1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

""" 

A collection of utility functions and classes. Originally, many 

(but not all) were from the Python Cookbook -- hence the name cbook. 

 

This module is safe to import from anywhere within matplotlib; 

it imports matplotlib only at runtime. 

""" 

 

import collections 

import collections.abc 

import contextlib 

import datetime 

import errno 

import functools 

import glob 

import gzip 

import io 

import itertools 

import locale 

import numbers 

import operator 

import os 

from pathlib import Path 

import re 

import sys 

import time 

import traceback 

import types 

import warnings 

import weakref 

from weakref import WeakMethod 

 

import numpy as np 

 

import matplotlib 

from .deprecation import ( 

mplDeprecation, deprecated, warn_deprecated, MatplotlibDeprecationWarning) 

 

 

@deprecated("3.0") 

def unicode_safe(s): 

 

if isinstance(s, bytes): 

try: 

# On some systems, locale.getpreferredencoding returns None, 

# which can break unicode; and the sage project reports that 

# some systems have incorrect locale specifications, e.g., 

# an encoding instead of a valid locale name. Another 

# pathological case that has been reported is an empty string. 

# On some systems, getpreferredencoding sets the locale, which has 

# side effects. Passing False eliminates those side effects. 

preferredencoding = locale.getpreferredencoding( 

matplotlib.rcParams['axes.formatter.use_locale']).strip() 

if not preferredencoding: 

preferredencoding = None 

except (ValueError, ImportError, AttributeError): 

preferredencoding = None 

 

if preferredencoding is None: 

return str(s) 

else: 

return str(s, preferredencoding) 

return s 

 

 

def _exception_printer(exc): 

traceback.print_exc() 

 

 

class _StrongRef: 

""" 

Wrapper similar to a weakref, but keeping a strong reference to the object. 

""" 

 

def __init__(self, obj): 

self._obj = obj 

 

def __call__(self): 

return self._obj 

 

def __eq__(self, other): 

return isinstance(other, _StrongRef) and self._obj == other._obj 

 

def __hash__(self): 

return hash(self._obj) 

 

 

class CallbackRegistry(object): 

"""Handle registering and disconnecting for a set of signals and callbacks: 

 

>>> def oneat(x): 

... print('eat', x) 

>>> def ondrink(x): 

... print('drink', x) 

 

>>> from matplotlib.cbook import CallbackRegistry 

>>> callbacks = CallbackRegistry() 

 

>>> id_eat = callbacks.connect('eat', oneat) 

>>> id_drink = callbacks.connect('drink', ondrink) 

 

>>> callbacks.process('drink', 123) 

drink 123 

>>> callbacks.process('eat', 456) 

eat 456 

>>> callbacks.process('be merry', 456) # nothing will be called 

>>> callbacks.disconnect(id_eat) 

>>> callbacks.process('eat', 456) # nothing will be called 

 

In practice, one should always disconnect all callbacks when they are 

no longer needed to avoid dangling references (and thus memory leaks). 

However, real code in Matplotlib rarely does so, and due to its design, 

it is rather difficult to place this kind of code. To get around this, 

and prevent this class of memory leaks, we instead store weak references 

to bound methods only, so when the destination object needs to die, the 

CallbackRegistry won't keep it alive. 

 

Parameters 

---------- 

exception_handler : callable, optional 

If provided must have signature :: 

 

def handler(exc: Exception) -> None: 

 

If not None this function will be called with any `Exception` 

subclass raised by the callbacks in `CallbackRegistry.process`. 

The handler may either consume the exception or re-raise. 

 

The callable must be pickle-able. 

 

The default handler is :: 

 

def h(exc): 

traceback.print_exc() 

""" 

 

# We maintain two mappings: 

# callbacks: signal -> {cid -> callback} 

# _func_cid_map: signal -> {callback -> cid} 

# (actually, callbacks are weakrefs to the actual callbacks). 

 

def __init__(self, exception_handler=_exception_printer): 

self.exception_handler = exception_handler 

self.callbacks = {} 

self._cid_gen = itertools.count() 

self._func_cid_map = {} 

 

# In general, callbacks may not be pickled; thus, we simply recreate an 

# empty dictionary at unpickling. In order to ensure that `__setstate__` 

# (which just defers to `__init__`) is called, `__getstate__` must 

# return a truthy value (for pickle protocol>=3, i.e. Py3, the 

# *actual* behavior is that `__setstate__` will be called as long as 

# `__getstate__` does not return `None`, but this is undocumented -- see 

# http://bugs.python.org/issue12290). 

 

def __getstate__(self): 

return {'exception_handler': self.exception_handler} 

 

def __setstate__(self, state): 

self.__init__(**state) 

 

def connect(self, s, func): 

"""Register *func* to be called when signal *s* is generated. 

""" 

self._func_cid_map.setdefault(s, {}) 

try: 

proxy = WeakMethod(func, self._remove_proxy) 

except TypeError: 

proxy = _StrongRef(func) 

if proxy in self._func_cid_map[s]: 

return self._func_cid_map[s][proxy] 

 

cid = next(self._cid_gen) 

self._func_cid_map[s][proxy] = cid 

self.callbacks.setdefault(s, {}) 

self.callbacks[s][cid] = proxy 

return cid 

 

def _remove_proxy(self, proxy): 

for signal, proxies in list(self._func_cid_map.items()): 

try: 

del self.callbacks[signal][proxies[proxy]] 

except KeyError: 

pass 

if len(self.callbacks[signal]) == 0: 

del self.callbacks[signal] 

del self._func_cid_map[signal] 

 

def disconnect(self, cid): 

"""Disconnect the callback registered with callback id *cid*. 

""" 

for eventname, callbackd in list(self.callbacks.items()): 

try: 

del callbackd[cid] 

except KeyError: 

continue 

else: 

for signal, functions in list(self._func_cid_map.items()): 

for function, value in list(functions.items()): 

if value == cid: 

del functions[function] 

return 

 

def process(self, s, *args, **kwargs): 

""" 

Process signal *s*. 

 

All of the functions registered to receive callbacks on *s* will be 

called with ``*args`` and ``**kwargs``. 

""" 

for cid, ref in list(self.callbacks.get(s, {}).items()): 

func = ref() 

if func is not None: 

try: 

func(*args, **kwargs) 

# this does not capture KeyboardInterrupt, SystemExit, 

# and GeneratorExit 

except Exception as exc: 

if self.exception_handler is not None: 

self.exception_handler(exc) 

else: 

raise 

 

 

class silent_list(list): 

""" 

override repr when returning a list of matplotlib artists to 

prevent long, meaningless output. This is meant to be used for a 

homogeneous list of a given type 

""" 

def __init__(self, type, seq=None): 

self.type = type 

if seq is not None: 

self.extend(seq) 

 

def __repr__(self): 

return '<a list of %d %s objects>' % (len(self), self.type) 

 

__str__ = __repr__ 

 

def __getstate__(self): 

# store a dictionary of this SilentList's state 

return {'type': self.type, 'seq': self[:]} 

 

def __setstate__(self, state): 

self.type = state['type'] 

self.extend(state['seq']) 

 

 

class IgnoredKeywordWarning(UserWarning): 

""" 

A class for issuing warnings about keyword arguments that will be ignored 

by matplotlib 

""" 

pass 

 

 

def local_over_kwdict(local_var, kwargs, *keys): 

""" 

Enforces the priority of a local variable over potentially conflicting 

argument(s) from a kwargs dict. The following possible output values are 

considered in order of priority: 

 

local_var > kwargs[keys[0]] > ... > kwargs[keys[-1]] 

 

The first of these whose value is not None will be returned. If all are 

None then None will be returned. Each key in keys will be removed from the 

kwargs dict in place. 

 

Parameters 

---------- 

local_var: any object 

The local variable (highest priority) 

 

kwargs: dict 

Dictionary of keyword arguments; modified in place 

 

keys: str(s) 

Name(s) of keyword arguments to process, in descending order of 

priority 

 

Returns 

------- 

out: any object 

Either local_var or one of kwargs[key] for key in keys 

 

Raises 

------ 

IgnoredKeywordWarning 

For each key in keys that is removed from kwargs but not used as 

the output value 

 

""" 

out = local_var 

for key in keys: 

kwarg_val = kwargs.pop(key, None) 

if kwarg_val is not None: 

if out is None: 

out = kwarg_val 

else: 

warnings.warn('"%s" keyword argument will be ignored' % key, 

IgnoredKeywordWarning) 

return out 

 

 

def strip_math(s): 

"""remove latex formatting from mathtext""" 

remove = (r'\mathdefault', r'\rm', r'\cal', r'\tt', r'\it', '\\', '{', '}') 

s = s[1:-1] 

for r in remove: 

s = s.replace(r, '') 

return s 

 

 

@deprecated('3.0', alternative='types.SimpleNamespace') 

class Bunch(types.SimpleNamespace): 

""" 

Often we want to just collect a bunch of stuff together, naming each 

item of the bunch; a dictionary's OK for that, but a small do- nothing 

class is even handier, and prettier to use. Whenever you want to 

group a few variables:: 

 

>>> point = Bunch(datum=2, squared=4, coord=12) 

>>> point.datum 

""" 

pass 

 

 

def iterable(obj): 

"""return true if *obj* is iterable""" 

try: 

iter(obj) 

except TypeError: 

return False 

return True 

 

 

def is_hashable(obj): 

"""Returns true if *obj* can be hashed""" 

try: 

hash(obj) 

except TypeError: 

return False 

return True 

 

 

def is_writable_file_like(obj): 

"""return true if *obj* looks like a file object with a *write* method""" 

return callable(getattr(obj, 'write', None)) 

 

 

def file_requires_unicode(x): 

""" 

Returns `True` if the given writable file-like object requires Unicode 

to be written to it. 

""" 

try: 

x.write(b'') 

except TypeError: 

return True 

else: 

return False 

 

 

@deprecated('3.0', 'isinstance(..., numbers.Number)') 

def is_numlike(obj): 

"""return true if *obj* looks like a number""" 

return isinstance(obj, (numbers.Number, np.number)) 

 

 

def to_filehandle(fname, flag='rU', return_opened=False, encoding=None): 

""" 

*fname* can be an `os.PathLike` or a file handle. Support for gzipped 

files is automatic, if the filename ends in .gz. *flag* is a 

read/write flag for :func:`file` 

""" 

if isinstance(fname, getattr(os, "PathLike", ())): 

fname = os.fspath(fname) 

if isinstance(fname, str): 

if fname.endswith('.gz'): 

# get rid of 'U' in flag for gzipped files. 

flag = flag.replace('U', '') 

fh = gzip.open(fname, flag) 

elif fname.endswith('.bz2'): 

# python may not be complied with bz2 support, 

# bury import until we need it 

import bz2 

# get rid of 'U' in flag for bz2 files 

flag = flag.replace('U', '') 

fh = bz2.BZ2File(fname, flag) 

else: 

fh = open(fname, flag, encoding=encoding) 

opened = True 

elif hasattr(fname, 'seek'): 

fh = fname 

opened = False 

else: 

raise ValueError('fname must be a PathLike or file handle') 

if return_opened: 

return fh, opened 

return fh 

 

 

@contextlib.contextmanager 

def open_file_cm(path_or_file, mode="r", encoding=None): 

r"""Pass through file objects and context-manage `.PathLike`\s.""" 

fh, opened = to_filehandle(path_or_file, mode, True, encoding) 

if opened: 

with fh: 

yield fh 

else: 

yield fh 

 

 

def is_scalar_or_string(val): 

"""Return whether the given object is a scalar or string like.""" 

return isinstance(val, str) or not iterable(val) 

 

 

def _string_to_bool(s): 

"""Parses the string argument as a boolean""" 

if not isinstance(s, str): 

return bool(s) 

warn_deprecated("2.2", "Passing one of 'on', 'true', 'off', 'false' as a " 

"boolean is deprecated; use an actual boolean " 

"(True/False) instead.") 

if s.lower() in ['on', 'true']: 

return True 

if s.lower() in ['off', 'false']: 

return False 

raise ValueError('String "%s" must be one of: ' 

'"on", "off", "true", or "false"' % s) 

 

 

def get_sample_data(fname, asfileobj=True): 

""" 

Return a sample data file. *fname* is a path relative to the 

`mpl-data/sample_data` directory. If *asfileobj* is `True` 

return a file object, otherwise just a file path. 

 

Set the rc parameter examples.directory to the directory where we should 

look, if sample_data files are stored in a location different than 

default (which is 'mpl-data/sample_data` at the same level of 'matplotlib` 

Python module files). 

 

If the filename ends in .gz, the file is implicitly ungzipped. 

""" 

# Don't trigger deprecation warning when just fetching. 

if dict.__getitem__(matplotlib.rcParams, 'examples.directory'): 

root = matplotlib.rcParams['examples.directory'] 

else: 

root = os.path.join(matplotlib._get_data_path(), 'sample_data') 

path = os.path.join(root, fname) 

 

if asfileobj: 

if os.path.splitext(fname)[-1].lower() in ['.csv', '.xrc', '.txt']: 

mode = 'r' 

else: 

mode = 'rb' 

 

base, ext = os.path.splitext(fname) 

if ext == '.gz': 

return gzip.open(path, mode) 

else: 

return open(path, mode) 

else: 

return path 

 

 

def flatten(seq, scalarp=is_scalar_or_string): 

""" 

Returns a generator of flattened nested containers 

 

For example: 

 

>>> from matplotlib.cbook import flatten 

>>> l = (('John', ['Hunter']), (1, 23), [[([42, (5, 23)], )]]) 

>>> print(list(flatten(l))) 

['John', 'Hunter', 1, 23, 42, 5, 23] 

 

By: Composite of Holger Krekel and Luther Blissett 

From: https://code.activestate.com/recipes/121294/ 

and Recipe 1.12 in cookbook 

""" 

for item in seq: 

if scalarp(item) or item is None: 

yield item 

else: 

yield from flatten(item, scalarp) 

 

 

@deprecated("3.0") 

def mkdirs(newdir, mode=0o777): 

""" 

make directory *newdir* recursively, and set *mode*. Equivalent to :: 

 

> mkdir -p NEWDIR 

> chmod MODE NEWDIR 

""" 

# this functionality is now in core python as of 3.2 

# LPY DROP 

os.makedirs(newdir, mode=mode, exist_ok=True) 

 

 

@deprecated('3.0') 

class GetRealpathAndStat(object): 

def __init__(self): 

self._cache = {} 

 

def __call__(self, path): 

result = self._cache.get(path) 

if result is None: 

realpath = os.path.realpath(path) 

if sys.platform == 'win32': 

stat_key = realpath 

else: 

stat = os.stat(realpath) 

stat_key = (stat.st_ino, stat.st_dev) 

result = realpath, stat_key 

self._cache[path] = result 

return result 

 

 

@functools.lru_cache() 

def get_realpath_and_stat(path): 

realpath = os.path.realpath(path) 

stat = os.stat(realpath) 

stat_key = (stat.st_ino, stat.st_dev) 

return realpath, stat_key 

 

 

# A regular expression used to determine the amount of space to 

# remove. It looks for the first sequence of spaces immediately 

# following the first newline, or at the beginning of the string. 

_find_dedent_regex = re.compile(r"(?:(?:\n\r?)|^)( *)\S") 

# A cache to hold the regexs that actually remove the indent. 

_dedent_regex = {} 

 

 

def dedent(s): 

""" 

Remove excess indentation from docstring *s*. 

 

Discards any leading blank lines, then removes up to n whitespace 

characters from each line, where n is the number of leading 

whitespace characters in the first line. It differs from 

textwrap.dedent in its deletion of leading blank lines and its use 

of the first non-blank line to determine the indentation. 

 

It is also faster in most cases. 

""" 

# This implementation has a somewhat obtuse use of regular 

# expressions. However, this function accounted for almost 30% of 

# matplotlib startup time, so it is worthy of optimization at all 

# costs. 

 

if not s: # includes case of s is None 

return '' 

 

match = _find_dedent_regex.match(s) 

if match is None: 

return s 

 

# This is the number of spaces to remove from the left-hand side. 

nshift = match.end(1) - match.start(1) 

if nshift == 0: 

return s 

 

# Get a regex that will remove *up to* nshift spaces from the 

# beginning of each line. If it isn't in the cache, generate it. 

unindent = _dedent_regex.get(nshift, None) 

if unindent is None: 

unindent = re.compile("\n\r? {0,%d}" % nshift) 

_dedent_regex[nshift] = unindent 

 

result = unindent.sub("\n", s).strip() 

return result 

 

 

@deprecated("3.0") 

def listFiles(root, patterns='*', recurse=1, return_folders=0): 

""" 

Recursively list files 

 

from Parmar and Martelli in the Python Cookbook 

""" 

import os.path 

import fnmatch 

# Expand patterns from semicolon-separated string to list 

pattern_list = patterns.split(';') 

results = [] 

 

for dirname, dirs, files in os.walk(root): 

# Append to results all relevant files (and perhaps folders) 

for name in files: 

fullname = os.path.normpath(os.path.join(dirname, name)) 

if return_folders or os.path.isfile(fullname): 

for pattern in pattern_list: 

if fnmatch.fnmatch(name, pattern): 

results.append(fullname) 

break 

# Block recursion if recursion was disallowed 

if not recurse: 

break 

 

return results 

 

 

class maxdict(dict): 

""" 

A dictionary with a maximum size; this doesn't override all the 

relevant methods to constrain the size, just setitem, so use with 

caution 

""" 

def __init__(self, maxsize): 

dict.__init__(self) 

self.maxsize = maxsize 

self._killkeys = [] 

 

def __setitem__(self, k, v): 

if k not in self: 

if len(self) >= self.maxsize: 

del self[self._killkeys[0]] 

del self._killkeys[0] 

self._killkeys.append(k) 

dict.__setitem__(self, k, v) 

 

 

class Stack(object): 

""" 

Stack of elements with a movable cursor. 

 

Mimics home/back/forward in a web browser. 

""" 

 

def __init__(self, default=None): 

self.clear() 

self._default = default 

 

def __call__(self): 

"""Return the current element, or None.""" 

if not len(self._elements): 

return self._default 

else: 

return self._elements[self._pos] 

 

def __len__(self): 

return len(self._elements) 

 

def __getitem__(self, ind): 

return self._elements[ind] 

 

def forward(self): 

"""Move the position forward and return the current element.""" 

self._pos = min(self._pos + 1, len(self._elements) - 1) 

return self() 

 

def back(self): 

"""Move the position back and return the current element.""" 

if self._pos > 0: 

self._pos -= 1 

return self() 

 

def push(self, o): 

""" 

Push *o* to the stack at current position. Discard all later elements. 

 

*o* is returned. 

""" 

self._elements = self._elements[:self._pos + 1] + [o] 

self._pos = len(self._elements) - 1 

return self() 

 

def home(self): 

""" 

Push the first element onto the top of the stack. 

 

The first element is returned. 

""" 

if not len(self._elements): 

return 

self.push(self._elements[0]) 

return self() 

 

def empty(self): 

"""Return whether the stack is empty.""" 

return len(self._elements) == 0 

 

def clear(self): 

"""Empty the stack.""" 

self._pos = -1 

self._elements = [] 

 

def bubble(self, o): 

""" 

Raise *o* to the top of the stack. *o* must be present in the stack. 

 

*o* is returned. 

""" 

if o not in self._elements: 

raise ValueError('Unknown element o') 

old = self._elements[:] 

self.clear() 

bubbles = [] 

for thiso in old: 

if thiso == o: 

bubbles.append(thiso) 

else: 

self.push(thiso) 

for thiso in bubbles: 

self.push(o) 

return o 

 

def remove(self, o): 

"""Remove *o* from the stack.""" 

if o not in self._elements: 

raise ValueError('Unknown element o') 

old = self._elements[:] 

self.clear() 

for thiso in old: 

if thiso != o: 

self.push(thiso) 

 

 

def report_memory(i=0): # argument may go away 

"""return the memory consumed by process""" 

from subprocess import Popen, PIPE 

pid = os.getpid() 

if sys.platform == 'sunos5': 

try: 

a2 = Popen(['ps', '-p', '%d' % pid, '-o', 'osz'], 

stdout=PIPE).stdout.readlines() 

except OSError: 

raise NotImplementedError( 

"report_memory works on Sun OS only if " 

"the 'ps' program is found") 

mem = int(a2[-1].strip()) 

elif sys.platform == 'linux': 

try: 

a2 = Popen(['ps', '-p', '%d' % pid, '-o', 'rss,sz'], 

stdout=PIPE).stdout.readlines() 

except OSError: 

raise NotImplementedError( 

"report_memory works on Linux only if " 

"the 'ps' program is found") 

mem = int(a2[1].split()[1]) 

elif sys.platform == 'darwin': 

try: 

a2 = Popen(['ps', '-p', '%d' % pid, '-o', 'rss,vsz'], 

stdout=PIPE).stdout.readlines() 

except OSError: 

raise NotImplementedError( 

"report_memory works on Mac OS only if " 

"the 'ps' program is found") 

mem = int(a2[1].split()[0]) 

elif sys.platform == 'win32': 

try: 

a2 = Popen(["tasklist", "/nh", "/fi", "pid eq %d" % pid], 

stdout=PIPE).stdout.read() 

except OSError: 

raise NotImplementedError( 

"report_memory works on Windows only if " 

"the 'tasklist' program is found") 

mem = int(a2.strip().split()[-2].replace(',', '')) 

else: 

raise NotImplementedError( 

"We don't have a memory monitor for %s" % sys.platform) 

return mem 

 

 

_safezip_msg = 'In safezip, len(args[0])=%d but len(args[%d])=%d' 

 

 

def safezip(*args): 

"""make sure *args* are equal len before zipping""" 

Nx = len(args[0]) 

for i, arg in enumerate(args[1:]): 

if len(arg) != Nx: 

raise ValueError(_safezip_msg % (Nx, i + 1, len(arg))) 

return list(zip(*args)) 

 

 

def safe_masked_invalid(x, copy=False): 

x = np.array(x, subok=True, copy=copy) 

if not x.dtype.isnative: 

# Note that the argument to `byteswap` is 'inplace', 

# thus if we have already made a copy, do the byteswap in 

# place, else make a copy with the byte order swapped. 

# Be explicit that we are swapping the byte order of the dtype 

x = x.byteswap(copy).newbyteorder('S') 

 

try: 

xm = np.ma.masked_invalid(x, copy=False) 

xm.shrink_mask() 

except TypeError: 

return x 

return xm 

 

 

def print_cycles(objects, outstream=sys.stdout, show_progress=False): 

""" 

*objects* 

A list of objects to find cycles in. It is often useful to 

pass in gc.garbage to find the cycles that are preventing some 

objects from being garbage collected. 

 

*outstream* 

The stream for output. 

 

*show_progress* 

If True, print the number of objects reached as they are found. 

""" 

import gc 

from types import FrameType 

 

def print_path(path): 

for i, step in enumerate(path): 

# next "wraps around" 

next = path[(i + 1) % len(path)] 

 

outstream.write(" %s -- " % type(step)) 

if isinstance(step, dict): 

for key, val in step.items(): 

if val is next: 

outstream.write("[{!r}]".format(key)) 

break 

if key is next: 

outstream.write("[key] = {!r}".format(val)) 

break 

elif isinstance(step, list): 

outstream.write("[%d]" % step.index(next)) 

elif isinstance(step, tuple): 

outstream.write("( tuple )") 

else: 

outstream.write(repr(step)) 

outstream.write(" ->\n") 

outstream.write("\n") 

 

def recurse(obj, start, all, current_path): 

if show_progress: 

outstream.write("%d\r" % len(all)) 

 

all[id(obj)] = None 

 

referents = gc.get_referents(obj) 

for referent in referents: 

# If we've found our way back to the start, this is 

# a cycle, so print it out 

if referent is start: 

print_path(current_path) 

 

# Don't go back through the original list of objects, or 

# through temporary references to the object, since those 

# are just an artifact of the cycle detector itself. 

elif referent is objects or isinstance(referent, FrameType): 

continue 

 

# We haven't seen this object before, so recurse 

elif id(referent) not in all: 

recurse(referent, start, all, current_path + [obj]) 

 

for obj in objects: 

outstream.write("Examining: %r\n" % (obj,)) 

recurse(obj, obj, {}, []) 

 

 

class Grouper(object): 

""" 

This class provides a lightweight way to group arbitrary objects 

together into disjoint sets when a full-blown graph data structure 

would be overkill. 

 

Objects can be joined using :meth:`join`, tested for connectedness 

using :meth:`joined`, and all disjoint sets can be retrieved by 

using the object as an iterator. 

 

The objects being joined must be hashable and weak-referenceable. 

 

For example: 

 

>>> from matplotlib.cbook import Grouper 

>>> class Foo(object): 

... def __init__(self, s): 

... self.s = s 

... def __repr__(self): 

... return self.s 

... 

>>> a, b, c, d, e, f = [Foo(x) for x in 'abcdef'] 

>>> grp = Grouper() 

>>> grp.join(a, b) 

>>> grp.join(b, c) 

>>> grp.join(d, e) 

>>> sorted(map(tuple, grp)) 

[(a, b, c), (d, e)] 

>>> grp.joined(a, b) 

True 

>>> grp.joined(a, c) 

True 

>>> grp.joined(a, d) 

False 

 

""" 

def __init__(self, init=()): 

self._mapping = {weakref.ref(x): [weakref.ref(x)] for x in init} 

 

def __contains__(self, item): 

return weakref.ref(item) in self._mapping 

 

def clean(self): 

"""Clean dead weak references from the dictionary.""" 

mapping = self._mapping 

to_drop = [key for key in mapping if key() is None] 

for key in to_drop: 

val = mapping.pop(key) 

val.remove(key) 

 

def join(self, a, *args): 

""" 

Join given arguments into the same set. Accepts one or more arguments. 

""" 

mapping = self._mapping 

set_a = mapping.setdefault(weakref.ref(a), [weakref.ref(a)]) 

 

for arg in args: 

set_b = mapping.get(weakref.ref(arg), [weakref.ref(arg)]) 

if set_b is not set_a: 

if len(set_b) > len(set_a): 

set_a, set_b = set_b, set_a 

set_a.extend(set_b) 

for elem in set_b: 

mapping[elem] = set_a 

 

self.clean() 

 

def joined(self, a, b): 

"""Returns True if *a* and *b* are members of the same set.""" 

self.clean() 

return (self._mapping.get(weakref.ref(a), object()) 

is self._mapping.get(weakref.ref(b))) 

 

def remove(self, a): 

self.clean() 

set_a = self._mapping.pop(weakref.ref(a), None) 

if set_a: 

set_a.remove(weakref.ref(a)) 

 

def __iter__(self): 

""" 

Iterate over each of the disjoint sets as a list. 

 

The iterator is invalid if interleaved with calls to join(). 

""" 

self.clean() 

unique_groups = {id(group): group for group in self._mapping.values()} 

for group in unique_groups.values(): 

yield [x() for x in group] 

 

def get_siblings(self, a): 

"""Returns all of the items joined with *a*, including itself.""" 

self.clean() 

siblings = self._mapping.get(weakref.ref(a), [weakref.ref(a)]) 

return [x() for x in siblings] 

 

 

def simple_linear_interpolation(a, steps): 

""" 

Resample an array with ``steps - 1`` points between original point pairs. 

 

Parameters 

---------- 

a : array, shape (n, ...) 

steps : int 

 

Returns 

------- 

array, shape ``((n - 1) * steps + 1, ...)`` 

 

Along each column of *a*, ``(steps - 1)`` points are introduced between 

each original values; the values are linearly interpolated. 

""" 

fps = a.reshape((len(a), -1)) 

xp = np.arange(len(a)) * steps 

x = np.arange((len(a) - 1) * steps + 1) 

return (np.column_stack([np.interp(x, xp, fp) for fp in fps.T]) 

.reshape((len(x),) + a.shape[1:])) 

 

 

def delete_masked_points(*args): 

""" 

Find all masked and/or non-finite points in a set of arguments, 

and return the arguments with only the unmasked points remaining. 

 

Arguments can be in any of 5 categories: 

 

1) 1-D masked arrays 

2) 1-D ndarrays 

3) ndarrays with more than one dimension 

4) other non-string iterables 

5) anything else 

 

The first argument must be in one of the first four categories; 

any argument with a length differing from that of the first 

argument (and hence anything in category 5) then will be 

passed through unchanged. 

 

Masks are obtained from all arguments of the correct length 

in categories 1, 2, and 4; a point is bad if masked in a masked 

array or if it is a nan or inf. No attempt is made to 

extract a mask from categories 2, 3, and 4 if :meth:`np.isfinite` 

does not yield a Boolean array. 

 

All input arguments that are not passed unchanged are returned 

as ndarrays after removing the points or rows corresponding to 

masks in any of the arguments. 

 

A vastly simpler version of this function was originally 

written as a helper for Axes.scatter(). 

 

""" 

if not len(args): 

return () 

if is_scalar_or_string(args[0]): 

raise ValueError("First argument must be a sequence") 

nrecs = len(args[0]) 

margs = [] 

seqlist = [False] * len(args) 

for i, x in enumerate(args): 

if not isinstance(x, str) and iterable(x) and len(x) == nrecs: 

seqlist[i] = True 

if isinstance(x, np.ma.MaskedArray): 

if x.ndim > 1: 

raise ValueError("Masked arrays must be 1-D") 

else: 

x = np.asarray(x) 

margs.append(x) 

masks = [] # list of masks that are True where good 

for i, x in enumerate(margs): 

if seqlist[i]: 

if x.ndim > 1: 

continue # Don't try to get nan locations unless 1-D. 

if isinstance(x, np.ma.MaskedArray): 

masks.append(~np.ma.getmaskarray(x)) # invert the mask 

xd = x.data 

else: 

xd = x 

try: 

mask = np.isfinite(xd) 

if isinstance(mask, np.ndarray): 

masks.append(mask) 

except: # Fixme: put in tuple of possible exceptions? 

pass 

if len(masks): 

mask = np.logical_and.reduce(masks) 

igood = mask.nonzero()[0] 

if len(igood) < nrecs: 

for i, x in enumerate(margs): 

if seqlist[i]: 

margs[i] = x.take(igood, axis=0) 

for i, x in enumerate(margs): 

if seqlist[i] and isinstance(x, np.ma.MaskedArray): 

margs[i] = x.filled() 

return margs 

 

 

def boxplot_stats(X, whis=1.5, bootstrap=None, labels=None, 

autorange=False): 

""" 

Returns list of dictionaries of statistics used to draw a series 

of box and whisker plots. The `Returns` section enumerates the 

required keys of the dictionary. Users can skip this function and 

pass a user-defined set of dictionaries to the new `axes.bxp` method 

instead of relying on MPL to do the calculations. 

 

Parameters 

---------- 

X : array-like 

Data that will be represented in the boxplots. Should have 2 or 

fewer dimensions. 

 

whis : float, string, or sequence (default = 1.5) 

As a float, determines the reach of the whiskers to the beyond the 

first and third quartiles. In other words, where IQR is the 

interquartile range (`Q3-Q1`), the upper whisker will extend to last 

datum less than `Q3 + whis*IQR`). Similarly, the lower whisker will 

extend to the first datum greater than `Q1 - whis*IQR`. 

Beyond the whiskers, data are considered outliers 

and are plotted as individual points. This can be set this to an 

ascending sequence of percentile (e.g., [5, 95]) to set the 

whiskers at specific percentiles of the data. Finally, `whis` 

can be the string ``'range'`` to force the whiskers to the 

minimum and maximum of the data. In the edge case that the 25th 

and 75th percentiles are equivalent, `whis` can be automatically 

set to ``'range'`` via the `autorange` option. 

 

bootstrap : int, optional 

Number of times the confidence intervals around the median 

should be bootstrapped (percentile method). 

 

labels : array-like, optional 

Labels for each dataset. Length must be compatible with 

dimensions of `X`. 

 

autorange : bool, optional (False) 

When `True` and the data are distributed such that the 25th and 75th 

percentiles are equal, ``whis`` is set to ``'range'`` such that the 

whisker ends are at the minimum and maximum of the data. 

 

Returns 

------- 

bxpstats : list of dict 

A list of dictionaries containing the results for each column 

of data. Keys of each dictionary are the following: 

 

======== =================================== 

Key Value Description 

======== =================================== 

label tick label for the boxplot 

mean arithemetic mean value 

med 50th percentile 

q1 first quartile (25th percentile) 

q3 third quartile (75th percentile) 

cilo lower notch around the median 

cihi upper notch around the median 

whislo end of the lower whisker 

whishi end of the upper whisker 

fliers outliers 

======== =================================== 

 

Notes 

----- 

Non-bootstrapping approach to confidence interval uses Gaussian- 

based asymptotic approximation: 

 

.. math:: 

 

\\mathrm{med} \\pm 1.57 \\times \\frac{\\mathrm{iqr}}{\\sqrt{N}} 

 

General approach from: 

McGill, R., Tukey, J.W., and Larsen, W.A. (1978) "Variations of 

Boxplots", The American Statistician, 32:12-16. 

 

""" 

 

def _bootstrap_median(data, N=5000): 

# determine 95% confidence intervals of the median 

M = len(data) 

percentiles = [2.5, 97.5] 

 

bs_index = np.random.randint(M, size=(N, M)) 

bsData = data[bs_index] 

estimate = np.median(bsData, axis=1, overwrite_input=True) 

 

CI = np.percentile(estimate, percentiles) 

return CI 

 

def _compute_conf_interval(data, med, iqr, bootstrap): 

if bootstrap is not None: 

# Do a bootstrap estimate of notch locations. 

# get conf. intervals around median 

CI = _bootstrap_median(data, N=bootstrap) 

notch_min = CI[0] 

notch_max = CI[1] 

else: 

 

N = len(data) 

notch_min = med - 1.57 * iqr / np.sqrt(N) 

notch_max = med + 1.57 * iqr / np.sqrt(N) 

 

return notch_min, notch_max 

 

# output is a list of dicts 

bxpstats = [] 

 

# convert X to a list of lists 

X = _reshape_2D(X, "X") 

 

ncols = len(X) 

if labels is None: 

labels = itertools.repeat(None) 

elif len(labels) != ncols: 

raise ValueError("Dimensions of labels and X must be compatible") 

 

input_whis = whis 

for ii, (x, label) in enumerate(zip(X, labels)): 

 

# empty dict 

stats = {} 

if label is not None: 

stats['label'] = label 

 

# restore whis to the input values in case it got changed in the loop 

whis = input_whis 

 

# note tricksyness, append up here and then mutate below 

bxpstats.append(stats) 

 

# if empty, bail 

if len(x) == 0: 

stats['fliers'] = np.array([]) 

stats['mean'] = np.nan 

stats['med'] = np.nan 

stats['q1'] = np.nan 

stats['q3'] = np.nan 

stats['cilo'] = np.nan 

stats['cihi'] = np.nan 

stats['whislo'] = np.nan 

stats['whishi'] = np.nan 

stats['med'] = np.nan 

continue 

 

# up-convert to an array, just to be safe 

x = np.asarray(x) 

 

# arithmetic mean 

stats['mean'] = np.mean(x) 

 

# medians and quartiles 

q1, med, q3 = np.percentile(x, [25, 50, 75]) 

 

# interquartile range 

stats['iqr'] = q3 - q1 

if stats['iqr'] == 0 and autorange: 

whis = 'range' 

 

# conf. interval around median 

stats['cilo'], stats['cihi'] = _compute_conf_interval( 

x, med, stats['iqr'], bootstrap 

) 

 

# lowest/highest non-outliers 

if np.isscalar(whis): 

if np.isreal(whis): 

loval = q1 - whis * stats['iqr'] 

hival = q3 + whis * stats['iqr'] 

elif whis in ['range', 'limit', 'limits', 'min/max']: 

loval = np.min(x) 

hival = np.max(x) 

else: 

raise ValueError('whis must be a float, valid string, or list ' 

'of percentiles') 

else: 

loval = np.percentile(x, whis[0]) 

hival = np.percentile(x, whis[1]) 

 

# get high extreme 

wiskhi = np.compress(x <= hival, x) 

if len(wiskhi) == 0 or np.max(wiskhi) < q3: 

stats['whishi'] = q3 

else: 

stats['whishi'] = np.max(wiskhi) 

 

# get low extreme 

wisklo = np.compress(x >= loval, x) 

if len(wisklo) == 0 or np.min(wisklo) > q1: 

stats['whislo'] = q1 

else: 

stats['whislo'] = np.min(wisklo) 

 

# compute a single array of outliers 

stats['fliers'] = np.hstack([ 

np.compress(x < stats['whislo'], x), 

np.compress(x > stats['whishi'], x) 

]) 

 

# add in the remaining stats 

stats['q1'], stats['med'], stats['q3'] = q1, med, q3 

 

return bxpstats 

 

 

# The ls_mapper maps short codes for line style to their full name used by 

# backends; the reverse mapper is for mapping full names to short ones. 

ls_mapper = {'-': 'solid', '--': 'dashed', '-.': 'dashdot', ':': 'dotted'} 

ls_mapper_r = {v: k for k, v in ls_mapper.items()} 

 

 

@deprecated('2.2') 

def align_iterators(func, *iterables): 

""" 

This generator takes a bunch of iterables that are ordered by func 

It sends out ordered tuples:: 

 

(func(row), [rows from all iterators matching func(row)]) 

 

It is used by :func:`matplotlib.mlab.recs_join` to join record arrays 

""" 

class myiter: 

def __init__(self, it): 

self.it = it 

self.key = self.value = None 

self.iternext() 

 

def iternext(self): 

try: 

self.value = next(self.it) 

self.key = func(self.value) 

except StopIteration: 

self.value = self.key = None 

 

def __call__(self, key): 

retval = None 

if key == self.key: 

retval = self.value 

self.iternext() 

elif self.key and key > self.key: 

raise ValueError("Iterator has been left behind") 

return retval 

 

# This can be made more efficient by not computing the minimum key for each 

# iteration 

iters = [myiter(it) for it in iterables] 

minvals = minkey = True 

while True: 

minvals = ([_f for _f in [it.key for it in iters] if _f]) 

if minvals: 

minkey = min(minvals) 

yield (minkey, [it(minkey) for it in iters]) 

else: 

break 

 

 

def contiguous_regions(mask): 

""" 

Return a list of (ind0, ind1) such that mask[ind0:ind1].all() is 

True and we cover all such regions 

""" 

mask = np.asarray(mask, dtype=bool) 

 

if not mask.size: 

return [] 

 

# Find the indices of region changes, and correct offset 

idx, = np.nonzero(mask[:-1] != mask[1:]) 

idx += 1 

 

# List operations are faster for moderately sized arrays 

idx = idx.tolist() 

 

# Add first and/or last index if needed 

if mask[0]: 

idx = [0] + idx 

if mask[-1]: 

idx.append(len(mask)) 

 

return list(zip(idx[::2], idx[1::2])) 

 

 

def is_math_text(s): 

# Did we find an even number of non-escaped dollar signs? 

# If so, treat is as math text. 

s = str(s) 

dollar_count = s.count(r'$') - s.count(r'\$') 

even_dollars = (dollar_count > 0 and dollar_count % 2 == 0) 

return even_dollars 

 

 

def _to_unmasked_float_array(x): 

""" 

Convert a sequence to a float array; if input was a masked array, masked 

values are converted to nans. 

""" 

if hasattr(x, 'mask'): 

return np.ma.asarray(x, float).filled(np.nan) 

else: 

return np.asarray(x, float) 

 

 

def _check_1d(x): 

''' 

Converts a sequence of less than 1 dimension, to an array of 1 

dimension; leaves everything else untouched. 

''' 

if not hasattr(x, 'shape') or len(x.shape) < 1: 

return np.atleast_1d(x) 

else: 

try: 

x[:, None] 

return x 

except (IndexError, TypeError): 

return np.atleast_1d(x) 

 

 

def _reshape_2D(X, name): 

""" 

Use Fortran ordering to convert ndarrays and lists of iterables to lists of 

1D arrays. 

 

Lists of iterables are converted by applying `np.asarray` to each of their 

elements. 1D ndarrays are returned in a singleton list containing them. 

2D ndarrays are converted to the list of their *columns*. 

 

*name* is used to generate the error message for invalid inputs. 

""" 

# Iterate over columns for ndarrays, over rows otherwise. 

X = np.atleast_1d(X.T if isinstance(X, np.ndarray) else np.asarray(X)) 

if X.ndim == 1 and X.dtype.type != np.object_: 

# 1D array of scalars: directly return it. 

return [X] 

elif X.ndim in [1, 2]: 

# 2D array, or 1D array of iterables: flatten them first. 

return [np.reshape(x, -1) for x in X] 

else: 

raise ValueError("{} must have 2 or fewer dimensions".format(name)) 

 

 

def violin_stats(X, method, points=100): 

""" 

Returns a list of dictionaries of data which can be used to draw a series 

of violin plots. See the `Returns` section below to view the required keys 

of the dictionary. Users can skip this function and pass a user-defined set 

of dictionaries to the `axes.vplot` method instead of using MPL to do the 

calculations. 

 

Parameters 

---------- 

X : array-like 

Sample data that will be used to produce the gaussian kernel density 

estimates. Must have 2 or fewer dimensions. 

 

method : callable 

The method used to calculate the kernel density estimate for each 

column of data. When called via `method(v, coords)`, it should 

return a vector of the values of the KDE evaluated at the values 

specified in coords. 

 

points : scalar, default = 100 

Defines the number of points to evaluate each of the gaussian kernel 

density estimates at. 

 

Returns 

------- 

 

A list of dictionaries containing the results for each column of data. 

The dictionaries contain at least the following: 

 

- coords: A list of scalars containing the coordinates this particular 

kernel density estimate was evaluated at. 

- vals: A list of scalars containing the values of the kernel density 

estimate at each of the coordinates given in `coords`. 

- mean: The mean value for this column of data. 

- median: The median value for this column of data. 

- min: The minimum value for this column of data. 

- max: The maximum value for this column of data. 

""" 

 

# List of dictionaries describing each of the violins. 

vpstats = [] 

 

# Want X to be a list of data sequences 

X = _reshape_2D(X, "X") 

 

for x in X: 

# Dictionary of results for this distribution 

stats = {} 

 

# Calculate basic stats for the distribution 

min_val = np.min(x) 

max_val = np.max(x) 

 

# Evaluate the kernel density estimate 

coords = np.linspace(min_val, max_val, points) 

stats['vals'] = method(x, coords) 

stats['coords'] = coords 

 

# Store additional statistics for this distribution 

stats['mean'] = np.mean(x) 

stats['median'] = np.median(x) 

stats['min'] = min_val 

stats['max'] = max_val 

 

# Append to output 

vpstats.append(stats) 

 

return vpstats 

 

 

def pts_to_prestep(x, *args): 

""" 

Convert continuous line to pre-steps. 

 

Given a set of ``N`` points, convert to ``2N - 1`` points, which when 

connected linearly give a step function which changes values at the 

beginning of the intervals. 

 

Parameters 

---------- 

x : array 

The x location of the steps. May be empty. 

 

y1, ..., yp : array 

y arrays to be turned into steps; all must be the same length as ``x``. 

 

Returns 

------- 

out : array 

The x and y values converted to steps in the same order as the input; 

can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is 

length ``N``, each of these arrays will be length ``2N + 1``. For 

``N=0``, the length will be 0. 

 

Examples 

-------- 

>> x_s, y1_s, y2_s = pts_to_prestep(x, y1, y2) 

""" 

steps = np.zeros((1 + len(args), max(2 * len(x) - 1, 0))) 

# In all `pts_to_*step` functions, only assign *once* using `x` and `args`, 

# as converting to an array may be expensive. 

steps[0, 0::2] = x 

steps[0, 1::2] = steps[0, 0:-2:2] 

steps[1:, 0::2] = args 

steps[1:, 1::2] = steps[1:, 2::2] 

return steps 

 

 

def pts_to_poststep(x, *args): 

""" 

Convert continuous line to post-steps. 

 

Given a set of ``N`` points convert to ``2N + 1`` points, which when 

connected linearly give a step function which changes values at the end of 

the intervals. 

 

Parameters 

---------- 

x : array 

The x location of the steps. May be empty. 

 

y1, ..., yp : array 

y arrays to be turned into steps; all must be the same length as ``x``. 

 

Returns 

------- 

out : array 

The x and y values converted to steps in the same order as the input; 

can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is 

length ``N``, each of these arrays will be length ``2N + 1``. For 

``N=0``, the length will be 0. 

 

Examples 

-------- 

>> x_s, y1_s, y2_s = pts_to_poststep(x, y1, y2) 

""" 

steps = np.zeros((1 + len(args), max(2 * len(x) - 1, 0))) 

steps[0, 0::2] = x 

steps[0, 1::2] = steps[0, 2::2] 

steps[1:, 0::2] = args 

steps[1:, 1::2] = steps[1:, 0:-2:2] 

return steps 

 

 

def pts_to_midstep(x, *args): 

""" 

Convert continuous line to mid-steps. 

 

Given a set of ``N`` points convert to ``2N`` points which when connected 

linearly give a step function which changes values at the middle of the 

intervals. 

 

Parameters 

---------- 

x : array 

The x location of the steps. May be empty. 

 

y1, ..., yp : array 

y arrays to be turned into steps; all must be the same length as 

``x``. 

 

Returns 

------- 

out : array 

The x and y values converted to steps in the same order as the input; 

can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is 

length ``N``, each of these arrays will be length ``2N``. 

 

Examples 

-------- 

>> x_s, y1_s, y2_s = pts_to_midstep(x, y1, y2) 

""" 

steps = np.zeros((1 + len(args), 2 * len(x))) 

x = np.asanyarray(x) 

steps[0, 1:-1:2] = steps[0, 2::2] = (x[:-1] + x[1:]) / 2 

steps[0, :1] = x[:1] # Also works for zero-sized input. 

steps[0, -1:] = x[-1:] 

steps[1:, 0::2] = args 

steps[1:, 1::2] = steps[1:, 0::2] 

return steps 

 

 

STEP_LOOKUP_MAP = {'default': lambda x, y: (x, y), 

'steps': pts_to_prestep, 

'steps-pre': pts_to_prestep, 

'steps-post': pts_to_poststep, 

'steps-mid': pts_to_midstep} 

 

 

def index_of(y): 

""" 

A helper function to get the index of an input to plot 

against if x values are not explicitly given. 

 

Tries to get `y.index` (works if this is a pd.Series), if that 

fails, return np.arange(y.shape[0]). 

 

This will be extended in the future to deal with more types of 

labeled data. 

 

Parameters 

---------- 

y : scalar or array-like 

The proposed y-value 

 

Returns 

------- 

x, y : ndarray 

The x and y values to plot. 

""" 

try: 

return y.index.values, y.values 

except AttributeError: 

y = _check_1d(y) 

return np.arange(y.shape[0], dtype=float), y 

 

 

def safe_first_element(obj): 

if isinstance(obj, collections.abc.Iterator): 

# needed to accept `array.flat` as input. 

# np.flatiter reports as an instance of collections.Iterator 

# but can still be indexed via []. 

# This has the side effect of re-setting the iterator, but 

# that is acceptable. 

try: 

return obj[0] 

except TypeError: 

pass 

raise RuntimeError("matplotlib does not support generators " 

"as input") 

return next(iter(obj)) 

 

 

def sanitize_sequence(data): 

"""Converts dictview object to list""" 

return (list(data) if isinstance(data, collections.abc.MappingView) 

else data) 

 

 

def normalize_kwargs(kw, alias_mapping=None, required=(), forbidden=(), 

allowed=None): 

"""Helper function to normalize kwarg inputs 

 

The order they are resolved are: 

 

1. aliasing 

2. required 

3. forbidden 

4. allowed 

 

This order means that only the canonical names need appear in 

`allowed`, `forbidden`, `required` 

 

Parameters 

---------- 

 

alias_mapping, dict, optional 

A mapping between a canonical name to a list of 

aliases, in order of precedence from lowest to highest. 

 

If the canonical value is not in the list it is assumed to have 

the highest priority. 

 

required : iterable, optional 

A tuple of fields that must be in kwargs. 

 

forbidden : iterable, optional 

A list of keys which may not be in kwargs 

 

allowed : tuple, optional 

A tuple of allowed fields. If this not None, then raise if 

`kw` contains any keys not in the union of `required` 

and `allowed`. To allow only the required fields pass in 

``()`` for `allowed` 

 

Raises 

------ 

TypeError 

To match what python raises if invalid args/kwargs are passed to 

a callable. 

 

""" 

# deal with default value of alias_mapping 

if alias_mapping is None: 

alias_mapping = dict() 

 

# make a local so we can pop 

kw = dict(kw) 

# output dictionary 

ret = dict() 

 

# hit all alias mappings 

for canonical, alias_list in alias_mapping.items(): 

 

# the alias lists are ordered from lowest to highest priority 

# so we know to use the last value in this list 

tmp = [] 

seen = [] 

for a in alias_list: 

try: 

tmp.append(kw.pop(a)) 

seen.append(a) 

except KeyError: 

pass 

# if canonical is not in the alias_list assume highest priority 

if canonical not in alias_list: 

try: 

tmp.append(kw.pop(canonical)) 

seen.append(canonical) 

except KeyError: 

pass 

# if we found anything in this set of aliases put it in the return 

# dict 

if tmp: 

ret[canonical] = tmp[-1] 

if len(tmp) > 1: 

warnings.warn("Saw kwargs {seen!r} which are all aliases for " 

"{canon!r}. Kept value from {used!r}".format( 

seen=seen, canon=canonical, used=seen[-1])) 

 

# at this point we know that all keys which are aliased are removed, update 

# the return dictionary from the cleaned local copy of the input 

ret.update(kw) 

 

fail_keys = [k for k in required if k not in ret] 

if fail_keys: 

raise TypeError("The required keys {keys!r} " 

"are not in kwargs".format(keys=fail_keys)) 

 

fail_keys = [k for k in forbidden if k in ret] 

if fail_keys: 

raise TypeError("The forbidden keys {keys!r} " 

"are in kwargs".format(keys=fail_keys)) 

 

if allowed is not None: 

allowed_set = {*required, *allowed} 

fail_keys = [k for k in ret if k not in allowed_set] 

if fail_keys: 

raise TypeError( 

"kwargs contains {keys!r} which are not in the required " 

"{req!r} or allowed {allow!r} keys".format( 

keys=fail_keys, req=required, allow=allowed)) 

 

return ret 

 

 

def get_label(y, default_name): 

try: 

return y.name 

except AttributeError: 

return default_name 

 

 

_lockstr = """\ 

LOCKERROR: matplotlib is trying to acquire the lock 

{!r} 

and has failed. This maybe due to any other process holding this 

lock. If you are sure no other matplotlib process is running try 

removing these folders and trying again. 

""" 

 

 

@deprecated("3.0") 

class Locked(object): 

""" 

Context manager to handle locks. 

 

Based on code from conda. 

 

(c) 2012-2013 Continuum Analytics, Inc. / https://www.continuum.io/ 

All Rights Reserved 

 

conda is distributed under the terms of the BSD 3-clause license. 

Consult LICENSE_CONDA or https://opensource.org/licenses/BSD-3-Clause. 

""" 

LOCKFN = '.matplotlib_lock' 

 

class TimeoutError(RuntimeError): 

pass 

 

def __init__(self, path): 

self.path = path 

self.end = "-" + str(os.getpid()) 

self.lock_path = os.path.join(self.path, self.LOCKFN + self.end) 

self.pattern = os.path.join(self.path, self.LOCKFN + '-*') 

self.remove = True 

 

def __enter__(self): 

retries = 50 

sleeptime = 0.1 

while retries: 

files = glob.glob(self.pattern) 

if files and not files[0].endswith(self.end): 

time.sleep(sleeptime) 

retries -= 1 

else: 

break 

else: 

err_str = _lockstr.format(self.pattern) 

raise self.TimeoutError(err_str) 

 

if not files: 

try: 

os.makedirs(self.lock_path) 

except OSError: 

pass 

else: # PID lock already here --- someone else will remove it. 

self.remove = False 

 

def __exit__(self, exc_type, exc_value, traceback): 

if self.remove: 

for path in self.lock_path, self.path: 

try: 

os.rmdir(path) 

except OSError: 

pass 

 

 

@contextlib.contextmanager 

def _lock_path(path): 

""" 

Context manager for locking a path. 

 

Usage:: 

 

with _lock_path(path): 

... 

 

Another thread or process that attempts to lock the same path will wait 

until this context manager is exited. 

 

The lock is implemented by creating a temporary file in the parent 

directory, so that directory must exist and be writable. 

""" 

path = Path(path) 

lock_path = path.with_name(path.name + ".matplotlib-lock") 

retries = 50 

sleeptime = 0.1 

for _ in range(retries): 

try: 

with lock_path.open("xb"): 

break 

except FileExistsError: 

time.sleep(sleeptime) 

else: 

raise TimeoutError("""\ 

Lock error: Matplotlib failed to acquire the following lock file: 

{} 

This maybe due to another process holding this lock file. If you are sure no 

other Matplotlib process is running, remove this file and try again.""".format( 

lock_path)) 

try: 

yield 

finally: 

lock_path.unlink() 

 

 

def _topmost_artist( 

artists, 

_cached_max=functools.partial(max, key=operator.attrgetter("zorder"))): 

"""Get the topmost artist of a list. 

 

In case of a tie, return the *last* of the tied artists, as it will be 

drawn on top of the others. `max` returns the first maximum in case of 

ties, so we need to iterate over the list in reverse order. 

""" 

return _cached_max(reversed(artists)) 

 

 

def _str_equal(obj, s): 

"""Return whether *obj* is a string equal to string *s*. 

 

This helper solely exists to handle the case where *obj* is a numpy array, 

because in such cases, a naive ``obj == s`` would yield an array, which 

cannot be used in a boolean context. 

""" 

return isinstance(obj, str) and obj == s 

 

 

def _str_lower_equal(obj, s): 

"""Return whether *obj* is a string equal, when lowercased, to string *s*. 

 

This helper solely exists to handle the case where *obj* is a numpy array, 

because in such cases, a naive ``obj == s`` would yield an array, which 

cannot be used in a boolean context. 

""" 

return isinstance(obj, str) and obj.lower() == s 

 

 

def _define_aliases(alias_d, cls=None): 

"""Class decorator for defining property aliases. 

 

Use as :: 

 

@cbook._define_aliases({"property": ["alias", ...], ...}) 

class C: ... 

 

For each property, if the corresponding ``get_property`` is defined in the 

class so far, an alias named ``get_alias`` will be defined; the same will 

be done for setters. If neither the getter nor the setter exists, an 

exception will be raised. 

 

The alias map is stored as the ``_alias_map`` attribute on the class and 

can be used by `~.normalize_kwargs` (which assumes that higher priority 

aliases come last). 

""" 

if cls is None: # Return the actual class decorator. 

return functools.partial(_define_aliases, alias_d) 

 

def make_alias(name): # Enforce a closure over *name*. 

def method(self, *args, **kwargs): 

return getattr(self, name)(*args, **kwargs) 

return method 

 

for prop, aliases in alias_d.items(): 

exists = False 

for prefix in ["get_", "set_"]: 

if prefix + prop in vars(cls): 

exists = True 

for alias in aliases: 

method = make_alias(prefix + prop) 

method.__name__ = prefix + alias 

method.__doc__ = "alias for `{}`".format(prefix + prop) 

setattr(cls, prefix + alias, method) 

if not exists: 

raise ValueError( 

"Neither getter nor setter exists for {!r}".format(prop)) 

 

if hasattr(cls, "_alias_map"): 

# Need to decide on conflict resolution policy. 

raise NotImplementedError("Parent class already defines aliases") 

cls._alias_map = alias_d 

return cls 

 

 

def _array_perimeter(arr): 

""" 

Get the elements on the perimeter of ``arr``, 

 

Parameters 

---------- 

arr : ndarray, shape (M, N) 

The input array 

 

Returns 

------- 

perimeter : ndarray, shape (2*(M - 1) + 2*(N - 1),) 

The elements on the perimeter of the array:: 

 

[arr[0,0] ... arr[0,-1] ... arr[-1, -1] ... arr[-1,0] ...] 

 

Examples 

-------- 

>>> i, j = np.ogrid[:3,:4] 

>>> a = i*10 + j 

>>> a 

array([[ 0, 1, 2, 3], 

[10, 11, 12, 13], 

[20, 21, 22, 23]]) 

>>> _array_perimeter(a) 

array([ 0, 1, 2, 3, 13, 23, 22, 21, 20, 10]) 

""" 

# note we use Python's half-open ranges to avoid repeating 

# the corners 

forward = np.s_[0:-1] # [0 ... -1) 

backward = np.s_[-1:0:-1] # [-1 ... 0) 

return np.concatenate(( 

arr[0, forward], 

arr[forward, -1], 

arr[-1, backward], 

arr[backward, 0], 

)) 

 

 

@contextlib.contextmanager 

def _setattr_cm(obj, **kwargs): 

"""Temporarily set some attributes; restore original state at context exit. 

""" 

sentinel = object() 

origs = [(attr, getattr(obj, attr, sentinel)) for attr in kwargs] 

try: 

for attr, val in kwargs.items(): 

setattr(obj, attr, val) 

yield 

finally: 

for attr, orig in origs: 

if orig is sentinel: 

delattr(obj, attr) 

else: 

setattr(obj, attr, orig) 

 

 

def _warn_external(message, category=None): 

""" 

`warnings.warn` wrapper that sets *stacklevel* to "outside Matplotlib". 

 

The original emitter of the warning can be obtained by patching this 

function back to `warnings.warn`, i.e. ``cbook._warn_external = 

warnings.warn`` (or ``functools.partial(warnings.warn, stacklevel=2)``, 

etc.). 

""" 

frame = sys._getframe() 

for stacklevel in itertools.count(1): # lgtm[py/unused-loop-variable] 

if frame is None: 

# when called in embedded context may hit frame is None 

break 

if not re.match(r"\A(matplotlib|mpl_toolkits)(\Z|\.)", 

frame.f_globals["__name__"]): 

break 

frame = frame.f_back 

warnings.warn(message, category, stacklevel) 

 

 

class _OrderedSet(collections.abc.MutableSet): 

def __init__(self): 

self._od = collections.OrderedDict() 

 

def __contains__(self, key): 

return key in self._od 

 

def __iter__(self): 

return iter(self._od) 

 

def __len__(self): 

return len(self._od) 

 

def add(self, key): 

self._od.pop(key, None) 

self._od[key] = None 

 

def discard(self, key): 

self._od.pop(key, None) 

 

 

# Agg's buffers are unmultiplied RGBA8888, which neither PyQt4 nor cairo 

# support; however, both do support premultiplied ARGB32. 

 

 

def _premultiplied_argb32_to_unmultiplied_rgba8888(buf): 

""" 

Convert a premultiplied ARGB32 buffer to an unmultiplied RGBA8888 buffer. 

""" 

rgba = np.take( # .take() ensures C-contiguity of the result. 

buf, 

[2, 1, 0, 3] if sys.byteorder == "little" else [1, 2, 3, 0], axis=2) 

rgb = rgba[..., :-1] 

alpha = rgba[..., -1] 

# Un-premultiply alpha. The formula is the same as in cairo-png.c. 

mask = alpha != 0 

for channel in np.rollaxis(rgb, -1): 

channel[mask] = ( 

(channel[mask].astype(int) * 255 + alpha[mask] // 2) 

// alpha[mask]) 

return rgba 

 

 

def _unmultiplied_rgba8888_to_premultiplied_argb32(rgba8888): 

""" 

Convert an unmultiplied RGBA8888 buffer to a premultiplied ARGB32 buffer. 

""" 

if sys.byteorder == "little": 

argb32 = np.take(rgba8888, [2, 1, 0, 3], axis=2) 

rgb24 = argb32[..., :-1] 

alpha8 = argb32[..., -1:] 

else: 

argb32 = np.take(rgba8888, [3, 0, 1, 2], axis=2) 

alpha8 = argb32[..., :1] 

rgb24 = argb32[..., 1:] 

# Only bother premultiplying when the alpha channel is not fully opaque, 

# as the cost is not negligible. The unsafe cast is needed to do the 

# multiplication in-place in an integer buffer. 

if alpha8.min() != 0xff: 

np.multiply(rgb24, alpha8 / 0xff, out=rgb24, casting="unsafe") 

return argb32