1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

""" 

A module providing some utility functions regarding bezier path manipulation. 

""" 

 

import warnings 

 

import numpy as np 

from matplotlib.path import Path 

 

 

class NonIntersectingPathException(ValueError): 

pass 

 

# some functions 

 

 

def get_intersection(cx1, cy1, cos_t1, sin_t1, 

cx2, cy2, cos_t2, sin_t2): 

""" return a intersecting point between a line through (cx1, cy1) 

and having angle t1 and a line through (cx2, cy2) and angle t2. 

""" 

 

# line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0. 

# line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1 

 

line1_rhs = sin_t1 * cx1 - cos_t1 * cy1 

line2_rhs = sin_t2 * cx2 - cos_t2 * cy2 

 

# rhs matrix 

a, b = sin_t1, -cos_t1 

c, d = sin_t2, -cos_t2 

 

ad_bc = a * d - b * c 

if np.abs(ad_bc) < 1.0e-12: 

raise ValueError("Given lines do not intersect. Please verify that " 

"the angles are not equal or differ by 180 degrees.") 

 

# rhs_inverse 

a_, b_ = d, -b 

c_, d_ = -c, a 

a_, b_, c_, d_ = [k / ad_bc for k in [a_, b_, c_, d_]] 

 

x = a_ * line1_rhs + b_ * line2_rhs 

y = c_ * line1_rhs + d_ * line2_rhs 

 

return x, y 

 

 

def get_normal_points(cx, cy, cos_t, sin_t, length): 

""" 

For a line passing through (*cx*, *cy*) and having a angle *t*, return 

locations of the two points located along its perpendicular line at the 

distance of *length*. 

""" 

 

if length == 0.: 

return cx, cy, cx, cy 

 

cos_t1, sin_t1 = sin_t, -cos_t 

cos_t2, sin_t2 = -sin_t, cos_t 

 

x1, y1 = length * cos_t1 + cx, length * sin_t1 + cy 

x2, y2 = length * cos_t2 + cx, length * sin_t2 + cy 

 

return x1, y1, x2, y2 

 

 

# BEZIER routines 

 

# subdividing bezier curve 

# http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html 

 

 

def _de_casteljau1(beta, t): 

next_beta = beta[:-1] * (1 - t) + beta[1:] * t 

return next_beta 

 

 

def split_de_casteljau(beta, t): 

"""split a bezier segment defined by its controlpoints *beta* 

into two separate segment divided at *t* and return their control points. 

 

""" 

beta = np.asarray(beta) 

beta_list = [beta] 

while True: 

beta = _de_casteljau1(beta, t) 

beta_list.append(beta) 

if len(beta) == 1: 

break 

left_beta = [beta[0] for beta in beta_list] 

right_beta = [beta[-1] for beta in reversed(beta_list)] 

 

return left_beta, right_beta 

 

 

# FIXME spelling mistake in the name of the parameter ``tolerence`` 

def find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, 

inside_closedpath, 

t0=0., t1=1., tolerence=0.01): 

""" Find a parameter t0 and t1 of the given bezier path which 

bounds the intersecting points with a provided closed 

path(*inside_closedpath*). Search starts from *t0* and *t1* and it 

uses a simple bisecting algorithm therefore one of the end point 

must be inside the path while the orther doesn't. The search stop 

when |t0-t1| gets smaller than the given tolerence. 

value for 

 

- bezier_point_at_t : a function which returns x, y coordinates at *t* 

 

- inside_closedpath : return True if the point is inside the path 

 

""" 

# inside_closedpath : function 

 

start = bezier_point_at_t(t0) 

end = bezier_point_at_t(t1) 

 

start_inside = inside_closedpath(start) 

end_inside = inside_closedpath(end) 

 

if start_inside == end_inside and start != end: 

raise NonIntersectingPathException( 

"Both points are on the same side of the closed path") 

 

while True: 

 

# return if the distance is smaller than the tolerence 

if np.hypot(start[0] - end[0], start[1] - end[1]) < tolerence: 

return t0, t1 

 

# calculate the middle point 

middle_t = 0.5 * (t0 + t1) 

middle = bezier_point_at_t(middle_t) 

middle_inside = inside_closedpath(middle) 

 

if start_inside ^ middle_inside: 

t1 = middle_t 

end = middle 

end_inside = middle_inside 

else: 

t0 = middle_t 

start = middle 

start_inside = middle_inside 

 

 

class BezierSegment(object): 

""" 

A simple class of a 2-dimensional bezier segment 

""" 

 

# Higher order bezier lines can be supported by simplying adding 

# corresponding values. 

_binom_coeff = {1: np.array([1., 1.]), 

2: np.array([1., 2., 1.]), 

3: np.array([1., 3., 3., 1.])} 

 

def __init__(self, control_points): 

""" 

*control_points* : location of contol points. It needs have a 

shpae of n * 2, where n is the order of the bezier line. 1<= 

n <= 3 is supported. 

""" 

_o = len(control_points) 

self._orders = np.arange(_o) 

 

_coeff = BezierSegment._binom_coeff[_o - 1] 

xx, yy = np.asarray(control_points).T 

self._px = xx * _coeff 

self._py = yy * _coeff 

 

def point_at_t(self, t): 

"evaluate a point at t" 

tt = ((1 - t) ** self._orders)[::-1] * t ** self._orders 

_x = np.dot(tt, self._px) 

_y = np.dot(tt, self._py) 

return _x, _y 

 

 

def split_bezier_intersecting_with_closedpath(bezier, 

inside_closedpath, 

tolerence=0.01): 

 

""" 

bezier : control points of the bezier segment 

inside_closedpath : a function which returns true if the point is inside 

the path 

""" 

 

bz = BezierSegment(bezier) 

bezier_point_at_t = bz.point_at_t 

 

t0, t1 = find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, 

inside_closedpath, 

tolerence=tolerence) 

 

_left, _right = split_de_casteljau(bezier, (t0 + t1) / 2.) 

return _left, _right 

 

 

def find_r_to_boundary_of_closedpath(inside_closedpath, xy, 

cos_t, sin_t, 

rmin=0., rmax=1., tolerence=0.01): 

""" 

Find a radius r (centered at *xy*) between *rmin* and *rmax* at 

which it intersect with the path. 

 

inside_closedpath : function 

cx, cy : center 

cos_t, sin_t : cosine and sine for the angle 

rmin, rmax : 

""" 

 

cx, cy = xy 

 

def _f(r): 

return cos_t * r + cx, sin_t * r + cy 

 

find_bezier_t_intersecting_with_closedpath(_f, inside_closedpath, 

t0=rmin, t1=rmax, 

tolerence=tolerence) 

 

# matplotlib specific 

 

 

def split_path_inout(path, inside, tolerence=0.01, reorder_inout=False): 

""" divide a path into two segment at the point where inside(x, y) 

becomes False. 

""" 

 

path_iter = path.iter_segments() 

 

ctl_points, command = next(path_iter) 

begin_inside = inside(ctl_points[-2:]) # true if begin point is inside 

 

ctl_points_old = ctl_points 

 

concat = np.concatenate 

 

iold = 0 

i = 1 

 

for ctl_points, command in path_iter: 

iold = i 

i += len(ctl_points) // 2 

if inside(ctl_points[-2:]) != begin_inside: 

bezier_path = concat([ctl_points_old[-2:], ctl_points]) 

break 

ctl_points_old = ctl_points 

else: 

raise ValueError("The path does not intersect with the patch") 

 

bp = bezier_path.reshape((-1, 2)) 

left, right = split_bezier_intersecting_with_closedpath( 

bp, inside, tolerence) 

if len(left) == 2: 

codes_left = [Path.LINETO] 

codes_right = [Path.MOVETO, Path.LINETO] 

elif len(left) == 3: 

codes_left = [Path.CURVE3, Path.CURVE3] 

codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3] 

elif len(left) == 4: 

codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4] 

codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] 

else: 

raise AssertionError("This should never be reached") 

 

verts_left = left[1:] 

verts_right = right[:] 

 

if path.codes is None: 

path_in = Path(concat([path.vertices[:i], verts_left])) 

path_out = Path(concat([verts_right, path.vertices[i:]])) 

 

else: 

path_in = Path(concat([path.vertices[:iold], verts_left]), 

concat([path.codes[:iold], codes_left])) 

 

path_out = Path(concat([verts_right, path.vertices[i:]]), 

concat([codes_right, path.codes[i:]])) 

 

if reorder_inout and begin_inside is False: 

path_in, path_out = path_out, path_in 

 

return path_in, path_out 

 

 

def inside_circle(cx, cy, r): 

r2 = r ** 2 

 

def _f(xy): 

x, y = xy 

return (x - cx) ** 2 + (y - cy) ** 2 < r2 

return _f 

 

 

# quadratic bezier lines 

 

def get_cos_sin(x0, y0, x1, y1): 

dx, dy = x1 - x0, y1 - y0 

d = (dx * dx + dy * dy) ** .5 

# Account for divide by zero 

if d == 0: 

return 0.0, 0.0 

return dx / d, dy / d 

 

 

def check_if_parallel(dx1, dy1, dx2, dy2, tolerence=1.e-5): 

""" returns 

* 1 if two lines are parralel in same direction 

* -1 if two lines are parralel in opposite direction 

* 0 otherwise 

""" 

theta1 = np.arctan2(dx1, dy1) 

theta2 = np.arctan2(dx2, dy2) 

dtheta = np.abs(theta1 - theta2) 

if dtheta < tolerence: 

return 1 

elif np.abs(dtheta - np.pi) < tolerence: 

return -1 

else: 

return False 

 

 

def get_parallels(bezier2, width): 

""" 

Given the quadratic bezier control points *bezier2*, returns 

control points of quadratic bezier lines roughly parallel to given 

one separated by *width*. 

""" 

 

# The parallel bezier lines are constructed by following ways. 

# c1 and c2 are control points representing the begin and end of the 

# bezier line. 

# cm is the middle point 

 

c1x, c1y = bezier2[0] 

cmx, cmy = bezier2[1] 

c2x, c2y = bezier2[2] 

 

parallel_test = check_if_parallel(c1x - cmx, c1y - cmy, 

cmx - c2x, cmy - c2y) 

 

if parallel_test == -1: 

warnings.warn( 

"Lines do not intersect. A straight line is used instead.") 

cos_t1, sin_t1 = get_cos_sin(c1x, c1y, c2x, c2y) 

cos_t2, sin_t2 = cos_t1, sin_t1 

else: 

# t1 and t2 is the angle between c1 and cm, cm, c2. They are 

# also a angle of the tangential line of the path at c1 and c2 

cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) 

cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y) 

 

# find c1_left, c1_right which are located along the lines 

# through c1 and perpendicular to the tangential lines of the 

# bezier path at a distance of width. Same thing for c2_left and 

# c2_right with respect to c2. 

c1x_left, c1y_left, c1x_right, c1y_right = ( 

get_normal_points(c1x, c1y, cos_t1, sin_t1, width) 

) 

c2x_left, c2y_left, c2x_right, c2y_right = ( 

get_normal_points(c2x, c2y, cos_t2, sin_t2, width) 

) 

 

# find cm_left which is the intersectng point of a line through 

# c1_left with angle t1 and a line through c2_left with angle 

# t2. Same with cm_right. 

if parallel_test != 0: 

# a special case for a straight line, i.e., angle between two 

# lines are smaller than some (arbitrtay) value. 

cmx_left, cmy_left = ( 

0.5 * (c1x_left + c2x_left), 0.5 * (c1y_left + c2y_left) 

) 

cmx_right, cmy_right = ( 

0.5 * (c1x_right + c2x_right), 0.5 * (c1y_right + c2y_right) 

) 

else: 

cmx_left, cmy_left = get_intersection(c1x_left, c1y_left, cos_t1, 

sin_t1, c2x_left, c2y_left, 

cos_t2, sin_t2) 

 

cmx_right, cmy_right = get_intersection(c1x_right, c1y_right, cos_t1, 

sin_t1, c2x_right, c2y_right, 

cos_t2, sin_t2) 

 

# the parallel bezier lines are created with control points of 

# [c1_left, cm_left, c2_left] and [c1_right, cm_right, c2_right] 

path_left = [(c1x_left, c1y_left), 

(cmx_left, cmy_left), 

(c2x_left, c2y_left)] 

path_right = [(c1x_right, c1y_right), 

(cmx_right, cmy_right), 

(c2x_right, c2y_right)] 

 

return path_left, path_right 

 

 

def find_control_points(c1x, c1y, mmx, mmy, c2x, c2y): 

""" Find control points of the bezier line through c1, mm, c2. We 

simply assume that c1, mm, c2 which have parametric value 0, 0.5, and 1. 

""" 

 

cmx = .5 * (4 * mmx - (c1x + c2x)) 

cmy = .5 * (4 * mmy - (c1y + c2y)) 

 

return [(c1x, c1y), (cmx, cmy), (c2x, c2y)] 

 

 

def make_wedged_bezier2(bezier2, width, w1=1., wm=0.5, w2=0.): 

""" 

Being similar to get_parallels, returns control points of two quadrativ 

bezier lines having a width roughly parallel to given one separated by 

*width*. 

""" 

 

# c1, cm, c2 

c1x, c1y = bezier2[0] 

cmx, cmy = bezier2[1] 

c3x, c3y = bezier2[2] 

 

# t1 and t2 is the angle between c1 and cm, cm, c3. 

# They are also a angle of the tangential line of the path at c1 and c3 

cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) 

cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y) 

 

# find c1_left, c1_right which are located along the lines 

# through c1 and perpendicular to the tangential lines of the 

# bezier path at a distance of width. Same thing for c3_left and 

# c3_right with respect to c3. 

c1x_left, c1y_left, c1x_right, c1y_right = ( 

get_normal_points(c1x, c1y, cos_t1, sin_t1, width * w1) 

) 

c3x_left, c3y_left, c3x_right, c3y_right = ( 

get_normal_points(c3x, c3y, cos_t2, sin_t2, width * w2) 

) 

 

# find c12, c23 and c123 which are middle points of c1-cm, cm-c3 and 

# c12-c23 

c12x, c12y = (c1x + cmx) * .5, (c1y + cmy) * .5 

c23x, c23y = (cmx + c3x) * .5, (cmy + c3y) * .5 

c123x, c123y = (c12x + c23x) * .5, (c12y + c23y) * .5 

 

# tangential angle of c123 (angle between c12 and c23) 

cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y) 

 

c123x_left, c123y_left, c123x_right, c123y_right = ( 

get_normal_points(c123x, c123y, cos_t123, sin_t123, width * wm) 

) 

 

path_left = find_control_points(c1x_left, c1y_left, 

c123x_left, c123y_left, 

c3x_left, c3y_left) 

path_right = find_control_points(c1x_right, c1y_right, 

c123x_right, c123y_right, 

c3x_right, c3y_right) 

 

return path_left, path_right 

 

 

def make_path_regular(p): 

""" 

fill in the codes if None. 

""" 

c = p.codes 

if c is None: 

c = np.empty(p.vertices.shape[:1], "i") 

c.fill(Path.LINETO) 

c[0] = Path.MOVETO 

 

return Path(p.vertices, c) 

else: 

return p 

 

 

def concatenate_paths(paths): 

""" 

concatenate list of paths into a single path. 

""" 

 

vertices = [] 

codes = [] 

for p in paths: 

p = make_path_regular(p) 

vertices.append(p.vertices) 

codes.append(p.codes) 

 

_path = Path(np.concatenate(vertices), 

np.concatenate(codes)) 

return _path