

2973 evaluates the discrete equivalent of 

2974 

2975 .. math:: 

2976 

2977 c(t) = \\int_{-\\infty}^{\\infty} a^{\\ast}(\\tau) b(t+\\tau) d\\tau 

2978 

2979 where the star denotes complex conjugate. Note, that the arguments here are 

2980 swapped when compared with the :py:func:`numpy.correlate` function, 

2981 which is internally called. This function should be safe even with older 

2982 versions of NumPy, where the correlate function has some problems. 

2983 

2984 A trace containing the cross correlation coefficients is returned. The time 

2985 information of the output trace is set so that the returned cross 

2986 correlation can be viewed directly as a function of time lag. 

2987 

2988 Example:: 

2989 

2990 # align two traces a and b containing a time shifted similar signal: 

2991 c = pyrocko.trace.correlate(a,b) 

2992 t, coef = c.max() # get time and value of maximum 

2993 b.shift(-t) # align b with a 

2994 

2995 ''' 

2996 

2997 assert_same_sampling_rate(a, b) 

2998 

2999 ya, yb = a.ydata, b.ydata 

3000 

3001 # need reversed order here: 

3002 yc = numpy_correlate_fixed(yb, ya, mode=mode, use_fft=use_fft) 

3003 kmin, kmax = numpy_correlate_lag_range(yb, ya, mode=mode, use_fft=use_fft) 

3004 

3005 if normalization == 'normal': 

3006 normfac = num.sqrt(num.sum(ya**2))*num.sqrt(num.sum(yb**2)) 

3007 yc = yc/normfac 

3008 

3009 elif normalization == 'gliding': 

3010 if mode != 'valid': 

3011 assert False, 'gliding normalization currently only available ' \ 

3012 'with "valid" mode.' 

3013 

3014 if ya.size < yb.size: 

3015 yshort, ylong = ya, yb 

3016 else: 

3017 yshort, ylong = yb, ya 

3018 

3019 epsilon = 0.00001 

3020 normfac_short = num.sqrt(num.sum(yshort**2)) 

3021 normfac = normfac_short * num.sqrt( 

3022 moving_sum(ylong**2, yshort.size, mode='valid')) \ 

3023 + normfac_short*epsilon 

3024 

3025 if yb.size <= ya.size: 

3026 normfac = normfac[::-1] 

3027 

3028 yc /= normfac 

3029 

3030 c = a.copy() 

3031 c.set_ydata(yc) 

3032 c.set_codes(*merge_codes(a, b, '~')) 

3033 c.shift(-c.tmin + b.tmin-a.tmin + kmin * c.deltat) 

3034 

3035 return c 

3036 

3037 

3038def deconvolve( 

3039 a, b, waterlevel, 

3040 tshift=0., 

3041 pad=0.5, 

3042 fd_taper=None, 

3043 pad_to_pow2=True): 

3044 

3045 same_sampling_rate(a, b) 

3046 assert abs(a.tmin - b.tmin) < a.deltat * 0.001 

3047 deltat = a.deltat 

3048 npad = int(round(a.data_len()*pad + tshift / deltat)) 

3049 

3050 ndata = max(a.data_len(), b.data_len()) 

3051 ndata_pad = ndata + npad 

3052 

3053 if pad_to_pow2: 

3054 ntrans = nextpow2(ndata_pad) 

3055 else: 

3056 ntrans = ndata 

3057 

3058 aspec = num.fft.rfft(a.ydata, ntrans) 

3059 bspec = num.fft.rfft(b.ydata, ntrans) 

3060 

3061 out = aspec * num.conj(bspec) 

3062 

3063 bautocorr = bspec*num.conj(bspec) 

3064 denom = num.maximum(bautocorr, waterlevel * bautocorr.max()) 

3065 

3066 out /= denom 

3067 df = 1/(ntrans*deltat) 

3068 

3069 if fd_taper is not None: 

3070 fd_taper(out, 0.0, df) 

3071 

3072 ydata = num.roll(num.fft.irfft(out), int(round(tshift/deltat))) 

3073 c = a.copy(data=False) 

3074 c.set_ydata(ydata[:ndata]) 

3075 c.set_codes(*merge_codes(a, b, '/')) 

3076 return c 

3077 

3078 

3079def assert_same_sampling_rate(a, b, eps=1.0e-6): 

3080 assert same_sampling_rate(a, b, eps), \ 

3081 'Sampling rates differ: %g != %g' % (a.deltat, b.deltat) 

3082 

3083 

3084def same_sampling_rate(a, b, eps=1.0e-6): 

3085 ''' 

3086 Check if two traces have the same sampling rate. 

3087 

3088 :param a,b: input traces 

3089 :param eps: relative tolerance 

3090 ''' 

3091 

3092 return abs(a.deltat - b.deltat) < (a.deltat + b.deltat)*eps 

3093 

3094 

3095def fix_deltat_rounding_errors(deltat): 

3096 ''' 

3097 Try to undo sampling rate rounding errors. 

3098 

3099 Fix rounding errors of sampling intervals when these are read from single 

3100 precision floating point values. 

3101 

3102 Assumes that the true sampling rate or sampling interval was an integer 

3103 value. No correction will be applied if this would change the sampling 

3104 rate by more than 0.001%. 

3105 ''' 

3106 

3107 if deltat <= 1.0: 

3108 deltat_new = 1.0 / round(1.0 / deltat) 

3109 else: 

3110 deltat_new = round(deltat) 

3111 

3112 if abs(deltat_new - deltat) / deltat > 1e-5: 

3113 deltat_new = deltat 

3114 

3115 return deltat_new 

3116 

3117 

3118def merge_codes(a, b, sep='-'): 

3119 ''' 

3120 Merge network-station-location-channel codes of a pair of traces. 

3121 ''' 

3122 

3123 o = [] 

3124 for xa, xb in zip(a.nslc_id, b.nslc_id): 

3125 if xa == xb: 

3126 o.append(xa) 

3127 else: 

3128 o.append(sep.join((xa, xb))) 

3129 return o 

3130 

3131 

3132class Taper(Object): 

3133 ''' 

3134 Base class for tapers. 

3135 

3136 Does nothing by default. 

3137 ''' 

3138 

3139 def __call__(self, y, x0, dx): 

3140 pass 

3141 

3142 

3143class CosTaper(Taper): 

3144 ''' 

3145 Cosine Taper. 

3146 

3147 :param a: start of fading in 

3148 :param b: end of fading in 

3149 :param c: start of fading out 

3150 :param d: end of fading out 

3151 ''' 

3152 

3153 a = Float.T() 

3154 b = Float.T() 

3155 c = Float.T() 

3156 d = Float.T() 

3157 

3158 def __init__(self, a, b, c, d): 

3159 Taper.__init__(self, a=a, b=b, c=c, d=d) 

3160 

3161 def __call__(self, y, x0, dx): 

3162 

3163 if y.dtype == num.dtype(float): 

3164 _apply_costaper = signal_ext.apply_costaper 

3165 else: 

3166 _apply_costaper = apply_costaper 

3167 

3168 _apply_costaper(self.a, self.b, self.c, self.d, y, x0, dx) 

3169 

3170 def span(self, y, x0, dx): 

3171 return span_costaper(self.a, self.b, self.c, self.d, y, x0, dx) 

3172 

3173 def time_span(self): 

3174 return self.a, self.d 

3175 

3176 

3177class CosFader(Taper): 

3178 ''' 

3179 Cosine Fader. 

3180 

3181 :param xfade: fade in and fade out time in seconds (optional) 

3182 :param xfrac: fade in and fade out as fraction between 0. and 1. (optional) 

3183 

3184 Only one argument can be set. The other should to be ``None``. 

3185 ''' 

3186 

3187 xfade = Float.T(optional=True) 

3188 xfrac = Float.T(optional=True) 

3189 

3190 def __init__(self, xfade=None, xfrac=None): 

3191 Taper.__init__(self, xfade=xfade, xfrac=xfrac) 

3192 assert (xfade is None) != (xfrac is None) 

3193 self._xfade = xfade 

3194 self._xfrac = xfrac 

3195 

3196 def __call__(self, y, x0, dx): 

3197 

3198 xfade = self._xfade 

3199 

3200 xlen = (y.size - 1)*dx 

3201 if xfade is None: 

3202 xfade = xlen * self._xfrac 

3203 

3204 a = x0 

3205 b = x0 + xfade 

3206 c = x0 + xlen - xfade 

3207 d = x0 + xlen 

3208 

3209 apply_costaper(a, b, c, d, y, x0, dx) 

3210 

3211 def span(self, y, x0, dx): 

3212 return 0, y.size 

3213 

3214 def time_span(self): 

3215 return None, None 

3216 

3217 

3218def none_min(li): 

3219 if None in li: 

3220 return None 

3221 else: 

3222 return min(x for x in li if x is not None) 

3223 

3224 

3225def none_max(li): 

3226 if None in li: 

3227 return None 

3228 else: 

3229 return max(x for x in li if x is not None) 

3230 

3231 

3232class MultiplyTaper(Taper): 

3233 ''' 

3234 Multiplication of several tapers. 

3235 ''' 

3236 

3237 tapers = List.T(Taper.T()) 

3238 

3239 def __init__(self, tapers=None): 

3240 if tapers is None: 

3241 tapers = [] 

3242 

3243 Taper.__init__(self, tapers=tapers) 

3244 

3245 def __call__(self, y, x0, dx): 

3246 for taper in self.tapers: 

3247 taper(y, x0, dx) 

3248 

3249 def span(self, y, x0, dx): 

3250 spans = [] 

3251 for taper in self.tapers: 

3252 spans.append(taper.span(y, x0, dx)) 

3253 

3254 mins, maxs = list(zip(*spans)) 

3255 return min(mins), max(maxs) 

3256 

3257 def time_span(self): 

3258 spans = [] 

3259 for taper in self.tapers: 

3260 spans.append(taper.time_span()) 

3261 

3262 mins, maxs = list(zip(*spans)) 

3263 return none_min(mins), none_max(maxs) 

3264 

3265 

3266class GaussTaper(Taper): 

3267 ''' 

3268 Frequency domain Gaussian filter. 

3269 ''' 

3270 

3271 alpha = Float.T() 

3272 

3273 def __init__(self, alpha): 

3274 Taper.__init__(self, alpha=alpha) 

3275 self._alpha = alpha 

3276 

3277 def __call__(self, y, x0, dx): 

3278 f = x0 + num.arange(y.size)*dx 

3279 y *= num.exp(-num.pi**2 / (self._alpha**2) * f**2) 

3280 

3281 

3282cached_coefficients = {} 

3283 

3284 

3285def _get_cached_filter_coeffs(order, corners, btype): 

3286 ck = (order, tuple(corners), btype) 

3287 if ck not in cached_coefficients: 

3288 if len(corners) == 1: 

3289 corners = corners[0] 

3290 

3291 cached_coefficients[ck] = signal.butter( 

3292 order, corners, btype=btype) 

3293 

3294 return cached_coefficients[ck] 

3295 

3296 

3297class _globals(object): 

3298 _numpy_has_correlate_flip_bug = None 

3299 

3300 

3301def _default_key(tr): 

3302 return (tr.network, tr.station, tr.location, tr.channel) 

3303 

3304 

3305def numpy_has_correlate_flip_bug(): 

3306 ''' 

3307 Check if NumPy's correlate function reveals old behaviour. 

3308 ''' 

3309 

3310 if _globals._numpy_has_correlate_flip_bug is None: 

3311 a = num.array([0, 0, 1, 0, 0, 0, 0]) 

3312 b = num.array([0, 0, 0, 0, 1, 0, 0, 0]) 

3313 ab = num.correlate(a, b, mode='same') 

3314 ba = num.correlate(b, a, mode='same') 

3315 _globals._numpy_has_correlate_flip_bug = num.all(ab == ba) 

3316 

3317 return _globals._numpy_has_correlate_flip_bug 

3318 

3319 

3320def numpy_correlate_fixed(a, b, mode='valid', use_fft=False): 

3321 ''' 

3322 Call :py:func:`numpy.correlate` with fixes. 

3323 

3324 c[k] = sum_i a[i+k] * conj(b[i]) 

3325 

3326 Note that the result produced by newer numpy.correlate is always flipped 

3327 with respect to the formula given in its documentation (if ascending k 

3328 assumed for the output). 

3329 ''' 

3330 

3331 if use_fft: 

3332 if a.size < b.size: 

3333 c = signal.fftconvolve(b[::-1], a, mode=mode) 

3334 else: 

3335 c = signal.fftconvolve(a, b[::-1], mode=mode) 

3336 return c 

3337 

3338 else: 

3339 buggy = numpy_has_correlate_flip_bug() 

3340 

3341 a = num.asarray(a) 

3342 b = num.asarray(b) 

3343 

3344 if buggy: 

3345 b = num.conj(b) 

3346 

3347 c = num.correlate(a, b, mode=mode) 

3348 

3349 if buggy and a.size < b.size: 

3350 return c[::-1] 

3351 else: 

3352 return c 

3353 

3354 

3355def numpy_correlate_emulate(a, b, mode='valid'): 

3356 ''' 

3357 Slow version of :py:func:`numpy.correlate` for comparison. 

3358 ''' 

3359 

3360 a = num.asarray(a) 

3361 b = num.asarray(b) 

3362 kmin = -(b.size-1) 

3363 klen = a.size-kmin 

3364 kmin, kmax = numpy_correlate_lag_range(a, b, mode=mode) 

3365 kmin = int(kmin) 

3366 kmax = int(kmax) 

3367 klen = kmax - kmin + 1 

3368 c = num.zeros(klen, dtype=num.promote_types(b.dtype, a.dtype)) 

3369 for k in range(kmin, kmin+klen): 

3370 imin = max(0, -k) 

3371 ilen = min(b.size, a.size-k) - imin 

3372 c[k-kmin] = num.sum( 

3373 a[imin+k:imin+ilen+k] * num.conj(b[imin:imin+ilen])) 

3374 

3375 return c 

3376 

3377 

3378def numpy_correlate_lag_range(a, b, mode='valid', use_fft=False): 

3379 ''' 

3380 Get range of lags for which :py:func:`numpy.correlate` produces values. 

3381 ''' 

3382 

3383 a = num.asarray(a) 

3384 b = num.asarray(b) 

3385 

3386 kmin = -(b.size-1) 

3387 if mode == 'full': 

3388 klen = a.size-kmin 

3389 elif mode == 'same': 

3390 klen = max(a.size, b.size) 

3391 kmin += (a.size+b.size-1 - max(a.size, b.size)) // 2 + \ 

3392 int(not use_fft and a.size % 2 == 0 and b.size > a.size) 

3393 elif mode == 'valid': 

3394 klen = abs(a.size - b.size) + 1 

3395 kmin += min(a.size, b.size) - 1 

3396 

3397 return kmin, kmin + klen - 1 

3398 

3399 

3400def autocorr(x, nshifts): 

3401 ''' 

3402 Compute biased estimate of the first autocorrelation coefficients. 

3403 

3404 :param x: input array 

3405 :param nshifts: number of coefficients to calculate 

3406 ''' 

3407 

3408 mean = num.mean(x) 

3409 std = num.std(x) 

3410 n = x.size 

3411 xdm = x - mean 

3412 r = num.zeros(nshifts) 

3413 for k in range(nshifts): 

3414 r[k] = 1./((n-num.abs(k))*std) * num.sum(xdm[:n-k] * xdm[k:]) 

3415 

3416 return r 

3417 

3418 

3419def yulewalker(x, order): 

3420 ''' 

3421 Compute autoregression coefficients using Yule-Walker method. 

3422 

3423 :param x: input array 

3424 :param order: number of coefficients to produce 

3425 

3426 A biased estimate of the autocorrelation is used. The Yule-Walker equations 

3427 are solved by :py:func:`numpy.linalg.inv` instead of Levinson-Durbin 

3428 recursion which is normally used. 

3429 ''' 

3430 

3431 gamma = autocorr(x, order+1) 

3432 d = gamma[1:1+order] 

3433 a = num.zeros((order, order)) 

3434 gamma2 = num.concatenate((gamma[::-1], gamma[1:order])) 

3435 for i in range(order): 

3436 ioff = order-i 

3437 a[i, :] = gamma2[ioff:ioff+order] 

3438 

3439 return num.dot(num.linalg.inv(a), -d) 

3440 

3441 

3442def moving_avg(x, n): 

3443 n = int(n) 

3444 cx = x.cumsum() 

3445 nn = len(x) 

3446 y = num.zeros(nn, dtype=cx.dtype) 

3447 y[n//2:n//2+(nn-n)] = (cx[n:]-cx[:-n])/n 

3448 y[:n//2] = y[n//2] 

3449 y[n//2+(nn-n):] = y[n//2+(nn-n)-1] 

3450 return y 

3451 

3452 

3453def moving_sum(x, n, mode='valid'): 

3454 n = int(n) 

3455 cx = x.cumsum() 

3456 nn = len(x) 

3457 

3458 if mode == 'valid': 

3459 if nn-n+1 <= 0: 

3460 return num.zeros(0, dtype=cx.dtype) 

3461 y = num.zeros(nn-n+1, dtype=cx.dtype) 

3462 y[0] = cx[n-1] 

3463 y[1:nn-n+1] = cx[n:nn]-cx[0:nn-n] 

3464 

3465 if mode == 'full': 

3466 y = num.zeros(nn+n-1, dtype=cx.dtype) 

3467 if n <= nn: 

3468 y[0:n] = cx[0:n] 

3469 y[n:nn] = cx[n:nn]-cx[0:nn-n] 

3470 y[nn:nn+n-1] = cx[-1]-cx[nn-n:nn-1] 

3471 else: 

3472 y[0:nn] = cx[0:nn] 

3473 y[nn:n] = cx[nn-1] 

3474 y[n:nn+n-1] = cx[nn-1] - cx[0:nn-1] 

3475 

3476 if mode == 'same': 

3477 n1 = (n-1)//2 

3478 y = num.zeros(nn, dtype=cx.dtype) 

3479 if n <= nn: 

3480 y[0:n-n1] = cx[n1:n] 

3481 y[n-n1:nn-n1] = cx[n:nn]-cx[0:nn-n] 

3482 y[nn-n1:nn] = cx[nn-1] - cx[nn-n:nn-n+n1] 

3483 else: 

3484 y[0:max(0, nn-n1)] = cx[min(n1, nn):nn] 

3485 y[max(nn-n1, 0):min(n-n1, nn)] = cx[nn-1] 

3486 y[min(n-n1, nn):nn] = cx[nn-1] - cx[0:max(0, nn-(n-n1))] 

3487 

3488 return y 

3489 

3490 

3491def nextpow2(i): 

3492 return 2**int(math.ceil(math.log(i)/math.log(2.))) 

3493 

3494 

3495def snapper_w_offset(nmax, offset, delta, snapfun=math.ceil): 

3496 def snap(x): 

3497 return max(0, min(int(snapfun((x-offset)/delta)), nmax)) 

3498 return snap 

3499 

3500 

3501def snapper(nmax, delta, snapfun=math.ceil): 

3502 def snap(x): 

3503 return max(0, min(int(snapfun(x/delta)), nmax)) 

3504 return snap 

3505 

3506 

3507def apply_costaper(a, b, c, d, y, x0, dx): 

3508 abcd = num.array((a, b, c, d), dtype=float) 

3509 ja, jb, jc, jd = num.clip(num.ceil((abcd-x0)/dx).astype(int), 0, y.size) 

3510 y[:ja] = 0. 

3511 y[ja:jb] *= 0.5 \ 

3512 - 0.5*num.cos((dx*num.arange(ja, jb)-(a-x0))/(b-a)*num.pi) 

3513 y[jc:jd] *= 0.5 \ 

3514 + 0.5*num.cos((dx*num.arange(jc, jd)-(c-x0))/(d-c)*num.pi) 

3515 y[jd:] = 0. 

3516 

3517 

3518def span_costaper(a, b, c, d, y, x0, dx): 

3519 hi = snapper_w_offset(y.size, x0, dx) 

3520 return hi(a), hi(d) - hi(a) 

3521 

3522 

3523def costaper(a, b, c, d, nfreqs, deltaf): 

3524 hi = snapper(nfreqs, deltaf) 

3525 tap = num.zeros(nfreqs) 

3526 tap[hi(a):hi(b)] = 0.5 \ 

3527 - 0.5*num.cos((deltaf*num.arange(hi(a), hi(b))-a)/(b-a)*num.pi) 

3528 tap[hi(b):hi(c)] = 1. 

3529 tap[hi(c):hi(d)] = 0.5 \ 

3530 + 0.5*num.cos((deltaf*num.arange(hi(c), hi(d))-c)/(d-c)*num.pi) 

3531 

3532 return tap 

3533 

3534 

3535def t2ind(t, tdelta, snap=round): 

3536 return int(snap(t/tdelta)) 

3537 

3538 

3539def hilbert(x, N=None): 

3540 ''' 

3541 Return the hilbert transform of x of length N. 

3542 

3543 (from scipy.signal, but changed to use fft and ifft from numpy.fft) 

3544 ''' 

3545 

3546 x = num.asarray(x) 

3547 if N is None: 

3548 N = len(x) 

3549 if N <= 0: 

3550 raise ValueError('N must be positive.') 

3551 if num.iscomplexobj(x): 

3552 logger.warning('imaginary part of x ignored.') 

3553 x = num.real(x) 

3554 

3555 Xf = num.fft.fft(x, N, axis=0) 

3556 h = num.zeros(N) 

3557 if N % 2 == 0: 

3558 h[0] = h[N//2] = 1 

3559 h[1:N//2] = 2 

3560 else: 

3561 h[0] = 1 

3562 h[1:(N+1)//2] = 2 

3563 

3564 if len(x.shape) > 1: 

3565 h = h[:, num.newaxis] 

3566 x = num.fft.ifft(Xf*h) 

3567 return x 

3568 

3569 

3570def near(a, b, eps): 

3571 return abs(a-b) < eps 

3572 

3573 

3574def coroutine(func): 

3575 def wrapper(*args, **kwargs): 

3576 gen = func(*args, **kwargs) 

3577 next(gen) 

3578 return gen 

3579 

3580 wrapper.__name__ = func.__name__ 

3581 wrapper.__dict__ = func.__dict__ 

3582 wrapper.__doc__ = func.__doc__ 

3583 return wrapper 

3584 

3585 

3586class States(object): 

3587 ''' 

3588 Utility to store channel-specific state in coroutines. 

3589 ''' 

3590 

3591 def __init__(self): 

3592 self._states = {} 

3593 

3594 def get(self, tr): 

3595 k = tr.nslc_id 

3596 if k in self._states: 

3597 tmin, deltat, dtype, value = self._states[k] 

3598 if (near(tmin, tr.tmin, deltat/100.) 

3599 and near(deltat, tr.deltat, deltat/10000.) 

3600 and dtype == tr.ydata.dtype): 

3601 

3602 return value 

3603 

3604 return None 

3605 

3606 def set(self, tr, value): 

3607 k = tr.nslc_id 

3608 if k in self._states and self._states[k][-1] is not value: 

3609 self.free(self._states[k][-1]) 

3610 

3611 self._states[k] = (tr.tmax+tr.deltat, tr.deltat, tr.ydata.dtype, value) 

3612 

3613 def free(self, value): 

3614 pass 

3615 

3616 

3617@coroutine 

3618def co_list_append(list): 

3619 while True: 

3620 list.append((yield)) 

3621 

3622 

3623class ScipyBug(Exception): 

3624 pass 

3625 

3626 

3627@coroutine 

3628def co_lfilter(target, b, a): 

3629 ''' 

3630 Successively filter broken continuous trace data (coroutine). 

3631 

3632 Create coroutine which takes :py:class:`Trace` objects, filters their data 

3633 through :py:func:`scipy.signal.lfilter` and sends new :py:class:`Trace` 

3634 objects containing the filtered data to target. This is useful, if one 

3635 wants to filter a long continuous time series, which is split into many 

3636 successive traces without producing filter artifacts at trace boundaries. 

3637 

3638 Filter states are kept *per channel*, specifically, for each (network, 

3639 station, location, channel) combination occuring in the input traces, a 

3640 separate state is created and maintained. This makes it possible to filter 

3641 multichannel or multistation data with only one :py:func:`co_lfilter` 

3642 instance. 

3643 

3644 Filter state is reset, when gaps occur. 

3645 

3646 Use it like this:: 

3647 

3648 from pyrocko.trace import co_lfilter, co_list_append 

3649 

3650 filtered_traces = [] 

3651 pipe = co_lfilter(co_list_append(filtered_traces), a, b) 

3652 for trace in traces: 

3653 pipe.send(trace) 

3654 

3655 pipe.close() 

3656 

3657 ''' 

3658 

3659 try: 

3660 states = States() 

3661 output = None 

3662 while True: 

3663 input = (yield) 

3664 

3665 zi = states.get(input) 

3666 if zi is None: 

3667 zi = num.zeros(max(len(a), len(b))-1, dtype=float) 

3668 

3669 output = input.copy(data=False) 

3670 try: 

3671 ydata, zf = signal.lfilter(b, a, input.get_ydata(), zi=zi) 

3672 except ValueError: 

3673 raise ScipyBug( 

3674 'signal.lfilter failed: could be related to a bug ' 

3675 'in some older scipy versions, e.g. on opensuse42.1') 

3676 

3677 output.set_ydata(ydata) 

3678 states.set(input, zf) 

3679 target.send(output) 

3680 

3681 except GeneratorExit: 

3682 target.close() 

3683 

3684 

3685def co_antialias(target, q, n=None, ftype='fir'): 

3686 b, a, n = util.decimate_coeffs(q, n, ftype) 

3687 anti = co_lfilter(target, b, a) 

3688 return anti 

3689 

3690 

3691@coroutine 

3692def co_dropsamples(target, q, nfir): 

3693 try: 

3694 states = States() 

3695 while True: 

3696 tr = (yield) 

3697 newdeltat = q * tr.deltat 

3698 ioffset = states.get(tr) 

3699 if ioffset is None: 

3700 # for fir filter, the first nfir samples are pulluted by 

3701 # boundary effects; cut it off. 

3702 # for iir this may be (much) more, we do not correct for that. 

3703 # put sample instances to a time which is a multiple of the 

3704 # new sampling interval. 

3705 newtmin_want = math.ceil( 

3706 (tr.tmin+(nfir+1)*tr.deltat) / newdeltat) * newdeltat \ 

3707 - (nfir/2*tr.deltat) 

3708 ioffset = int(round((newtmin_want - tr.tmin)/tr.deltat)) 

3709 if ioffset < 0: 

3710 ioffset = ioffset % q 

3711 

3712 newtmin_have = tr.tmin + ioffset * tr.deltat 

3713 newtr = tr.copy(data=False) 

3714 newtr.deltat = newdeltat 

3715 # because the fir kernel shifts data by nfir/2 samples: 

3716 newtr.tmin = newtmin_have - (nfir/2*tr.deltat) 

3717 newtr.set_ydata(tr.get_ydata()[ioffset::q].copy()) 

3718 states.set(tr, (ioffset % q - tr.data_len() % q) % q) 

3719 target.send(newtr) 

3720 

3721 except GeneratorExit: 

3722 target.close() 

3723 

3724 

3725def co_downsample(target, q, n=None, ftype='fir'): 

3726 ''' 

3727 Successively downsample broken continuous trace data (coroutine). 

3728 

3729 Create coroutine which takes :py:class:`Trace` objects, downsamples their 

3730 data and sends new :py:class:`Trace` objects containing the downsampled 

3731 data to target. This is useful, if one wants to downsample a long 

3732 continuous time series, which is split into many successive traces without 

3733 producing filter artifacts and gaps at trace boundaries. 

3734 

3735 Filter states are kept *per channel*, specifically, for each (network, 

3736 station, location, channel) combination occuring in the input traces, a 

3737 separate state is created and maintained. This makes it possible to filter 

3738 multichannel or multistation data with only one :py:func:`co_lfilter` 

3739 instance. 

3740 

3741 Filter state is reset, when gaps occur. The sampling instances are choosen 

3742 so that they occur at (or as close as possible) to even multiples of the 

3743 sampling interval of the downsampled trace (based on system time). 

3744 ''' 

3745 

3746 b, a, n = util.decimate_coeffs(q, n, ftype) 

3747 return co_antialias(co_dropsamples(target, q, n), q, n, ftype) 

3748 

3749 

3750@coroutine 

3751def co_downsample_to(target, deltat): 

3752 

3753 decimators = {} 

3754 try: 

3755 while True: 

3756 tr = (yield) 

3757 ratio = deltat / tr.deltat 

3758 rratio = round(ratio) 

3759 if abs(rratio - ratio)/ratio > 0.0001: 

3760 raise util.UnavailableDecimation('ratio = %g' % ratio) 

3761 

3762 deci_seq = tuple(x for x in util.decitab(int(rratio)) if x != 1) 

3763 if deci_seq not in decimators: 

3764 pipe = target 

3765 for q in deci_seq[::-1]: 

3766 pipe = co_downsample(pipe, q) 

3767 

3768 decimators[deci_seq] = pipe 

3769 

3770 decimators[deci_seq].send(tr) 

3771 

3772 except GeneratorExit: 

3773 for g in decimators.values(): 

3774 g.close() 

3775 

3776 

3777class DomainChoice(StringChoice): 

3778 choices = [ 

3779 'time_domain', 

3780 'frequency_domain', 

3781 'envelope', 

3782 'absolute', 

3783 'cc_max_norm'] 

3784 

3785 

3786class MisfitSetup(Object): 

3787 ''' 

3788 Contains misfit setup to be used in :py:meth:`Trace.misfit` 

3789 

3790 :param description: Description of the setup 

3791 :param norm: L-norm classifier 

3792 :param taper: Object of :py:class:`Taper` 

3793 :param filter: Object of :py:class:`~pyrocko.response.FrequencyResponse` 

3794 :param domain: ['time_domain', 'frequency_domain', 'envelope', 'absolute', 

3795 'cc_max_norm'] 

3796 

3797 Can be dumped to a yaml file. 

3798 ''' 

3799 

3800 xmltagname = 'misfitsetup' 

3801 description = String.T(optional=True) 

3802 norm = Int.T(optional=False) 

3803 taper = Taper.T(optional=False) 

3804 filter = FrequencyResponse.T(optional=True) 

3805 domain = DomainChoice.T(default='time_domain') 

3806 

3807 

3808def equalize_sampling_rates(trace_1, trace_2): 

3809 ''' 

3810 Equalize sampling rates of two traces (reduce higher sampling rate to 

3811 lower). 

3812 

3813 :param trace_1: :py:class:`Trace` object 

3814 :param trace_2: :py:class:`Trace` object 

3815 

3816 Returns a copy of the resampled trace if resampling is needed. 

3817 ''' 

3818 

3819 if same_sampling_rate(trace_1, trace_2): 

3820 return trace_1, trace_2 

3821 

3822 if trace_1.deltat < trace_2.deltat: 

3823 t1_out = trace_1.copy() 

3824 t1_out.downsample_to(deltat=trace_2.deltat, snap=True) 

3825 logger.debug('Trace downsampled (return copy of trace): %s' 

3826 % '.'.join(t1_out.nslc_id)) 

3827 return t1_out, trace_2 

3828 

3829 elif trace_1.deltat > trace_2.deltat: 

3830 t2_out = trace_2.copy() 

3831 t2_out.downsample_to(deltat=trace_1.deltat, snap=True) 

3832 logger.debug('Trace downsampled (return copy of trace): %s' 

3833 % '.'.join(t2_out.nslc_id)) 

3834 return trace_1, t2_out 

3835 

3836 

3837def Lx_norm(u, v, norm=2): 

3838 ''' 

3839 Calculate the misfit denominator *m* and the normalization divisor *n* 

3840 according to norm. 

3841 

3842 The normalization divisor *n* is calculated from ``v``. 

3843 

3844 :param u: :py:class:`numpy.ndarray` 

3845 :param v: :py:class:`numpy.ndarray` 

3846 :param norm: (default = 2) 

3847 

3848 ``u`` and ``v`` must be of same size. 

3849 ''' 

3850 

3851 if norm == 1: 

3852 return ( 

3853 num.sum(num.abs(v-u)), 

3854 num.sum(num.abs(v))) 

3855 

3856 elif norm == 2: 

3857 return ( 

3858 num.sqrt(num.sum((v-u)**2)), 

3859 num.sqrt(num.sum(v**2))) 

3860 

3861 else: 

3862 return ( 

3863 num.power(num.sum(num.abs(num.power(v - u, norm))), 1./norm), 

3864 num.power(num.sum(num.abs(num.power(v, norm))), 1./norm)) 

3865 

3866 

3867def do_downsample(tr, deltat): 

3868 if abs(tr.deltat - deltat) / tr.deltat > 1e-6: 

3869 tr = tr.copy() 

3870 tr.downsample_to(deltat, snap=True, demean=False) 

3871 else: 

3872 if tr.tmin/tr.deltat > 1e-6 or tr.tmax/tr.deltat > 1e-6: 

3873 tr = tr.copy() 

3874 tr.snap() 

3875 return tr 

3876 

3877 

3878def do_extend(tr, tmin, tmax): 

3879 if tmin < tr.tmin or tmax > tr.tmax: 

3880 tr = tr.copy() 

3881 tr.extend(tmin=tmin, tmax=tmax, fillmethod='repeat') 

3882 

3883 return tr 

3884 

3885 

3886def do_pre_taper(tr, taper): 

3887 return tr.taper(taper, inplace=False, chop=True) 

3888 

3889 

3890def do_fft(tr, filter): 

3891 if filter is None: 

3892 return tr 

3893 else: 

3894 ndata = tr.ydata.size 

3895 nfft = nextpow2(ndata) 

3896 padded = num.zeros(nfft, dtype=float) 

3897 padded[:ndata] = tr.ydata 

3898 spectrum = num.fft.rfft(padded) 

3899 df = 1.0 / (tr.deltat * nfft) 

3900 frequencies = num.arange(spectrum.size)*df 

3901 return [tr, frequencies, spectrum] 

3902 

3903 

3904def do_filter(inp, filter): 

3905 if filter is None: 

3906 return inp 

3907 else: 

3908 tr, frequencies, spectrum = inp 

3909 spectrum *= filter.evaluate(frequencies) 

3910 return [tr, frequencies, spectrum] 

3911 

3912 

3913def do_ifft(inp): 

3914 if isinstance(inp, Trace): 

3915 return inp 

3916 else: 

3917 tr, _, spectrum = inp 

3918 ndata = tr.ydata.size 

3919 tr = tr.copy(data=False) 

3920 tr.set_ydata(num.fft.irfft(spectrum)[:ndata]) 

3921 return tr 

3922 

3923 

3924def check_alignment(t1, t2): 

3925 if abs(t1.tmin-t2.tmin) > t1.deltat * 1e-4 or \ 

3926 abs(t1.tmax - t2.tmax) > t1.deltat * 1e-4 or \ 

3927 t1.ydata.shape != t2.ydata.shape: 

3928 raise MisalignedTraces( 

3929 'Cannot calculate misfit of %s and %s due to misaligned ' 

3930 'traces.' % ('.'.join(t1.nslc_id), '.'.join(t2.nslc_id)))