""" A module providing some utility functions regarding bezier path manipulation. """
# some functions
cx2, cy2, cos_t2, sin_t2): """ return a intersecting point between a line through (cx1, cy1) and having angle t1 and a line through (cx2, cy2) and angle t2. """
# line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0. # line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1
line1_rhs = sin_t1 * cx1 - cos_t1 * cy1 line2_rhs = sin_t2 * cx2 - cos_t2 * cy2
# rhs matrix a, b = sin_t1, -cos_t1 c, d = sin_t2, -cos_t2
ad_bc = a * d - b * c if np.abs(ad_bc) < 1.0e-12: raise ValueError("Given lines do not intersect. Please verify that " "the angles are not equal or differ by 180 degrees.")
# rhs_inverse a_, b_ = d, -b c_, d_ = -c, a a_, b_, c_, d_ = [k / ad_bc for k in [a_, b_, c_, d_]]
x = a_ * line1_rhs + b_ * line2_rhs y = c_ * line1_rhs + d_ * line2_rhs
return x, y
""" For a line passing through (*cx*, *cy*) and having a angle *t*, return locations of the two points located along its perpendicular line at the distance of *length*. """
if length == 0.: return cx, cy, cx, cy
cos_t1, sin_t1 = sin_t, -cos_t cos_t2, sin_t2 = -sin_t, cos_t
x1, y1 = length * cos_t1 + cx, length * sin_t1 + cy x2, y2 = length * cos_t2 + cx, length * sin_t2 + cy
return x1, y1, x2, y2
# BEZIER routines
# subdividing bezier curve # http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html
next_beta = beta[:-1] * (1 - t) + beta[1:] * t return next_beta
"""split a bezier segment defined by its controlpoints *beta* into two separate segment divided at *t* and return their control points.
""" beta = np.asarray(beta) beta_list = [beta] while True: beta = _de_casteljau1(beta, t) beta_list.append(beta) if len(beta) == 1: break left_beta = [beta[0] for beta in beta_list] right_beta = [beta[-1] for beta in reversed(beta_list)]
return left_beta, right_beta
# FIXME spelling mistake in the name of the parameter ``tolerence`` inside_closedpath, t0=0., t1=1., tolerence=0.01): """ Find a parameter t0 and t1 of the given bezier path which bounds the intersecting points with a provided closed path(*inside_closedpath*). Search starts from *t0* and *t1* and it uses a simple bisecting algorithm therefore one of the end point must be inside the path while the orther doesn't. The search stop when |t0-t1| gets smaller than the given tolerence. value for
- bezier_point_at_t : a function which returns x, y coordinates at *t*
- inside_closedpath : return True if the point is inside the path
""" # inside_closedpath : function
start = bezier_point_at_t(t0) end = bezier_point_at_t(t1)
start_inside = inside_closedpath(start) end_inside = inside_closedpath(end)
if start_inside == end_inside and start != end: raise NonIntersectingPathException( "Both points are on the same side of the closed path")
while True:
# return if the distance is smaller than the tolerence if np.hypot(start[0] - end[0], start[1] - end[1]) < tolerence: return t0, t1
# calculate the middle point middle_t = 0.5 * (t0 + t1) middle = bezier_point_at_t(middle_t) middle_inside = inside_closedpath(middle)
if start_inside ^ middle_inside: t1 = middle_t end = middle end_inside = middle_inside else: t0 = middle_t start = middle start_inside = middle_inside
""" A simple class of a 2-dimensional bezier segment """
# Higher order bezier lines can be supported by simplying adding # corresponding values. 2: np.array([1., 2., 1.]), 3: np.array([1., 3., 3., 1.])}
""" *control_points* : location of contol points. It needs have a shpae of n * 2, where n is the order of the bezier line. 1<= n <= 3 is supported. """ _o = len(control_points) self._orders = np.arange(_o)
_coeff = BezierSegment._binom_coeff[_o - 1] xx, yy = np.asarray(control_points).T self._px = xx * _coeff self._py = yy * _coeff
"evaluate a point at t" tt = ((1 - t) ** self._orders)[::-1] * t ** self._orders _x = np.dot(tt, self._px) _y = np.dot(tt, self._py) return _x, _y
inside_closedpath, tolerence=0.01):
""" bezier : control points of the bezier segment inside_closedpath : a function which returns true if the point is inside the path """
bz = BezierSegment(bezier) bezier_point_at_t = bz.point_at_t
t0, t1 = find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, inside_closedpath, tolerence=tolerence)
_left, _right = split_de_casteljau(bezier, (t0 + t1) / 2.) return _left, _right
cos_t, sin_t, rmin=0., rmax=1., tolerence=0.01): """ Find a radius r (centered at *xy*) between *rmin* and *rmax* at which it intersect with the path.
inside_closedpath : function cx, cy : center cos_t, sin_t : cosine and sine for the angle rmin, rmax : """
cx, cy = xy
def _f(r): return cos_t * r + cx, sin_t * r + cy
find_bezier_t_intersecting_with_closedpath(_f, inside_closedpath, t0=rmin, t1=rmax, tolerence=tolerence)
# matplotlib specific
""" divide a path into two segment at the point where inside(x, y) becomes False. """
path_iter = path.iter_segments()
ctl_points, command = next(path_iter) begin_inside = inside(ctl_points[-2:]) # true if begin point is inside
ctl_points_old = ctl_points
concat = np.concatenate
iold = 0 i = 1
for ctl_points, command in path_iter: iold = i i += len(ctl_points) // 2 if inside(ctl_points[-2:]) != begin_inside: bezier_path = concat([ctl_points_old[-2:], ctl_points]) break ctl_points_old = ctl_points else: raise ValueError("The path does not intersect with the patch")
bp = bezier_path.reshape((-1, 2)) left, right = split_bezier_intersecting_with_closedpath( bp, inside, tolerence) if len(left) == 2: codes_left = [Path.LINETO] codes_right = [Path.MOVETO, Path.LINETO] elif len(left) == 3: codes_left = [Path.CURVE3, Path.CURVE3] codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3] elif len(left) == 4: codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4] codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] else: raise AssertionError("This should never be reached")
verts_left = left[1:] verts_right = right[:]
if path.codes is None: path_in = Path(concat([path.vertices[:i], verts_left])) path_out = Path(concat([verts_right, path.vertices[i:]]))
else: path_in = Path(concat([path.vertices[:iold], verts_left]), concat([path.codes[:iold], codes_left]))
path_out = Path(concat([verts_right, path.vertices[i:]]), concat([codes_right, path.codes[i:]]))
if reorder_inout and begin_inside is False: path_in, path_out = path_out, path_in
return path_in, path_out
r2 = r ** 2
def _f(xy): x, y = xy return (x - cx) ** 2 + (y - cy) ** 2 < r2 return _f
# quadratic bezier lines
dx, dy = x1 - x0, y1 - y0 d = (dx * dx + dy * dy) ** .5 # Account for divide by zero if d == 0: return 0.0, 0.0 return dx / d, dy / d
""" returns * 1 if two lines are parralel in same direction * -1 if two lines are parralel in opposite direction * 0 otherwise """ theta1 = np.arctan2(dx1, dy1) theta2 = np.arctan2(dx2, dy2) dtheta = np.abs(theta1 - theta2) if dtheta < tolerence: return 1 elif np.abs(dtheta - np.pi) < tolerence: return -1 else: return False
""" Given the quadratic bezier control points *bezier2*, returns control points of quadratic bezier lines roughly parallel to given one separated by *width*. """
# The parallel bezier lines are constructed by following ways. # c1 and c2 are control points representing the begin and end of the # bezier line. # cm is the middle point
c1x, c1y = bezier2[0] cmx, cmy = bezier2[1] c2x, c2y = bezier2[2]
parallel_test = check_if_parallel(c1x - cmx, c1y - cmy, cmx - c2x, cmy - c2y)
if parallel_test == -1: warnings.warn( "Lines do not intersect. A straight line is used instead.") cos_t1, sin_t1 = get_cos_sin(c1x, c1y, c2x, c2y) cos_t2, sin_t2 = cos_t1, sin_t1 else: # t1 and t2 is the angle between c1 and cm, cm, c2. They are # also a angle of the tangential line of the path at c1 and c2 cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y)
# find c1_left, c1_right which are located along the lines # through c1 and perpendicular to the tangential lines of the # bezier path at a distance of width. Same thing for c2_left and # c2_right with respect to c2. c1x_left, c1y_left, c1x_right, c1y_right = ( get_normal_points(c1x, c1y, cos_t1, sin_t1, width) ) c2x_left, c2y_left, c2x_right, c2y_right = ( get_normal_points(c2x, c2y, cos_t2, sin_t2, width) )
# find cm_left which is the intersectng point of a line through # c1_left with angle t1 and a line through c2_left with angle # t2. Same with cm_right. if parallel_test != 0: # a special case for a straight line, i.e., angle between two # lines are smaller than some (arbitrtay) value. cmx_left, cmy_left = ( 0.5 * (c1x_left + c2x_left), 0.5 * (c1y_left + c2y_left) ) cmx_right, cmy_right = ( 0.5 * (c1x_right + c2x_right), 0.5 * (c1y_right + c2y_right) ) else: cmx_left, cmy_left = get_intersection(c1x_left, c1y_left, cos_t1, sin_t1, c2x_left, c2y_left, cos_t2, sin_t2)
cmx_right, cmy_right = get_intersection(c1x_right, c1y_right, cos_t1, sin_t1, c2x_right, c2y_right, cos_t2, sin_t2)
# the parallel bezier lines are created with control points of # [c1_left, cm_left, c2_left] and [c1_right, cm_right, c2_right] path_left = [(c1x_left, c1y_left), (cmx_left, cmy_left), (c2x_left, c2y_left)] path_right = [(c1x_right, c1y_right), (cmx_right, cmy_right), (c2x_right, c2y_right)]
return path_left, path_right
""" Find control points of the bezier line through c1, mm, c2. We simply assume that c1, mm, c2 which have parametric value 0, 0.5, and 1. """
cmx = .5 * (4 * mmx - (c1x + c2x)) cmy = .5 * (4 * mmy - (c1y + c2y))
return [(c1x, c1y), (cmx, cmy), (c2x, c2y)]
""" Being similar to get_parallels, returns control points of two quadrativ bezier lines having a width roughly parallel to given one separated by *width*. """
# c1, cm, c2 c1x, c1y = bezier2[0] cmx, cmy = bezier2[1] c3x, c3y = bezier2[2]
# t1 and t2 is the angle between c1 and cm, cm, c3. # They are also a angle of the tangential line of the path at c1 and c3 cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y)
# find c1_left, c1_right which are located along the lines # through c1 and perpendicular to the tangential lines of the # bezier path at a distance of width. Same thing for c3_left and # c3_right with respect to c3. c1x_left, c1y_left, c1x_right, c1y_right = ( get_normal_points(c1x, c1y, cos_t1, sin_t1, width * w1) ) c3x_left, c3y_left, c3x_right, c3y_right = ( get_normal_points(c3x, c3y, cos_t2, sin_t2, width * w2) )
# find c12, c23 and c123 which are middle points of c1-cm, cm-c3 and # c12-c23 c12x, c12y = (c1x + cmx) * .5, (c1y + cmy) * .5 c23x, c23y = (cmx + c3x) * .5, (cmy + c3y) * .5 c123x, c123y = (c12x + c23x) * .5, (c12y + c23y) * .5
# tangential angle of c123 (angle between c12 and c23) cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y)
c123x_left, c123y_left, c123x_right, c123y_right = ( get_normal_points(c123x, c123y, cos_t123, sin_t123, width * wm) )
path_left = find_control_points(c1x_left, c1y_left, c123x_left, c123y_left, c3x_left, c3y_left) path_right = find_control_points(c1x_right, c1y_right, c123x_right, c123y_right, c3x_right, c3y_right)
return path_left, path_right
""" fill in the codes if None. """ c = p.codes if c is None: c = np.empty(p.vertices.shape[:1], "i") c.fill(Path.LINETO) c[0] = Path.MOVETO
return Path(p.vertices, c) else: return p
""" concatenate list of paths into a single path. """
vertices = [] codes = [] for p in paths: p = make_path_regular(p) vertices.append(p.vertices) codes.append(p.codes)
_path = Path(np.concatenate(vertices), np.concatenate(codes)) return _path |