1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

""" 

Classes for the efficient drawing of large collections of objects that 

share most properties, e.g., a large number of line segments or 

polygons. 

 

The classes are not meant to be as flexible as their single element 

counterparts (e.g., you may not be able to select all line styles) but 

they are meant to be fast for common use cases (e.g., a large set of solid 

line segemnts) 

""" 

 

import math 

from numbers import Number 

import warnings 

 

import numpy as np 

 

import matplotlib as mpl 

from . import (_path, artist, cbook, cm, colors as mcolors, docstring, 

lines as mlines, path as mpath, transforms) 

 

CIRCLE_AREA_FACTOR = 1.0 / np.sqrt(np.pi) 

 

 

@cbook._define_aliases({ 

"antialiased": ["antialiaseds"], 

"edgecolor": ["edgecolors"], 

"facecolor": ["facecolors"], 

"linestyle": ["linestyles", "dashes"], 

"linewidth": ["linewidths", "lw"], 

}) 

class Collection(artist.Artist, cm.ScalarMappable): 

""" 

Base class for Collections. Must be subclassed to be usable. 

 

All properties in a collection must be sequences or scalars; 

if scalars, they will be converted to sequences. The 

property of the ith element of the collection is:: 

 

prop[i % len(props)] 

 

Exceptions are *capstyle* and *joinstyle* properties, these can 

only be set globally for the whole collection. 

 

Keyword arguments and default values: 

 

* *edgecolors*: None 

* *facecolors*: None 

* *linewidths*: None 

* *capstyle*: None 

* *joinstyle*: None 

* *antialiaseds*: None 

* *offsets*: None 

* *transOffset*: transforms.IdentityTransform() 

* *offset_position*: 'screen' (default) or 'data' 

* *norm*: None (optional for 

:class:`matplotlib.cm.ScalarMappable`) 

* *cmap*: None (optional for 

:class:`matplotlib.cm.ScalarMappable`) 

* *hatch*: None 

* *zorder*: 1 

 

 

*offsets* and *transOffset* are used to translate the patch after 

rendering (default no offsets). If offset_position is 'screen' 

(default) the offset is applied after the master transform has 

been applied, that is, the offsets are in screen coordinates. If 

offset_position is 'data', the offset is applied before the master 

transform, i.e., the offsets are in data coordinates. 

 

If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* 

are None, they default to their :data:`matplotlib.rcParams` patch 

setting, in sequence form. 

 

The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If 

the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None 

(i.e., a call to set_array has been made), at draw time a call to 

scalar mappable will be made to set the face colors. 

""" 

_offsets = np.zeros((0, 2)) 

_transOffset = transforms.IdentityTransform() 

#: Either a list of 3x3 arrays or an Nx3x3 array of transforms, suitable 

#: for the `all_transforms` argument to 

#: :meth:`~matplotlib.backend_bases.RendererBase.draw_path_collection`; 

#: each 3x3 array is used to initialize an 

#: :class:`~matplotlib.transforms.Affine2D` object. 

#: Each kind of collection defines this based on its arguments. 

_transforms = np.empty((0, 3, 3)) 

 

# Whether to draw an edge by default. Set on a 

# subclass-by-subclass basis. 

_edge_default = False 

 

def __init__(self, 

edgecolors=None, 

facecolors=None, 

linewidths=None, 

linestyles='solid', 

capstyle=None, 

joinstyle=None, 

antialiaseds=None, 

offsets=None, 

transOffset=None, 

norm=None, # optional for ScalarMappable 

cmap=None, # ditto 

pickradius=5.0, 

hatch=None, 

urls=None, 

offset_position='screen', 

zorder=1, 

**kwargs 

): 

""" 

Create a Collection 

 

%(Collection)s 

""" 

artist.Artist.__init__(self) 

cm.ScalarMappable.__init__(self, norm, cmap) 

# list of un-scaled dash patterns 

# this is needed scaling the dash pattern by linewidth 

self._us_linestyles = [(None, None)] 

# list of dash patterns 

self._linestyles = [(None, None)] 

# list of unbroadcast/scaled linewidths 

self._us_lw = [0] 

self._linewidths = [0] 

self._is_filled = True # May be modified by set_facecolor(). 

 

self._hatch_color = mcolors.to_rgba(mpl.rcParams['hatch.color']) 

self.set_facecolor(facecolors) 

self.set_edgecolor(edgecolors) 

self.set_linewidth(linewidths) 

self.set_linestyle(linestyles) 

self.set_antialiased(antialiaseds) 

self.set_pickradius(pickradius) 

self.set_urls(urls) 

self.set_hatch(hatch) 

self.set_offset_position(offset_position) 

self.set_zorder(zorder) 

 

if capstyle: 

self.set_capstyle(capstyle) 

else: 

self._capstyle = None 

 

if joinstyle: 

self.set_joinstyle(joinstyle) 

else: 

self._joinstyle = None 

 

self._offsets = np.zeros((1, 2)) 

self._uniform_offsets = None 

if offsets is not None: 

offsets = np.asanyarray(offsets, float) 

# Broadcast (2,) -> (1, 2) but nothing else. 

if offsets.shape == (2,): 

offsets = offsets[None, :] 

if transOffset is not None: 

self._offsets = offsets 

self._transOffset = transOffset 

else: 

self._uniform_offsets = offsets 

 

self._path_effects = None 

self.update(kwargs) 

self._paths = None 

 

def get_paths(self): 

return self._paths 

 

def set_paths(self): 

raise NotImplementedError 

 

def get_transforms(self): 

return self._transforms 

 

def get_offset_transform(self): 

t = self._transOffset 

if (not isinstance(t, transforms.Transform) 

and hasattr(t, '_as_mpl_transform')): 

t = t._as_mpl_transform(self.axes) 

return t 

 

def get_datalim(self, transData): 

transform = self.get_transform() 

transOffset = self.get_offset_transform() 

offsets = self._offsets 

paths = self.get_paths() 

 

if not transform.is_affine: 

paths = [transform.transform_path_non_affine(p) for p in paths] 

transform = transform.get_affine() 

if not transOffset.is_affine: 

offsets = transOffset.transform_non_affine(offsets) 

transOffset = transOffset.get_affine() 

 

if isinstance(offsets, np.ma.MaskedArray): 

offsets = offsets.filled(np.nan) 

# get_path_collection_extents handles nan but not masked arrays 

 

if len(paths) and len(offsets): 

result = mpath.get_path_collection_extents( 

transform.frozen(), paths, self.get_transforms(), 

offsets, transOffset.frozen()) 

result = result.inverse_transformed(transData) 

else: 

result = transforms.Bbox.null() 

return result 

 

def get_window_extent(self, renderer): 

# TODO:check to ensure that this does not fail for 

# cases other than scatter plot legend 

return self.get_datalim(transforms.IdentityTransform()) 

 

def _prepare_points(self): 

"""Point prep for drawing and hit testing""" 

 

transform = self.get_transform() 

transOffset = self.get_offset_transform() 

offsets = self._offsets 

paths = self.get_paths() 

 

if self.have_units(): 

paths = [] 

for path in self.get_paths(): 

vertices = path.vertices 

xs, ys = vertices[:, 0], vertices[:, 1] 

xs = self.convert_xunits(xs) 

ys = self.convert_yunits(ys) 

paths.append(mpath.Path(np.column_stack([xs, ys]), path.codes)) 

 

if offsets.size > 0: 

xs = self.convert_xunits(offsets[:, 0]) 

ys = self.convert_yunits(offsets[:, 1]) 

offsets = np.column_stack([xs, ys]) 

 

if not transform.is_affine: 

paths = [transform.transform_path_non_affine(path) 

for path in paths] 

transform = transform.get_affine() 

if not transOffset.is_affine: 

offsets = transOffset.transform_non_affine(offsets) 

# This might have changed an ndarray into a masked array. 

transOffset = transOffset.get_affine() 

 

if isinstance(offsets, np.ma.MaskedArray): 

offsets = offsets.filled(np.nan) 

# Changing from a masked array to nan-filled ndarray 

# is probably most efficient at this point. 

 

return transform, transOffset, offsets, paths 

 

@artist.allow_rasterization 

def draw(self, renderer): 

if not self.get_visible(): 

return 

renderer.open_group(self.__class__.__name__, self.get_gid()) 

 

self.update_scalarmappable() 

 

transform, transOffset, offsets, paths = self._prepare_points() 

 

gc = renderer.new_gc() 

self._set_gc_clip(gc) 

gc.set_snap(self.get_snap()) 

 

if self._hatch: 

gc.set_hatch(self._hatch) 

try: 

gc.set_hatch_color(self._hatch_color) 

except AttributeError: 

# if we end up with a GC that does not have this method 

warnings.warn("Your backend does not support setting the " 

"hatch color.") 

 

if self.get_sketch_params() is not None: 

gc.set_sketch_params(*self.get_sketch_params()) 

 

if self.get_path_effects(): 

from matplotlib.patheffects import PathEffectRenderer 

renderer = PathEffectRenderer(self.get_path_effects(), renderer) 

 

# If the collection is made up of a single shape/color/stroke, 

# it can be rendered once and blitted multiple times, using 

# `draw_markers` rather than `draw_path_collection`. This is 

# *much* faster for Agg, and results in smaller file sizes in 

# PDF/SVG/PS. 

 

trans = self.get_transforms() 

facecolors = self.get_facecolor() 

edgecolors = self.get_edgecolor() 

do_single_path_optimization = False 

if (len(paths) == 1 and len(trans) <= 1 and 

len(facecolors) == 1 and len(edgecolors) == 1 and 

len(self._linewidths) == 1 and 

self._linestyles == [(None, None)] and 

len(self._antialiaseds) == 1 and len(self._urls) == 1 and 

self.get_hatch() is None): 

if len(trans): 

combined_transform = (transforms.Affine2D(trans[0]) + 

transform) 

else: 

combined_transform = transform 

extents = paths[0].get_extents(combined_transform) 

width, height = renderer.get_canvas_width_height() 

if extents.width < width and extents.height < height: 

do_single_path_optimization = True 

 

if self._joinstyle: 

gc.set_joinstyle(self._joinstyle) 

 

if self._capstyle: 

gc.set_capstyle(self._capstyle) 

 

if do_single_path_optimization: 

gc.set_foreground(tuple(edgecolors[0])) 

gc.set_linewidth(self._linewidths[0]) 

gc.set_dashes(*self._linestyles[0]) 

gc.set_antialiased(self._antialiaseds[0]) 

gc.set_url(self._urls[0]) 

renderer.draw_markers( 

gc, paths[0], combined_transform.frozen(), 

mpath.Path(offsets), transOffset, tuple(facecolors[0])) 

else: 

renderer.draw_path_collection( 

gc, transform.frozen(), paths, 

self.get_transforms(), offsets, transOffset, 

self.get_facecolor(), self.get_edgecolor(), 

self._linewidths, self._linestyles, 

self._antialiaseds, self._urls, 

self._offset_position) 

 

gc.restore() 

renderer.close_group(self.__class__.__name__) 

self.stale = False 

 

def set_pickradius(self, pr): 

"""Set the pick radius used for containment tests. 

 

Parameters 

---------- 

d : float 

Pick radius, in points. 

""" 

self._pickradius = pr 

 

def get_pickradius(self): 

return self._pickradius 

 

def contains(self, mouseevent): 

""" 

Test whether the mouse event occurred in the collection. 

 

Returns True | False, ``dict(ind=itemlist)``, where every 

item in itemlist contains the event. 

""" 

if callable(self._contains): 

return self._contains(self, mouseevent) 

 

if not self.get_visible(): 

return False, {} 

 

pickradius = ( 

float(self._picker) 

if isinstance(self._picker, Number) and 

self._picker is not True # the bool, not just nonzero or 1 

else self._pickradius) 

 

transform, transOffset, offsets, paths = self._prepare_points() 

 

ind = _path.point_in_path_collection( 

mouseevent.x, mouseevent.y, pickradius, 

transform.frozen(), paths, self.get_transforms(), 

offsets, transOffset, pickradius <= 0, 

self.get_offset_position()) 

 

return len(ind) > 0, dict(ind=ind) 

 

def set_urls(self, urls): 

""" 

Parameters 

---------- 

urls : List[str] or None 

""" 

self._urls = urls if urls is not None else [None] 

self.stale = True 

 

def get_urls(self): 

return self._urls 

 

def set_hatch(self, hatch): 

r""" 

Set the hatching pattern 

 

*hatch* can be one of:: 

 

/ - diagonal hatching 

\ - back diagonal 

| - vertical 

- - horizontal 

+ - crossed 

x - crossed diagonal 

o - small circle 

O - large circle 

. - dots 

* - stars 

 

Letters can be combined, in which case all the specified 

hatchings are done. If same letter repeats, it increases the 

density of hatching of that pattern. 

 

Hatching is supported in the PostScript, PDF, SVG and Agg 

backends only. 

 

Unlike other properties such as linewidth and colors, hatching 

can only be specified for the collection as a whole, not separately 

for each member. 

 

Parameters 

---------- 

hatch : {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'} 

""" 

self._hatch = hatch 

self.stale = True 

 

def get_hatch(self): 

"""Return the current hatching pattern.""" 

return self._hatch 

 

def set_offsets(self, offsets): 

""" 

Set the offsets for the collection. *offsets* can be a scalar 

or a sequence. 

 

Parameters 

---------- 

offsets : float or sequence of floats 

""" 

offsets = np.asanyarray(offsets, float) 

if offsets.shape == (2,): # Broadcast (2,) -> (1, 2) but nothing else. 

offsets = offsets[None, :] 

# This decision is based on how they are initialized above in __init__. 

if self._uniform_offsets is None: 

self._offsets = offsets 

else: 

self._uniform_offsets = offsets 

self.stale = True 

 

def get_offsets(self): 

"""Return the offsets for the collection.""" 

# This decision is based on how they are initialized above in __init__. 

if self._uniform_offsets is None: 

return self._offsets 

else: 

return self._uniform_offsets 

 

def set_offset_position(self, offset_position): 

""" 

Set how offsets are applied. If *offset_position* is 'screen' 

(default) the offset is applied after the master transform has 

been applied, that is, the offsets are in screen coordinates. 

If offset_position is 'data', the offset is applied before the 

master transform, i.e., the offsets are in data coordinates. 

 

Parameters 

---------- 

offset_position : {'screen', 'data'} 

""" 

if offset_position not in ('screen', 'data'): 

raise ValueError("offset_position must be 'screen' or 'data'") 

self._offset_position = offset_position 

self.stale = True 

 

def get_offset_position(self): 

""" 

Returns how offsets are applied for the collection. If 

*offset_position* is 'screen', the offset is applied after the 

master transform has been applied, that is, the offsets are in 

screen coordinates. If offset_position is 'data', the offset 

is applied before the master transform, i.e., the offsets are 

in data coordinates. 

""" 

return self._offset_position 

 

def set_linewidth(self, lw): 

""" 

Set the linewidth(s) for the collection. *lw* can be a scalar 

or a sequence; if it is a sequence the patches will cycle 

through the sequence 

 

Parameters 

---------- 

lw : float or sequence of floats 

""" 

if lw is None: 

lw = mpl.rcParams['patch.linewidth'] 

if lw is None: 

lw = mpl.rcParams['lines.linewidth'] 

# get the un-scaled/broadcast lw 

self._us_lw = np.atleast_1d(np.asarray(lw)) 

 

# scale all of the dash patterns. 

self._linewidths, self._linestyles = self._bcast_lwls( 

self._us_lw, self._us_linestyles) 

self.stale = True 

 

def set_linestyle(self, ls): 

""" 

Set the linestyle(s) for the collection. 

 

=========================== ================= 

linestyle description 

=========================== ================= 

``'-'`` or ``'solid'`` solid line 

``'--'`` or ``'dashed'`` dashed line 

``'-.'`` or ``'dashdot'`` dash-dotted line 

``':'`` or ``'dotted'`` dotted line 

=========================== ================= 

 

Alternatively a dash tuple of the following form can be provided:: 

 

(offset, onoffseq), 

 

where ``onoffseq`` is an even length tuple of on and off ink in points. 

 

Parameters 

---------- 

ls : {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} 

The line style. 

""" 

try: 

if isinstance(ls, str): 

ls = cbook.ls_mapper.get(ls, ls) 

dashes = [mlines._get_dash_pattern(ls)] 

else: 

try: 

dashes = [mlines._get_dash_pattern(ls)] 

except ValueError: 

dashes = [mlines._get_dash_pattern(x) for x in ls] 

 

except ValueError: 

raise ValueError( 

'Do not know how to convert {!r} to dashes'.format(ls)) 

 

# get the list of raw 'unscaled' dash patterns 

self._us_linestyles = dashes 

 

# broadcast and scale the lw and dash patterns 

self._linewidths, self._linestyles = self._bcast_lwls( 

self._us_lw, self._us_linestyles) 

 

def set_capstyle(self, cs): 

""" 

Set the capstyle for the collection. The capstyle can 

only be set globally for all elements in the collection 

 

Parameters 

---------- 

cs : {'butt', 'round', 'projecting'} 

The capstyle 

""" 

if cs in ('butt', 'round', 'projecting'): 

self._capstyle = cs 

else: 

raise ValueError('Unrecognized cap style. Found %s' % cs) 

 

def get_capstyle(self): 

return self._capstyle 

 

def set_joinstyle(self, js): 

""" 

Set the joinstyle for the collection. The joinstyle can only be 

set globally for all elements in the collection. 

 

Parameters 

---------- 

js : {'miter', 'round', 'bevel'} 

The joinstyle 

""" 

if js in ('miter', 'round', 'bevel'): 

self._joinstyle = js 

else: 

raise ValueError('Unrecognized join style. Found %s' % js) 

 

def get_joinstyle(self): 

return self._joinstyle 

 

@staticmethod 

def _bcast_lwls(linewidths, dashes): 

'''Internal helper function to broadcast + scale ls/lw 

 

In the collection drawing code the linewidth and linestyle are 

cycled through as circular buffers (via v[i % len(v)]). Thus, 

if we are going to scale the dash pattern at set time (not 

draw time) we need to do the broadcasting now and expand both 

lists to be the same length. 

 

Parameters 

---------- 

linewidths : list 

line widths of collection 

 

dashes : list 

dash specification (offset, (dash pattern tuple)) 

 

Returns 

------- 

linewidths, dashes : list 

Will be the same length, dashes are scaled by paired linewidth 

 

''' 

if mpl.rcParams['_internal.classic_mode']: 

return linewidths, dashes 

# make sure they are the same length so we can zip them 

if len(dashes) != len(linewidths): 

l_dashes = len(dashes) 

l_lw = len(linewidths) 

gcd = math.gcd(l_dashes, l_lw) 

dashes = list(dashes) * (l_lw // gcd) 

linewidths = list(linewidths) * (l_dashes // gcd) 

 

# scale the dash patters 

dashes = [mlines._scale_dashes(o, d, lw) 

for (o, d), lw in zip(dashes, linewidths)] 

 

return linewidths, dashes 

 

def set_antialiased(self, aa): 

""" 

Set the antialiasing state for rendering. 

 

Parameters 

---------- 

aa : bool or sequence of bools 

""" 

if aa is None: 

aa = mpl.rcParams['patch.antialiased'] 

self._antialiaseds = np.atleast_1d(np.asarray(aa, bool)) 

self.stale = True 

 

def set_color(self, c): 

""" 

Set both the edgecolor and the facecolor. 

 

.. seealso:: 

 

:meth:`set_facecolor`, :meth:`set_edgecolor` 

For setting the edge or face color individually. 

 

Parameters 

---------- 

c : matplotlib color arg or sequence of rgba tuples 

""" 

self.set_facecolor(c) 

self.set_edgecolor(c) 

 

def _set_facecolor(self, c): 

if c is None: 

c = mpl.rcParams['patch.facecolor'] 

 

self._is_filled = True 

try: 

if c.lower() == 'none': 

self._is_filled = False 

except AttributeError: 

pass 

self._facecolors = mcolors.to_rgba_array(c, self._alpha) 

self.stale = True 

 

def set_facecolor(self, c): 

""" 

Set the facecolor(s) of the collection. *c* can be a 

matplotlib color spec (all patches have same color), or a 

sequence of specs; if it is a sequence the patches will 

cycle through the sequence. 

 

If *c* is 'none', the patch will not be filled. 

 

Parameters 

---------- 

c : color or sequence of colors 

""" 

self._original_facecolor = c 

self._set_facecolor(c) 

 

def get_facecolor(self): 

return self._facecolors 

 

def get_edgecolor(self): 

if cbook._str_equal(self._edgecolors, 'face'): 

return self.get_facecolors() 

else: 

return self._edgecolors 

 

def _set_edgecolor(self, c): 

set_hatch_color = True 

if c is None: 

if (mpl.rcParams['patch.force_edgecolor'] or 

not self._is_filled or self._edge_default): 

c = mpl.rcParams['patch.edgecolor'] 

else: 

c = 'none' 

set_hatch_color = False 

 

self._is_stroked = True 

try: 

if c.lower() == 'none': 

self._is_stroked = False 

except AttributeError: 

pass 

 

try: 

if c.lower() == 'face': # Special case: lookup in "get" method. 

self._edgecolors = 'face' 

return 

except AttributeError: 

pass 

self._edgecolors = mcolors.to_rgba_array(c, self._alpha) 

if set_hatch_color and len(self._edgecolors): 

self._hatch_color = tuple(self._edgecolors[0]) 

self.stale = True 

 

def set_edgecolor(self, c): 

""" 

Set the edgecolor(s) of the collection. *c* can be a 

matplotlib color spec (all patches have same color), or a 

sequence of specs; if it is a sequence the patches will 

cycle through the sequence. 

 

If *c* is 'face', the edge color will always be the same as 

the face color. If it is 'none', the patch boundary will not 

be drawn. 

 

Parameters 

---------- 

c : color or sequence of colors 

""" 

self._original_edgecolor = c 

self._set_edgecolor(c) 

 

def set_alpha(self, alpha): 

""" 

Set the alpha tranparencies of the collection. *alpha* must be 

a float or *None*. 

 

Parameters 

---------- 

alpha : float or None 

""" 

if alpha is not None: 

try: 

float(alpha) 

except TypeError: 

raise TypeError('alpha must be a float or None') 

self.update_dict['array'] = True 

artist.Artist.set_alpha(self, alpha) 

self._set_facecolor(self._original_facecolor) 

self._set_edgecolor(self._original_edgecolor) 

 

def get_linewidth(self): 

return self._linewidths 

 

def get_linestyle(self): 

return self._linestyles 

 

def update_scalarmappable(self): 

""" 

If the scalar mappable array is not none, update colors 

from scalar data 

""" 

if self._A is None: 

return 

if self._A.ndim > 1: 

raise ValueError('Collections can only map rank 1 arrays') 

if not self.check_update("array"): 

return 

if self._is_filled: 

self._facecolors = self.to_rgba(self._A, self._alpha) 

elif self._is_stroked: 

self._edgecolors = self.to_rgba(self._A, self._alpha) 

self.stale = True 

 

def get_fill(self): 

'return whether fill is set' 

return self._is_filled 

 

def update_from(self, other): 

'copy properties from other to self' 

 

artist.Artist.update_from(self, other) 

self._antialiaseds = other._antialiaseds 

self._original_edgecolor = other._original_edgecolor 

self._edgecolors = other._edgecolors 

self._original_facecolor = other._original_facecolor 

self._facecolors = other._facecolors 

self._linewidths = other._linewidths 

self._linestyles = other._linestyles 

self._us_linestyles = other._us_linestyles 

self._pickradius = other._pickradius 

self._hatch = other._hatch 

 

# update_from for scalarmappable 

self._A = other._A 

self.norm = other.norm 

self.cmap = other.cmap 

# self.update_dict = other.update_dict # do we need to copy this? -JJL 

self.stale = True 

 

 

# these are not available for the object inspector until after the 

# class is built so we define an initial set here for the init 

# function and they will be overridden after object defn 

docstring.interpd.update(Collection="""\ 

Valid Collection keyword arguments: 

 

* *edgecolors*: None 

* *facecolors*: None 

* *linewidths*: None 

* *antialiaseds*: None 

* *offsets*: None 

* *transOffset*: transforms.IdentityTransform() 

* *norm*: None (optional for 

:class:`matplotlib.cm.ScalarMappable`) 

* *cmap*: None (optional for 

:class:`matplotlib.cm.ScalarMappable`) 

 

*offsets* and *transOffset* are used to translate the patch after 

rendering (default no offsets) 

 

If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* 

are None, they default to their :data:`matplotlib.rcParams` patch 

setting, in sequence form. 

""") 

 

 

class _CollectionWithSizes(Collection): 

""" 

Base class for collections that have an array of sizes. 

""" 

_factor = 1.0 

 

def get_sizes(self): 

""" 

Returns the sizes of the elements in the collection. The 

value represents the 'area' of the element. 

 

Returns 

------- 

sizes : array 

The 'area' of each element. 

""" 

return self._sizes 

 

def set_sizes(self, sizes, dpi=72.0): 

""" 

Set the sizes of each member of the collection. 

 

Parameters 

---------- 

sizes : ndarray or None 

The size to set for each element of the collection. The 

value is the 'area' of the element. 

 

dpi : float 

The dpi of the canvas. Defaults to 72.0. 

""" 

if sizes is None: 

self._sizes = np.array([]) 

self._transforms = np.empty((0, 3, 3)) 

else: 

self._sizes = np.asarray(sizes) 

self._transforms = np.zeros((len(self._sizes), 3, 3)) 

scale = np.sqrt(self._sizes) * dpi / 72.0 * self._factor 

self._transforms[:, 0, 0] = scale 

self._transforms[:, 1, 1] = scale 

self._transforms[:, 2, 2] = 1.0 

self.stale = True 

 

@artist.allow_rasterization 

def draw(self, renderer): 

self.set_sizes(self._sizes, self.figure.dpi) 

Collection.draw(self, renderer) 

 

 

class PathCollection(_CollectionWithSizes): 

""" 

This is the most basic :class:`Collection` subclass. 

""" 

@docstring.dedent_interpd 

def __init__(self, paths, sizes=None, **kwargs): 

""" 

*paths* is a sequence of :class:`matplotlib.path.Path` 

instances. 

 

%(Collection)s 

""" 

 

Collection.__init__(self, **kwargs) 

self.set_paths(paths) 

self.set_sizes(sizes) 

self.stale = True 

 

def set_paths(self, paths): 

self._paths = paths 

self.stale = True 

 

def get_paths(self): 

return self._paths 

 

 

class PolyCollection(_CollectionWithSizes): 

@docstring.dedent_interpd 

def __init__(self, verts, sizes=None, closed=True, **kwargs): 

""" 

*verts* is a sequence of ( *verts0*, *verts1*, ...) where 

*verts_i* is a sequence of *xy* tuples of vertices, or an 

equivalent :mod:`numpy` array of shape (*nv*, 2). 

 

*sizes* is *None* (default) or a sequence of floats that 

scale the corresponding *verts_i*. The scaling is applied 

before the Artist master transform; if the latter is an identity 

transform, then the overall scaling is such that if 

*verts_i* specify a unit square, then *sizes_i* is the area 

of that square in points^2. 

If len(*sizes*) < *nv*, the additional values will be 

taken cyclically from the array. 

 

*closed*, when *True*, will explicitly close the polygon. 

 

%(Collection)s 

""" 

Collection.__init__(self, **kwargs) 

self.set_sizes(sizes) 

self.set_verts(verts, closed) 

self.stale = True 

 

def set_verts(self, verts, closed=True): 

'''This allows one to delay initialization of the vertices.''' 

if isinstance(verts, np.ma.MaskedArray): 

verts = verts.astype(float).filled(np.nan) 

# This is much faster than having Path do it one at a time. 

if closed: 

self._paths = [] 

for xy in verts: 

if len(xy): 

if isinstance(xy, np.ma.MaskedArray): 

xy = np.ma.concatenate([xy, xy[0:1]]) 

else: 

xy = np.asarray(xy) 

xy = np.concatenate([xy, xy[0:1]]) 

codes = np.empty(xy.shape[0], dtype=mpath.Path.code_type) 

codes[:] = mpath.Path.LINETO 

codes[0] = mpath.Path.MOVETO 

codes[-1] = mpath.Path.CLOSEPOLY 

self._paths.append(mpath.Path(xy, codes)) 

else: 

self._paths.append(mpath.Path(xy)) 

else: 

self._paths = [mpath.Path(xy) for xy in verts] 

self.stale = True 

 

set_paths = set_verts 

 

def set_verts_and_codes(self, verts, codes): 

'''This allows one to initialize vertices with path codes.''' 

if len(verts) != len(codes): 

raise ValueError("'codes' must be a 1D list or array " 

"with the same length of 'verts'") 

self._paths = [] 

for xy, cds in zip(verts, codes): 

if len(xy): 

self._paths.append(mpath.Path(xy, cds)) 

else: 

self._paths.append(mpath.Path(xy)) 

self.stale = True 

 

 

class BrokenBarHCollection(PolyCollection): 

""" 

A collection of horizontal bars spanning *yrange* with a sequence of 

*xranges*. 

""" 

@docstring.dedent_interpd 

def __init__(self, xranges, yrange, **kwargs): 

""" 

*xranges* 

sequence of (*xmin*, *xwidth*) 

 

*yrange* 

*ymin*, *ywidth* 

 

%(Collection)s 

""" 

ymin, ywidth = yrange 

ymax = ymin + ywidth 

verts = [[(xmin, ymin), 

(xmin, ymax), 

(xmin + xwidth, ymax), 

(xmin + xwidth, ymin), 

(xmin, ymin)] for xmin, xwidth in xranges] 

PolyCollection.__init__(self, verts, **kwargs) 

 

@staticmethod 

def span_where(x, ymin, ymax, where, **kwargs): 

""" 

Create a BrokenBarHCollection to plot horizontal bars from 

over the regions in *x* where *where* is True. The bars range 

on the y-axis from *ymin* to *ymax* 

 

A :class:`BrokenBarHCollection` is returned. *kwargs* are 

passed on to the collection. 

""" 

xranges = [] 

for ind0, ind1 in cbook.contiguous_regions(where): 

xslice = x[ind0:ind1] 

if not len(xslice): 

continue 

xranges.append((xslice[0], xslice[-1] - xslice[0])) 

 

collection = BrokenBarHCollection( 

xranges, [ymin, ymax - ymin], **kwargs) 

return collection 

 

 

class RegularPolyCollection(_CollectionWithSizes): 

"""Draw a collection of regular polygons with *numsides*.""" 

_path_generator = mpath.Path.unit_regular_polygon 

 

_factor = CIRCLE_AREA_FACTOR 

 

@docstring.dedent_interpd 

def __init__(self, 

numsides, 

rotation=0, 

sizes=(1,), 

**kwargs): 

""" 

*numsides* 

the number of sides of the polygon 

 

*rotation* 

the rotation of the polygon in radians 

 

*sizes* 

gives the area of the circle circumscribing the 

regular polygon in points^2 

 

%(Collection)s 

 

Example: see :doc:`/gallery/event_handling/lasso_demo` for a 

complete example:: 

 

offsets = np.random.rand(20,2) 

facecolors = [cm.jet(x) for x in np.random.rand(20)] 

black = (0,0,0,1) 

 

collection = RegularPolyCollection( 

numsides=5, # a pentagon 

rotation=0, sizes=(50,), 

facecolors=facecolors, 

edgecolors=(black,), 

linewidths=(1,), 

offsets=offsets, 

transOffset=ax.transData, 

) 

""" 

Collection.__init__(self, **kwargs) 

self.set_sizes(sizes) 

self._numsides = numsides 

self._paths = [self._path_generator(numsides)] 

self._rotation = rotation 

self.set_transform(transforms.IdentityTransform()) 

 

def get_numsides(self): 

return self._numsides 

 

def get_rotation(self): 

return self._rotation 

 

@artist.allow_rasterization 

def draw(self, renderer): 

self.set_sizes(self._sizes, self.figure.dpi) 

self._transforms = [ 

transforms.Affine2D(x).rotate(-self._rotation).get_matrix() 

for x in self._transforms 

] 

Collection.draw(self, renderer) 

 

 

class StarPolygonCollection(RegularPolyCollection): 

""" 

Draw a collection of regular stars with *numsides* points.""" 

 

_path_generator = mpath.Path.unit_regular_star 

 

 

class AsteriskPolygonCollection(RegularPolyCollection): 

""" 

Draw a collection of regular asterisks with *numsides* points.""" 

 

_path_generator = mpath.Path.unit_regular_asterisk 

 

 

class LineCollection(Collection): 

""" 

All parameters must be sequences or scalars; if scalars, they will 

be converted to sequences. The property of the ith line 

segment is:: 

 

prop[i % len(props)] 

 

i.e., the properties cycle if the ``len`` of props is less than the 

number of segments. 

""" 

 

_edge_default = True 

 

def __init__(self, segments, # Can be None. 

linewidths=None, 

colors=None, 

antialiaseds=None, 

linestyles='solid', 

offsets=None, 

transOffset=None, 

norm=None, 

cmap=None, 

pickradius=5, 

zorder=2, 

facecolors='none', 

**kwargs 

): 

""" 

Parameters 

---------- 

segments : 

A sequence of (*line0*, *line1*, *line2*), where:: 

 

linen = (x0, y0), (x1, y1), ... (xm, ym) 

 

or the equivalent numpy array with two columns. Each line 

can be a different length. 

 

colors : sequence, optional 

A sequence of RGBA tuples (e.g., arbitrary color 

strings, etc, not allowed). 

 

antialiaseds : sequence, optional 

A sequence of ones or zeros. 

 

linestyles : string, tuple, optional 

Either one of [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ], or 

a dash tuple. The dash tuple is:: 

 

(offset, onoffseq) 

 

where ``onoffseq`` is an even length tuple of on and off ink 

in points. 

 

norm : Normalize, optional 

`~.colors.Normalize` instance. 

 

cmap : string or Colormap, optional 

Colormap name or `~.colors.Colormap` instance. 

 

pickradius : float, optional 

The tolerance in points for mouse clicks picking a line. 

Default is 5 pt. 

 

zorder : int, optional 

zorder of the LineCollection. Default is 2. 

 

facecolors : optional 

The facecolors of the LineCollection. Default is 'none'. 

Setting to a value other than 'none' will lead to a filled 

polygon being drawn between points on each line. 

 

Notes 

----- 

If *linewidths*, *colors*, or *antialiaseds* is None, they 

default to their rcParams setting, in sequence form. 

 

If *offsets* and *transOffset* are not None, then 

*offsets* are transformed by *transOffset* and applied after 

the segments have been transformed to display coordinates. 

 

If *offsets* is not None but *transOffset* is None, then the 

*offsets* are added to the segments before any transformation. 

In this case, a single offset can be specified as:: 

 

offsets=(xo,yo) 

 

and this value will be added cumulatively to each successive 

segment, so as to produce a set of successively offset curves. 

 

The use of :class:`~matplotlib.cm.ScalarMappable` is optional. 

If the :class:`~matplotlib.cm.ScalarMappable` array 

:attr:`~matplotlib.cm.ScalarMappable._A` is not None (i.e., a call to 

:meth:`~matplotlib.cm.ScalarMappable.set_array` has been made), at 

draw time a call to scalar mappable will be made to set the colors. 

""" 

if colors is None: 

colors = mpl.rcParams['lines.color'] 

if linewidths is None: 

linewidths = (mpl.rcParams['lines.linewidth'],) 

if antialiaseds is None: 

antialiaseds = (mpl.rcParams['lines.antialiased'],) 

 

colors = mcolors.to_rgba_array(colors) 

 

Collection.__init__( 

self, 

edgecolors=colors, 

facecolors=facecolors, 

linewidths=linewidths, 

linestyles=linestyles, 

antialiaseds=antialiaseds, 

offsets=offsets, 

transOffset=transOffset, 

norm=norm, 

cmap=cmap, 

pickradius=pickradius, 

zorder=zorder, 

**kwargs) 

 

self.set_segments(segments) 

 

def set_segments(self, segments): 

if segments is None: 

return 

_segments = [] 

 

for seg in segments: 

if not isinstance(seg, np.ma.MaskedArray): 

seg = np.asarray(seg, float) 

_segments.append(seg) 

 

if self._uniform_offsets is not None: 

_segments = self._add_offsets(_segments) 

 

self._paths = [mpath.Path(_seg) for _seg in _segments] 

self.stale = True 

 

set_verts = set_segments # for compatibility with PolyCollection 

set_paths = set_segments 

 

def get_segments(self): 

""" 

Returns 

------- 

segments : list 

List of segments in the LineCollection. Each list item contains an 

array of vertices. 

""" 

segments = [] 

 

for path in self._paths: 

vertices = [vertex for vertex, _ in path.iter_segments()] 

vertices = np.asarray(vertices) 

segments.append(vertices) 

 

return segments 

 

def _add_offsets(self, segs): 

offsets = self._uniform_offsets 

Nsegs = len(segs) 

Noffs = offsets.shape[0] 

if Noffs == 1: 

for i in range(Nsegs): 

segs[i] = segs[i] + i * offsets 

else: 

for i in range(Nsegs): 

io = i % Noffs 

segs[i] = segs[i] + offsets[io:io + 1] 

return segs 

 

def set_color(self, c): 

""" 

Set the color(s) of the LineCollection. 

 

Parameters 

---------- 

c : 

Matplotlib color argument (all patches have same color), or a 

sequence or rgba tuples; if it is a sequence the patches will 

cycle through the sequence. 

""" 

self.set_edgecolor(c) 

self.stale = True 

 

def get_color(self): 

return self._edgecolors 

 

get_colors = get_color # for compatibility with old versions 

 

 

class EventCollection(LineCollection): 

''' 

A collection of discrete events. 

 

The events are given by a 1-dimensional array, usually the position of 

something along an axis, such as time or length. They do not have an 

amplitude and are displayed as vertical or horizontal parallel bars. 

''' 

 

_edge_default = True 

 

def __init__(self, 

positions, # Cannot be None. 

orientation=None, 

lineoffset=0, 

linelength=1, 

linewidth=None, 

color=None, 

linestyle='solid', 

antialiased=None, 

**kwargs 

): 

""" 

Parameters 

---------- 

positions : 1D array-like object 

Each value is an event. 

 

orientation : {None, 'horizontal', 'vertical'}, optional 

The orientation of the **collection** (the event bars are along 

the orthogonal direction). Defaults to 'horizontal' if not 

specified or None. 

 

lineoffset : scalar, optional, default: 0 

The offset of the center of the markers from the origin, in the 

direction orthogonal to *orientation*. 

 

linelength : scalar, optional, default: 1 

The total height of the marker (i.e. the marker stretches from 

``lineoffset - linelength/2`` to ``lineoffset + linelength/2``). 

 

linewidth : scalar or None, optional, default: None 

If it is None, defaults to its rcParams setting, in sequence form. 

 

color : color, sequence of colors or None, optional, default: None 

If it is None, defaults to its rcParams setting, in sequence form. 

 

linestyle : str or tuple, optional, default: 'solid' 

Valid strings are ['solid', 'dashed', 'dashdot', 'dotted', 

'-', '--', '-.', ':']. Dash tuples should be of the form:: 

 

(offset, onoffseq), 

 

where *onoffseq* is an even length tuple of on and off ink 

in points. 

 

antialiased : {None, 1, 2}, optional 

If it is None, defaults to its rcParams setting, in sequence form. 

 

**kwargs : optional 

Other keyword arguments are line collection properties. See 

:class:`~matplotlib.collections.LineCollection` for a list of 

the valid properties. 

 

Examples 

-------- 

 

.. plot:: gallery/lines_bars_and_markers/eventcollection_demo.py 

""" 

 

segment = (lineoffset + linelength / 2., 

lineoffset - linelength / 2.) 

if positions is None or len(positions) == 0: 

segments = [] 

elif hasattr(positions, 'ndim') and positions.ndim > 1: 

raise ValueError('positions cannot be an array with more than ' 

'one dimension.') 

elif (orientation is None or orientation.lower() == 'none' or 

orientation.lower() == 'horizontal'): 

positions.sort() 

segments = [[(coord1, coord2) for coord2 in segment] for 

coord1 in positions] 

self._is_horizontal = True 

elif orientation.lower() == 'vertical': 

positions.sort() 

segments = [[(coord2, coord1) for coord2 in segment] for 

coord1 in positions] 

self._is_horizontal = False 

else: 

raise ValueError("orientation must be 'horizontal' or 'vertical'") 

 

LineCollection.__init__(self, 

segments, 

linewidths=linewidth, 

colors=color, 

antialiaseds=antialiased, 

linestyles=linestyle, 

**kwargs) 

 

self._linelength = linelength 

self._lineoffset = lineoffset 

 

def get_positions(self): 

''' 

return an array containing the floating-point values of the positions 

''' 

segments = self.get_segments() 

pos = 0 if self.is_horizontal() else 1 

positions = [] 

for segment in segments: 

positions.append(segment[0, pos]) 

return positions 

 

def set_positions(self, positions): 

''' 

set the positions of the events to the specified value 

''' 

if positions is None or (hasattr(positions, 'len') and 

len(positions) == 0): 

self.set_segments([]) 

return 

 

lineoffset = self.get_lineoffset() 

linelength = self.get_linelength() 

segment = (lineoffset + linelength / 2., 

lineoffset - linelength / 2.) 

positions = np.asanyarray(positions) 

positions.sort() 

if self.is_horizontal(): 

segments = [[(coord1, coord2) for coord2 in segment] for 

coord1 in positions] 

else: 

segments = [[(coord2, coord1) for coord2 in segment] for 

coord1 in positions] 

self.set_segments(segments) 

 

def add_positions(self, position): 

''' 

add one or more events at the specified positions 

''' 

if position is None or (hasattr(position, 'len') and 

len(position) == 0): 

return 

positions = self.get_positions() 

positions = np.hstack([positions, np.asanyarray(position)]) 

self.set_positions(positions) 

extend_positions = append_positions = add_positions 

 

def is_horizontal(self): 

''' 

True if the eventcollection is horizontal, False if vertical 

''' 

return self._is_horizontal 

 

def get_orientation(self): 

''' 

get the orientation of the event line, may be: 

[ 'horizontal' | 'vertical' ] 

''' 

return 'horizontal' if self.is_horizontal() else 'vertical' 

 

def switch_orientation(self): 

''' 

switch the orientation of the event line, either from vertical to 

horizontal or vice versus 

''' 

segments = self.get_segments() 

for i, segment in enumerate(segments): 

segments[i] = np.fliplr(segment) 

self.set_segments(segments) 

self._is_horizontal = not self.is_horizontal() 

self.stale = True 

 

def set_orientation(self, orientation=None): 

''' 

set the orientation of the event line 

[ 'horizontal' | 'vertical' | None ] 

defaults to 'horizontal' if not specified or None 

''' 

if (orientation is None or orientation.lower() == 'none' or 

orientation.lower() == 'horizontal'): 

is_horizontal = True 

elif orientation.lower() == 'vertical': 

is_horizontal = False 

else: 

raise ValueError("orientation must be 'horizontal' or 'vertical'") 

 

if is_horizontal == self.is_horizontal(): 

return 

self.switch_orientation() 

 

def get_linelength(self): 

''' 

get the length of the lines used to mark each event 

''' 

return self._linelength 

 

def set_linelength(self, linelength): 

''' 

set the length of the lines used to mark each event 

''' 

if linelength == self.get_linelength(): 

return 

lineoffset = self.get_lineoffset() 

segments = self.get_segments() 

pos = 1 if self.is_horizontal() else 0 

for segment in segments: 

segment[0, pos] = lineoffset + linelength / 2. 

segment[1, pos] = lineoffset - linelength / 2. 

self.set_segments(segments) 

self._linelength = linelength 

 

def get_lineoffset(self): 

''' 

get the offset of the lines used to mark each event 

''' 

return self._lineoffset 

 

def set_lineoffset(self, lineoffset): 

''' 

set the offset of the lines used to mark each event 

''' 

if lineoffset == self.get_lineoffset(): 

return 

linelength = self.get_linelength() 

segments = self.get_segments() 

pos = 1 if self.is_horizontal() else 0 

for segment in segments: 

segment[0, pos] = lineoffset + linelength / 2. 

segment[1, pos] = lineoffset - linelength / 2. 

self.set_segments(segments) 

self._lineoffset = lineoffset 

 

def get_linewidth(self): 

"""Get the width of the lines used to mark each event.""" 

return super(EventCollection, self).get_linewidth()[0] 

 

def get_linewidths(self): 

return super(EventCollection, self).get_linewidth() 

 

def get_color(self): 

''' 

get the color of the lines used to mark each event 

''' 

return self.get_colors()[0] 

 

 

class CircleCollection(_CollectionWithSizes): 

""" 

A collection of circles, drawn using splines. 

""" 

_factor = CIRCLE_AREA_FACTOR 

 

@docstring.dedent_interpd 

def __init__(self, sizes, **kwargs): 

""" 

*sizes* 

Gives the area of the circle in points^2 

 

%(Collection)s 

""" 

Collection.__init__(self, **kwargs) 

self.set_sizes(sizes) 

self.set_transform(transforms.IdentityTransform()) 

self._paths = [mpath.Path.unit_circle()] 

 

 

class EllipseCollection(Collection): 

""" 

A collection of ellipses, drawn using splines. 

""" 

@docstring.dedent_interpd 

def __init__(self, widths, heights, angles, units='points', **kwargs): 

""" 

Parameters 

---------- 

widths : array-like 

The lengths of the first axes (e.g., major axis lengths). 

 

heights : array-like 

The lengths of second axes. 

 

angles : array-like 

The angles of the first axes, degrees CCW from the x-axis. 

 

units : {'points', 'inches', 'dots', 'width', 'height', 'x', 'y', 'xy'} 

 

The units in which majors and minors are given; 'width' and 

'height' refer to the dimensions of the axes, while 'x' 

and 'y' refer to the *offsets* data units. 'xy' differs 

from all others in that the angle as plotted varies with 

the aspect ratio, and equals the specified angle only when 

the aspect ratio is unity. Hence it behaves the same as 

the :class:`~matplotlib.patches.Ellipse` with 

``axes.transData`` as its transform. 

 

Other Parameters 

---------------- 

**kwargs 

Additional kwargs inherited from the base :class:`Collection`. 

 

%(Collection)s 

""" 

Collection.__init__(self, **kwargs) 

self._widths = 0.5 * np.asarray(widths).ravel() 

self._heights = 0.5 * np.asarray(heights).ravel() 

self._angles = np.deg2rad(angles).ravel() 

self._units = units 

self.set_transform(transforms.IdentityTransform()) 

self._transforms = np.empty((0, 3, 3)) 

self._paths = [mpath.Path.unit_circle()] 

 

def _set_transforms(self): 

""" 

Calculate transforms immediately before drawing. 

""" 

ax = self.axes 

fig = self.figure 

 

if self._units == 'xy': 

sc = 1 

elif self._units == 'x': 

sc = ax.bbox.width / ax.viewLim.width 

elif self._units == 'y': 

sc = ax.bbox.height / ax.viewLim.height 

elif self._units == 'inches': 

sc = fig.dpi 

elif self._units == 'points': 

sc = fig.dpi / 72.0 

elif self._units == 'width': 

sc = ax.bbox.width 

elif self._units == 'height': 

sc = ax.bbox.height 

elif self._units == 'dots': 

sc = 1.0 

else: 

raise ValueError('unrecognized units: %s' % self._units) 

 

self._transforms = np.zeros((len(self._widths), 3, 3)) 

widths = self._widths * sc 

heights = self._heights * sc 

sin_angle = np.sin(self._angles) 

cos_angle = np.cos(self._angles) 

self._transforms[:, 0, 0] = widths * cos_angle 

self._transforms[:, 0, 1] = heights * -sin_angle 

self._transforms[:, 1, 0] = widths * sin_angle 

self._transforms[:, 1, 1] = heights * cos_angle 

self._transforms[:, 2, 2] = 1.0 

 

_affine = transforms.Affine2D 

if self._units == 'xy': 

m = ax.transData.get_affine().get_matrix().copy() 

m[:2, 2:] = 0 

self.set_transform(_affine(m)) 

 

@artist.allow_rasterization 

def draw(self, renderer): 

self._set_transforms() 

Collection.draw(self, renderer) 

 

 

class PatchCollection(Collection): 

""" 

A generic collection of patches. 

 

This makes it easier to assign a color map to a heterogeneous 

collection of patches. 

 

This also may improve plotting speed, since PatchCollection will 

draw faster than a large number of patches. 

""" 

 

def __init__(self, patches, match_original=False, **kwargs): 

""" 

*patches* 

a sequence of Patch objects. This list may include 

a heterogeneous assortment of different patch types. 

 

*match_original* 

If True, use the colors and linewidths of the original 

patches. If False, new colors may be assigned by 

providing the standard collection arguments, facecolor, 

edgecolor, linewidths, norm or cmap. 

 

If any of *edgecolors*, *facecolors*, *linewidths*, 

*antialiaseds* are None, they default to their 

:data:`matplotlib.rcParams` patch setting, in sequence form. 

 

The use of :class:`~matplotlib.cm.ScalarMappable` is optional. 

If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not 

None (i.e., a call to set_array has been made), at draw time a 

call to scalar mappable will be made to set the face colors. 

""" 

 

if match_original: 

def determine_facecolor(patch): 

if patch.get_fill(): 

return patch.get_facecolor() 

return [0, 0, 0, 0] 

 

kwargs['facecolors'] = [determine_facecolor(p) for p in patches] 

kwargs['edgecolors'] = [p.get_edgecolor() for p in patches] 

kwargs['linewidths'] = [p.get_linewidth() for p in patches] 

kwargs['linestyles'] = [p.get_linestyle() for p in patches] 

kwargs['antialiaseds'] = [p.get_antialiased() for p in patches] 

 

Collection.__init__(self, **kwargs) 

 

self.set_paths(patches) 

 

def set_paths(self, patches): 

paths = [p.get_transform().transform_path(p.get_path()) 

for p in patches] 

self._paths = paths 

 

 

class TriMesh(Collection): 

""" 

Class for the efficient drawing of a triangular mesh using 

Gouraud shading. 

 

A triangular mesh is a :class:`~matplotlib.tri.Triangulation` 

object. 

""" 

def __init__(self, triangulation, **kwargs): 

Collection.__init__(self, **kwargs) 

self._triangulation = triangulation 

self._shading = 'gouraud' 

self._is_filled = True 

 

self._bbox = transforms.Bbox.unit() 

 

# Unfortunately this requires a copy, unless Triangulation 

# was rewritten. 

xy = np.hstack((triangulation.x.reshape(-1, 1), 

triangulation.y.reshape(-1, 1))) 

self._bbox.update_from_data_xy(xy) 

 

def get_paths(self): 

if self._paths is None: 

self.set_paths() 

return self._paths 

 

def set_paths(self): 

self._paths = self.convert_mesh_to_paths(self._triangulation) 

 

@staticmethod 

def convert_mesh_to_paths(tri): 

""" 

Converts a given mesh into a sequence of 

:class:`matplotlib.path.Path` objects for easier rendering by 

backends that do not directly support meshes. 

 

This function is primarily of use to backend implementers. 

""" 

triangles = tri.get_masked_triangles() 

verts = np.stack((tri.x[triangles], tri.y[triangles]), axis=-1) 

return [mpath.Path(x) for x in verts] 

 

@artist.allow_rasterization 

def draw(self, renderer): 

if not self.get_visible(): 

return 

renderer.open_group(self.__class__.__name__) 

transform = self.get_transform() 

 

# Get a list of triangles and the color at each vertex. 

tri = self._triangulation 

triangles = tri.get_masked_triangles() 

 

verts = np.stack((tri.x[triangles], tri.y[triangles]), axis=-1) 

 

self.update_scalarmappable() 

colors = self._facecolors[triangles] 

 

gc = renderer.new_gc() 

self._set_gc_clip(gc) 

gc.set_linewidth(self.get_linewidth()[0]) 

renderer.draw_gouraud_triangles(gc, verts, colors, transform.frozen()) 

gc.restore() 

renderer.close_group(self.__class__.__name__) 

 

 

class QuadMesh(Collection): 

""" 

Class for the efficient drawing of a quadrilateral mesh. 

 

A quadrilateral mesh consists of a grid of vertices. The 

dimensions of this array are (*meshWidth* + 1, *meshHeight* + 

1). Each vertex in the mesh has a different set of "mesh 

coordinates" representing its position in the topology of the 

mesh. For any values (*m*, *n*) such that 0 <= *m* <= *meshWidth* 

and 0 <= *n* <= *meshHeight*, the vertices at mesh coordinates 

(*m*, *n*), (*m*, *n* + 1), (*m* + 1, *n* + 1), and (*m* + 1, *n*) 

form one of the quadrilaterals in the mesh. There are thus 

(*meshWidth* * *meshHeight*) quadrilaterals in the mesh. The mesh 

need not be regular and the polygons need not be convex. 

 

A quadrilateral mesh is represented by a (2 x ((*meshWidth* + 1) * 

(*meshHeight* + 1))) numpy array *coordinates*, where each row is 

the *x* and *y* coordinates of one of the vertices. To define the 

function that maps from a data point to its corresponding color, 

use the :meth:`set_cmap` method. Each of these arrays is indexed in 

row-major order by the mesh coordinates of the vertex (or the mesh 

coordinates of the lower left vertex, in the case of the 

colors). 

 

For example, the first entry in *coordinates* is the 

coordinates of the vertex at mesh coordinates (0, 0), then the one 

at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and 

so on. 

 

*shading* may be 'flat', or 'gouraud' 

""" 

def __init__(self, meshWidth, meshHeight, coordinates, 

antialiased=True, shading='flat', **kwargs): 

Collection.__init__(self, **kwargs) 

self._meshWidth = meshWidth 

self._meshHeight = meshHeight 

# By converting to floats now, we can avoid that on every draw. 

self._coordinates = np.asarray(coordinates, float).reshape( 

(meshHeight + 1, meshWidth + 1, 2)) 

self._antialiased = antialiased 

self._shading = shading 

 

self._bbox = transforms.Bbox.unit() 

self._bbox.update_from_data_xy(coordinates.reshape( 

((meshWidth + 1) * (meshHeight + 1), 2))) 

 

def get_paths(self): 

if self._paths is None: 

self.set_paths() 

return self._paths 

 

def set_paths(self): 

self._paths = self.convert_mesh_to_paths( 

self._meshWidth, self._meshHeight, self._coordinates) 

self.stale = True 

 

def get_datalim(self, transData): 

return (self.get_transform() - transData).transform_bbox(self._bbox) 

 

@staticmethod 

def convert_mesh_to_paths(meshWidth, meshHeight, coordinates): 

""" 

Converts a given mesh into a sequence of 

:class:`matplotlib.path.Path` objects for easier rendering by 

backends that do not directly support quadmeshes. 

 

This function is primarily of use to backend implementers. 

""" 

if isinstance(coordinates, np.ma.MaskedArray): 

c = coordinates.data 

else: 

c = coordinates 

points = np.concatenate(( 

c[:-1, :-1], 

c[:-1, 1:], 

c[1:, 1:], 

c[1:, :-1], 

c[:-1, :-1] 

), axis=2) 

points = points.reshape((meshWidth * meshHeight, 5, 2)) 

return [mpath.Path(x) for x in points] 

 

def convert_mesh_to_triangles(self, meshWidth, meshHeight, coordinates): 

""" 

Converts a given mesh into a sequence of triangles, each point 

with its own color. This is useful for experiments using 

`draw_qouraud_triangle`. 

""" 

if isinstance(coordinates, np.ma.MaskedArray): 

p = coordinates.data 

else: 

p = coordinates 

 

p_a = p[:-1, :-1] 

p_b = p[:-1, 1:] 

p_c = p[1:, 1:] 

p_d = p[1:, :-1] 

p_center = (p_a + p_b + p_c + p_d) / 4.0 

 

triangles = np.concatenate(( 

p_a, p_b, p_center, 

p_b, p_c, p_center, 

p_c, p_d, p_center, 

p_d, p_a, p_center, 

), axis=2) 

triangles = triangles.reshape((meshWidth * meshHeight * 4, 3, 2)) 

 

c = self.get_facecolor().reshape((meshHeight + 1, meshWidth + 1, 4)) 

c_a = c[:-1, :-1] 

c_b = c[:-1, 1:] 

c_c = c[1:, 1:] 

c_d = c[1:, :-1] 

c_center = (c_a + c_b + c_c + c_d) / 4.0 

 

colors = np.concatenate(( 

c_a, c_b, c_center, 

c_b, c_c, c_center, 

c_c, c_d, c_center, 

c_d, c_a, c_center, 

), axis=2) 

colors = colors.reshape((meshWidth * meshHeight * 4, 3, 4)) 

 

return triangles, colors 

 

@artist.allow_rasterization 

def draw(self, renderer): 

if not self.get_visible(): 

return 

renderer.open_group(self.__class__.__name__, self.get_gid()) 

transform = self.get_transform() 

transOffset = self.get_offset_transform() 

offsets = self._offsets 

 

if self.have_units(): 

if len(self._offsets): 

xs = self.convert_xunits(self._offsets[:, 0]) 

ys = self.convert_yunits(self._offsets[:, 1]) 

offsets = np.column_stack([xs, ys]) 

 

self.update_scalarmappable() 

 

if not transform.is_affine: 

coordinates = self._coordinates.reshape((-1, 2)) 

coordinates = transform.transform(coordinates) 

coordinates = coordinates.reshape(self._coordinates.shape) 

transform = transforms.IdentityTransform() 

else: 

coordinates = self._coordinates 

 

if not transOffset.is_affine: 

offsets = transOffset.transform_non_affine(offsets) 

transOffset = transOffset.get_affine() 

 

gc = renderer.new_gc() 

self._set_gc_clip(gc) 

gc.set_linewidth(self.get_linewidth()[0]) 

 

if self._shading == 'gouraud': 

triangles, colors = self.convert_mesh_to_triangles( 

self._meshWidth, self._meshHeight, coordinates) 

renderer.draw_gouraud_triangles( 

gc, triangles, colors, transform.frozen()) 

else: 

renderer.draw_quad_mesh( 

gc, transform.frozen(), self._meshWidth, self._meshHeight, 

coordinates, offsets, transOffset, self.get_facecolor(), 

self._antialiased, self.get_edgecolors()) 

gc.restore() 

renderer.close_group(self.__class__.__name__) 

self.stale = False 

 

 

patchstr = artist.kwdoc(Collection) 

for k in ('QuadMesh', 'TriMesh', 'PolyCollection', 'BrokenBarHCollection', 

'RegularPolyCollection', 'PathCollection', 

'StarPolygonCollection', 'PatchCollection', 

'CircleCollection', 'Collection',): 

docstring.interpd.update({k: patchstr}) 

docstring.interpd.update(LineCollection=artist.kwdoc(LineCollection))