1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

''' 

Colorbar toolkit with two classes and a function: 

 

:class:`ColorbarBase` 

the base class with full colorbar drawing functionality. 

It can be used as-is to make a colorbar for a given colormap; 

a mappable object (e.g., image) is not needed. 

 

:class:`Colorbar` 

the derived class for use with images or contour plots. 

 

:func:`make_axes` 

a function for resizing an axes and adding a second axes 

suitable for a colorbar 

 

The :meth:`~matplotlib.figure.Figure.colorbar` method uses :func:`make_axes` 

and :class:`Colorbar`; the :func:`~matplotlib.pyplot.colorbar` function 

is a thin wrapper over :meth:`~matplotlib.figure.Figure.colorbar`. 

 

''' 

 

import logging 

import warnings 

 

import numpy as np 

 

import matplotlib as mpl 

import matplotlib.artist as martist 

import matplotlib.cbook as cbook 

import matplotlib.collections as collections 

import matplotlib.colors as colors 

import matplotlib.contour as contour 

import matplotlib.cm as cm 

import matplotlib.gridspec as gridspec 

import matplotlib.patches as mpatches 

import matplotlib.path as mpath 

import matplotlib.ticker as ticker 

import matplotlib.transforms as mtransforms 

import matplotlib._layoutbox as layoutbox 

import matplotlib._constrained_layout as constrained_layout 

from matplotlib import docstring 

 

_log = logging.getLogger(__name__) 

 

make_axes_kw_doc = ''' 

 

============= ==================================================== 

Property Description 

============= ==================================================== 

*orientation* vertical or horizontal 

*fraction* 0.15; fraction of original axes to use for colorbar 

*pad* 0.05 if vertical, 0.15 if horizontal; fraction 

of original axes between colorbar and new image axes 

*shrink* 1.0; fraction by which to multiply the size of the colorbar 

*aspect* 20; ratio of long to short dimensions 

*anchor* (0.0, 0.5) if vertical; (0.5, 1.0) if horizontal; 

the anchor point of the colorbar axes 

*panchor* (1.0, 0.5) if vertical; (0.5, 0.0) if horizontal; 

the anchor point of the colorbar parent axes. If 

False, the parent axes' anchor will be unchanged 

============= ==================================================== 

 

''' 

 

colormap_kw_doc = ''' 

 

============ ==================================================== 

Property Description 

============ ==================================================== 

*extend* [ 'neither' | 'both' | 'min' | 'max' ] 

If not 'neither', make pointed end(s) for out-of- 

range values. These are set for a given colormap 

using the colormap set_under and set_over methods. 

*extendfrac* [ *None* | 'auto' | length | lengths ] 

If set to *None*, both the minimum and maximum 

triangular colorbar extensions with have a length of 

5% of the interior colorbar length (this is the 

default setting). If set to 'auto', makes the 

triangular colorbar extensions the same lengths as 

the interior boxes (when *spacing* is set to 

'uniform') or the same lengths as the respective 

adjacent interior boxes (when *spacing* is set to 

'proportional'). If a scalar, indicates the length 

of both the minimum and maximum triangular colorbar 

extensions as a fraction of the interior colorbar 

length. A two-element sequence of fractions may also 

be given, indicating the lengths of the minimum and 

maximum colorbar extensions respectively as a 

fraction of the interior colorbar length. 

*extendrect* bool 

If *False* the minimum and maximum colorbar extensions 

will be triangular (the default). If *True* the 

extensions will be rectangular. 

*spacing* [ 'uniform' | 'proportional' ] 

Uniform spacing gives each discrete color the same 

space; proportional makes the space proportional to 

the data interval. 

*ticks* [ None | list of ticks | Locator object ] 

If None, ticks are determined automatically from the 

input. 

*format* [ None | format string | Formatter object ] 

If None, the 

:class:`~matplotlib.ticker.ScalarFormatter` is used. 

If a format string is given, e.g., '%.3f', that is 

used. An alternative 

:class:`~matplotlib.ticker.Formatter` object may be 

given instead. 

*drawedges* bool 

Whether to draw lines at color boundaries. 

============ ==================================================== 

 

The following will probably be useful only in the context of 

indexed colors (that is, when the mappable has norm=NoNorm()), 

or other unusual circumstances. 

 

============ =================================================== 

Property Description 

============ =================================================== 

*boundaries* None or a sequence 

*values* None or a sequence which must be of length 1 less 

than the sequence of *boundaries*. For each region 

delimited by adjacent entries in *boundaries*, the 

color mapped to the corresponding value in values 

will be used. 

============ =================================================== 

 

''' 

 

colorbar_doc = ''' 

 

Add a colorbar to a plot. 

 

Function signatures for the :mod:`~matplotlib.pyplot` interface; all 

but the first are also method signatures for the 

:meth:`~matplotlib.figure.Figure.colorbar` method:: 

 

colorbar(**kwargs) 

colorbar(mappable, **kwargs) 

colorbar(mappable, cax=cax, **kwargs) 

colorbar(mappable, ax=ax, **kwargs) 

 

Parameters 

---------- 

mappable : 

The :class:`~matplotlib.image.Image`, 

:class:`~matplotlib.contour.ContourSet`, etc. to 

which the colorbar applies; this argument is mandatory for the Figure 

:meth:`~matplotlib.figure.Figure.colorbar` method but optional for the 

pyplot :func:`~matplotlib.pyplot.colorbar` function, which sets the 

default to the current image. 

 

cax : :class:`~matplotlib.axes.Axes` object, optional 

Axes into which the colorbar will be drawn. 

 

ax : :class:`~matplotlib.axes.Axes`, list of Axes, optional 

Parent axes from which space for a new colorbar axes will be stolen. 

If a list of axes is given they will all be resized to make room for the 

colorbar axes. 

 

use_gridspec : bool, optional 

If *cax* is ``None``, a new *cax* is created as an instance of 

Axes. If *ax* is an instance of Subplot and *use_gridspec* is ``True``, 

*cax* is created as an instance of Subplot using the 

grid_spec module. 

 

 

Returns 

------- 

:class:`~matplotlib.colorbar.Colorbar` instance 

See also its base class, :class:`~matplotlib.colorbar.ColorbarBase`. 

Call the :meth:`~matplotlib.colorbar.ColorbarBase.set_label` method 

to label the colorbar. 

 

Notes 

----- 

Additional keyword arguments are of two kinds: 

 

axes properties: 

%s 

colorbar properties: 

%s 

 

If *mappable* is a :class:`~matplotlib.contours.ContourSet`, its *extend* 

kwarg is included automatically. 

 

The *shrink* kwarg provides a simple way to scale the colorbar with respect 

to the axes. Note that if *cax* is specified it determines the size of the 

colorbar and *shrink* and *aspect* kwargs are ignored. 

 

For more precise control, you can manually specify the positions of 

the axes objects in which the mappable and the colorbar are drawn. In 

this case, do not use any of the axes properties kwargs. 

 

It is known that some vector graphics viewer (svg and pdf) renders white gaps 

between segments of the colorbar. This is due to bugs in the viewers not 

matplotlib. As a workaround the colorbar can be rendered with overlapping 

segments:: 

 

cbar = colorbar() 

cbar.solids.set_edgecolor("face") 

draw() 

 

However this has negative consequences in other circumstances. Particularly 

with semi transparent images (alpha < 1) and colorbar extensions and is not 

enabled by default see (issue #1188). 

 

''' % (make_axes_kw_doc, colormap_kw_doc) 

 

docstring.interpd.update(colorbar_doc=colorbar_doc) 

 

 

def _set_ticks_on_axis_warn(*args, **kw): 

# a top level function which gets put in at the axes' 

# set_xticks set_yticks by _patch_ax 

warnings.warn("Use the colorbar set_ticks() method instead.") 

 

 

class _ColorbarAutoLocator(ticker.MaxNLocator): 

""" 

AutoLocator for Colorbar 

 

This locator is just a `.MaxNLocator` except the min and max are 

clipped by the norm's min and max (i.e. vmin/vmax from the 

image/pcolor/contour object). This is necessary so ticks don't 

extrude into the "extend regions". 

""" 

 

def __init__(self, colorbar): 

""" 

This ticker needs to know the *colorbar* so that it can access 

its *vmin* and *vmax*. Otherwise it is the same as 

`~.ticker.AutoLocator`. 

""" 

 

self._colorbar = colorbar 

nbins = 'auto' 

steps = [1, 2, 2.5, 5, 10] 

super().__init__(nbins=nbins, steps=steps) 

 

def tick_values(self, vmin, vmax): 

vmin = max(vmin, self._colorbar.norm.vmin) 

vmax = min(vmax, self._colorbar.norm.vmax) 

ticks = super().tick_values(vmin, vmax) 

rtol = (vmax - vmin) * 1e-10 

return ticks[(ticks >= vmin - rtol) & (ticks <= vmax + rtol)] 

 

 

class _ColorbarAutoMinorLocator(ticker.AutoMinorLocator): 

""" 

AutoMinorLocator for Colorbar 

 

This locator is just a `.AutoMinorLocator` except the min and max are 

clipped by the norm's min and max (i.e. vmin/vmax from the 

image/pcolor/contour object). This is necessary so that the minorticks 

don't extrude into the "extend regions". 

""" 

 

def __init__(self, colorbar, n=None): 

""" 

This ticker needs to know the *colorbar* so that it can access 

its *vmin* and *vmax*. 

""" 

self._colorbar = colorbar 

self.ndivs = n 

super().__init__(n=None) 

 

def __call__(self): 

vmin = self._colorbar.norm.vmin 

vmax = self._colorbar.norm.vmax 

ticks = super().__call__() 

rtol = (vmax - vmin) * 1e-10 

return ticks[(ticks >= vmin - rtol) & (ticks <= vmax + rtol)] 

 

 

class _ColorbarLogLocator(ticker.LogLocator): 

""" 

LogLocator for Colorbarbar 

 

This locator is just a `.LogLocator` except the min and max are 

clipped by the norm's min and max (i.e. vmin/vmax from the 

image/pcolor/contour object). This is necessary so ticks don't 

extrude into the "extend regions". 

 

""" 

def __init__(self, colorbar, *args, **kwargs): 

""" 

_ColorbarLogLocator(colorbar, *args, **kwargs) 

 

This ticker needs to know the *colorbar* so that it can access 

its *vmin* and *vmax*. Otherwise it is the same as 

`~.ticker.LogLocator`. The ``*args`` and ``**kwargs`` are the 

same as `~.ticker.LogLocator`. 

""" 

self._colorbar = colorbar 

super().__init__(*args, **kwargs) 

 

def tick_values(self, vmin, vmax): 

vmin = self._colorbar.norm.vmin 

vmax = self._colorbar.norm.vmax 

ticks = super().tick_values(vmin, vmax) 

rtol = (np.log10(vmax) - np.log10(vmin)) * 1e-10 

ticks = ticks[(np.log10(ticks) >= np.log10(vmin) - rtol) & 

(np.log10(ticks) <= np.log10(vmax) + rtol)] 

return ticks 

 

 

class ColorbarBase(cm.ScalarMappable): 

''' 

Draw a colorbar in an existing axes. 

 

This is a base class for the :class:`Colorbar` class, which is the 

basis for the :func:`~matplotlib.pyplot.colorbar` function and the 

:meth:`~matplotlib.figure.Figure.colorbar` method, which are the 

usual ways of creating a colorbar. 

 

It is also useful by itself for showing a colormap. If the *cmap* 

kwarg is given but *boundaries* and *values* are left as None, 

then the colormap will be displayed on a 0-1 scale. To show the 

under- and over-value colors, specify the *norm* as:: 

 

colors.Normalize(clip=False) 

 

To show the colors versus index instead of on the 0-1 scale, 

use:: 

 

norm=colors.NoNorm. 

 

Useful public methods are :meth:`set_label` and :meth:`add_lines`. 

 

Attributes 

---------- 

ax : Axes 

The `Axes` instance in which the colorbar is drawn. 

 

lines : list 

A list of `LineCollection` if lines were drawn, otherwise 

an empty list. 

 

dividers : LineCollection 

A LineCollection if *drawedges* is ``True``, otherwise ``None``. 

''' 

_slice_dict = {'neither': slice(0, None), 

'both': slice(1, -1), 

'min': slice(1, None), 

'max': slice(0, -1)} 

 

n_rasterize = 50 # rasterize solids if number of colors >= n_rasterize 

 

def __init__(self, ax, cmap=None, 

norm=None, 

alpha=None, 

values=None, 

boundaries=None, 

orientation='vertical', 

ticklocation='auto', 

extend='neither', 

spacing='uniform', # uniform or proportional 

ticks=None, 

format=None, 

drawedges=False, 

filled=True, 

extendfrac=None, 

extendrect=False, 

label='', 

): 

#: The axes that this colorbar lives in. 

self.ax = ax 

self._patch_ax() 

if cmap is None: 

cmap = cm.get_cmap() 

if norm is None: 

norm = colors.Normalize() 

self.alpha = alpha 

cm.ScalarMappable.__init__(self, cmap=cmap, norm=norm) 

self.values = values 

self.boundaries = boundaries 

self.extend = extend 

self._inside = self._slice_dict[extend] 

self.spacing = spacing 

self.orientation = orientation 

self.drawedges = drawedges 

self.filled = filled 

self.extendfrac = extendfrac 

self.extendrect = extendrect 

self.solids = None 

self.lines = list() 

self.outline = None 

self.patch = None 

self.dividers = None 

self._manual_tick_data_values = None 

 

if ticklocation == 'auto': 

ticklocation = 'bottom' if orientation == 'horizontal' else 'right' 

self.ticklocation = ticklocation 

 

self.set_label(label) 

if cbook.iterable(ticks): 

self.locator = ticker.FixedLocator(ticks, nbins=len(ticks)) 

else: 

self.locator = ticks # Handle default in _ticker() 

if format is None: 

if isinstance(self.norm, colors.LogNorm): 

self.formatter = ticker.LogFormatterSciNotation() 

elif isinstance(self.norm, colors.SymLogNorm): 

self.formatter = ticker.LogFormatterSciNotation( 

linthresh=self.norm.linthresh) 

else: 

self.formatter = ticker.ScalarFormatter() 

elif isinstance(format, str): 

self.formatter = ticker.FormatStrFormatter(format) 

else: 

self.formatter = format # Assume it is a Formatter 

# The rest is in a method so we can recalculate when clim changes. 

self.draw_all() 

 

def _extend_lower(self): 

"""Returns whether the lower limit is open ended.""" 

return self.extend in ('both', 'min') 

 

def _extend_upper(self): 

"""Returns whether the uper limit is open ended.""" 

return self.extend in ('both', 'max') 

 

def _patch_ax(self): 

# bind some methods to the axes to warn users 

# against using those methods. 

self.ax.set_xticks = _set_ticks_on_axis_warn 

self.ax.set_yticks = _set_ticks_on_axis_warn 

 

def draw_all(self): 

''' 

Calculate any free parameters based on the current cmap and norm, 

and do all the drawing. 

''' 

 

# sets self._boundaries and self._values in real data units. 

# takes into account extend values: 

self._process_values() 

# sets self.vmin and vmax in data units, but just for 

# the part of the colorbar that is not part of the extend 

# patch: 

self._find_range() 

# returns the X and Y mesh, *but* this was/is in normalized 

# units: 

X, Y = self._mesh() 

C = self._values[:, np.newaxis] 

self.config_axis() 

self._config_axes(X, Y) 

if self.filled: 

self._add_solids(X, Y, C) 

 

def config_axis(self): 

ax = self.ax 

if (isinstance(self.norm, colors.LogNorm) 

and self._use_auto_colorbar_locator()): 

# *both* axes are made log so that determining the 

# mid point is easier. 

ax.set_xscale('log') 

ax.set_yscale('log') 

 

if self.orientation == 'vertical': 

long_axis, short_axis = ax.yaxis, ax.xaxis 

else: 

long_axis, short_axis = ax.xaxis, ax.yaxis 

 

long_axis.set_label_position(self.ticklocation) 

long_axis.set_ticks_position(self.ticklocation) 

short_axis.set_ticks([]) 

short_axis.set_ticks([], minor=True) 

self._set_label() 

 

def _get_ticker_locator_formatter(self): 

""" 

This code looks at the norm being used by the colorbar 

and decides what locator and formatter to use. If ``locator`` has 

already been set by hand, it just returns 

``self.locator, self.formatter``. 

""" 

locator = self.locator 

formatter = self.formatter 

if locator is None: 

if self.boundaries is None: 

if isinstance(self.norm, colors.NoNorm): 

nv = len(self._values) 

base = 1 + int(nv / 10) 

locator = ticker.IndexLocator(base=base, offset=0) 

elif isinstance(self.norm, colors.BoundaryNorm): 

b = self.norm.boundaries 

locator = ticker.FixedLocator(b, nbins=10) 

elif isinstance(self.norm, colors.LogNorm): 

locator = _ColorbarLogLocator(self) 

elif isinstance(self.norm, colors.SymLogNorm): 

# The subs setting here should be replaced 

# by logic in the locator. 

locator = ticker.SymmetricalLogLocator( 

subs=np.arange(1, 10), 

linthresh=self.norm.linthresh, 

base=10) 

else: 

if mpl.rcParams['_internal.classic_mode']: 

locator = ticker.MaxNLocator() 

else: 

locator = _ColorbarAutoLocator(self) 

else: 

b = self._boundaries[self._inside] 

locator = ticker.FixedLocator(b, nbins=10) 

_log.debug('locator: %r', locator) 

return locator, formatter 

 

def _use_auto_colorbar_locator(self): 

""" 

Return if we should use an adjustable tick locator or a fixed 

one. (check is used twice so factored out here...) 

""" 

return (self.boundaries is None 

and self.values is None 

and ((type(self.norm) == colors.Normalize) 

or (type(self.norm) == colors.LogNorm))) 

 

def update_ticks(self): 

""" 

Force the update of the ticks and ticklabels. This must be 

called whenever the tick locator and/or tick formatter changes. 

""" 

ax = self.ax 

# get the locator and formatter. Defaults to 

# self.locator if not None.. 

locator, formatter = self._get_ticker_locator_formatter() 

 

if self.orientation == 'vertical': 

long_axis, short_axis = ax.yaxis, ax.xaxis 

else: 

long_axis, short_axis = ax.xaxis, ax.yaxis 

 

if self._use_auto_colorbar_locator(): 

_log.debug('Using auto colorbar locator on colorbar') 

_log.debug('locator: %r', locator) 

long_axis.set_major_locator(locator) 

long_axis.set_major_formatter(formatter) 

if type(self.norm) == colors.LogNorm: 

long_axis.set_minor_locator(_ColorbarLogLocator(self, 

base=10., subs='auto')) 

long_axis.set_minor_formatter( 

ticker.LogFormatterSciNotation() 

) 

else: 

_log.debug('Using fixed locator on colorbar') 

ticks, ticklabels, offset_string = self._ticker(locator, formatter) 

long_axis.set_ticks(ticks) 

long_axis.set_ticklabels(ticklabels) 

long_axis.get_major_formatter().set_offset_string(offset_string) 

 

def set_ticks(self, ticks, update_ticks=True): 

""" 

Set tick locations. 

 

Parameters 

---------- 

ticks : {None, sequence, :class:`~matplotlib.ticker.Locator` instance} 

If None, a default Locator will be used. 

 

update_ticks : {True, False}, optional 

If True, tick locations are updated immediately. If False, 

use :meth:`update_ticks` to manually update the ticks. 

 

""" 

if cbook.iterable(ticks): 

self.locator = ticker.FixedLocator(ticks, nbins=len(ticks)) 

else: 

self.locator = ticks 

 

if update_ticks: 

self.update_ticks() 

self.stale = True 

 

def get_ticks(self, minor=False): 

"""Return the x ticks as a list of locations""" 

if self._manual_tick_data_values is None: 

ax = self.ax 

if self.orientation == 'vertical': 

long_axis, short_axis = ax.yaxis, ax.xaxis 

else: 

long_axis, short_axis = ax.xaxis, ax.yaxis 

return long_axis.get_majorticklocs() 

else: 

# We made the axes manually, the old way, and the ylim is 0-1, 

# so the majorticklocs are in those units, not data units. 

return self._manual_tick_data_values 

 

def set_ticklabels(self, ticklabels, update_ticks=True): 

""" 

set tick labels. Tick labels are updated immediately unless 

update_ticks is *False*. To manually update the ticks, call 

*update_ticks* method explicitly. 

""" 

if isinstance(self.locator, ticker.FixedLocator): 

self.formatter = ticker.FixedFormatter(ticklabels) 

if update_ticks: 

self.update_ticks() 

else: 

warnings.warn("set_ticks() must have been called.") 

self.stale = True 

 

def _config_axes(self, X, Y): 

''' 

Make an axes patch and outline. 

''' 

ax = self.ax 

ax.set_frame_on(False) 

ax.set_navigate(False) 

xy = self._outline(X, Y) 

ax.ignore_existing_data_limits = True 

ax.update_datalim(xy) 

ax.set_xlim(*ax.dataLim.intervalx) 

ax.set_ylim(*ax.dataLim.intervaly) 

if self.outline is not None: 

self.outline.remove() 

self.outline = mpatches.Polygon( 

xy, edgecolor=mpl.rcParams['axes.edgecolor'], 

facecolor='none', 

linewidth=mpl.rcParams['axes.linewidth'], 

closed=True, 

zorder=2) 

ax.add_artist(self.outline) 

self.outline.set_clip_box(None) 

self.outline.set_clip_path(None) 

c = mpl.rcParams['axes.facecolor'] 

if self.patch is not None: 

self.patch.remove() 

self.patch = mpatches.Polygon(xy, edgecolor=c, 

facecolor=c, 

linewidth=0.01, 

zorder=-1) 

ax.add_artist(self.patch) 

 

self.update_ticks() 

 

def _set_label(self): 

if self.orientation == 'vertical': 

self.ax.set_ylabel(self._label, **self._labelkw) 

else: 

self.ax.set_xlabel(self._label, **self._labelkw) 

self.stale = True 

 

def set_label(self, label, **kw): 

''' 

Label the long axis of the colorbar 

''' 

self._label = '%s' % (label, ) 

self._labelkw = kw 

self._set_label() 

 

def _outline(self, X, Y): 

''' 

Return *x*, *y* arrays of colorbar bounding polygon, 

taking orientation into account. 

''' 

N = X.shape[0] 

ii = [0, 1, N - 2, N - 1, 2 * N - 1, 2 * N - 2, N + 1, N, 0] 

x = np.take(np.ravel(np.transpose(X)), ii) 

y = np.take(np.ravel(np.transpose(Y)), ii) 

x = x.reshape((len(x), 1)) 

y = y.reshape((len(y), 1)) 

if self.orientation == 'horizontal': 

return np.hstack((y, x)) 

return np.hstack((x, y)) 

 

def _edges(self, X, Y): 

''' 

Return the separator line segments; helper for _add_solids. 

''' 

N = X.shape[0] 

# Using the non-array form of these line segments is much 

# simpler than making them into arrays. 

if self.orientation == 'vertical': 

return [list(zip(X[i], Y[i])) for i in range(1, N - 1)] 

else: 

return [list(zip(Y[i], X[i])) for i in range(1, N - 1)] 

 

def _add_solids(self, X, Y, C): 

''' 

Draw the colors using :meth:`~matplotlib.axes.Axes.pcolormesh`; 

optionally add separators. 

''' 

if self.orientation == 'vertical': 

args = (X, Y, C) 

else: 

args = (np.transpose(Y), np.transpose(X), np.transpose(C)) 

kw = dict(cmap=self.cmap, 

norm=self.norm, 

alpha=self.alpha, 

edgecolors='None') 

_log.debug('Setting pcolormesh') 

col = self.ax.pcolormesh(*args, **kw) 

# self.add_observer(col) # We should observe, not be observed... 

 

if self.solids is not None: 

self.solids.remove() 

self.solids = col 

if self.dividers is not None: 

self.dividers.remove() 

self.dividers = None 

if self.drawedges: 

linewidths = (0.5 * mpl.rcParams['axes.linewidth'],) 

self.dividers = collections.LineCollection( 

self._edges(X, Y), 

colors=(mpl.rcParams['axes.edgecolor'],), 

linewidths=linewidths) 

self.ax.add_collection(self.dividers) 

elif len(self._y) >= self.n_rasterize: 

self.solids.set_rasterized(True) 

 

def add_lines(self, levels, colors, linewidths, erase=True): 

''' 

Draw lines on the colorbar. 

 

*colors* and *linewidths* must be scalars or 

sequences the same length as *levels*. 

 

Set *erase* to False to add lines without first 

removing any previously added lines. 

''' 

y = self._locate(levels) 

rtol = (self._y[-1] - self._y[0]) * 1e-10 

igood = (y < self._y[-1] + rtol) & (y > self._y[0] - rtol) 

y = y[igood] 

if cbook.iterable(colors): 

colors = np.asarray(colors)[igood] 

if cbook.iterable(linewidths): 

linewidths = np.asarray(linewidths)[igood] 

X, Y = np.meshgrid([self._y[0], self._y[-1]], y) 

if self.orientation == 'vertical': 

xy = np.stack([X, Y], axis=-1) 

else: 

xy = np.stack([Y, X], axis=-1) 

col = collections.LineCollection(xy, linewidths=linewidths) 

 

if erase and self.lines: 

for lc in self.lines: 

lc.remove() 

self.lines = [] 

self.lines.append(col) 

col.set_color(colors) 

self.ax.add_collection(col) 

self.stale = True 

 

def _ticker(self, locator, formatter): 

''' 

Return the sequence of ticks (colorbar data locations), 

ticklabels (strings), and the corresponding offset string. 

''' 

if isinstance(self.norm, colors.NoNorm) and self.boundaries is None: 

intv = self._values[0], self._values[-1] 

else: 

intv = self.vmin, self.vmax 

locator.create_dummy_axis(minpos=intv[0]) 

formatter.create_dummy_axis(minpos=intv[0]) 

locator.set_view_interval(*intv) 

locator.set_data_interval(*intv) 

formatter.set_view_interval(*intv) 

formatter.set_data_interval(*intv) 

 

b = np.array(locator()) 

if isinstance(locator, ticker.LogLocator): 

eps = 1e-10 

b = b[(b <= intv[1] * (1 + eps)) & (b >= intv[0] * (1 - eps))] 

else: 

eps = (intv[1] - intv[0]) * 1e-10 

b = b[(b <= intv[1] + eps) & (b >= intv[0] - eps)] 

self._manual_tick_data_values = b 

ticks = self._locate(b) 

formatter.set_locs(b) 

ticklabels = [formatter(t, i) for i, t in enumerate(b)] 

offset_string = formatter.get_offset() 

return ticks, ticklabels, offset_string 

 

def _process_values(self, b=None): 

''' 

Set the :attr:`_boundaries` and :attr:`_values` attributes 

based on the input boundaries and values. Input boundaries 

can be *self.boundaries* or the argument *b*. 

''' 

if b is None: 

b = self.boundaries 

if b is not None: 

self._boundaries = np.asarray(b, dtype=float) 

if self.values is None: 

self._values = 0.5 * (self._boundaries[:-1] 

+ self._boundaries[1:]) 

if isinstance(self.norm, colors.NoNorm): 

self._values = (self._values + 0.00001).astype(np.int16) 

return 

self._values = np.array(self.values) 

return 

if self.values is not None: 

self._values = np.array(self.values) 

if self.boundaries is None: 

b = np.zeros(len(self.values) + 1, 'd') 

b[1:-1] = 0.5 * (self._values[:-1] - self._values[1:]) 

b[0] = 2.0 * b[1] - b[2] 

b[-1] = 2.0 * b[-2] - b[-3] 

self._boundaries = b 

return 

self._boundaries = np.array(self.boundaries) 

return 

# Neither boundaries nor values are specified; 

# make reasonable ones based on cmap and norm. 

if isinstance(self.norm, colors.NoNorm): 

b = self._uniform_y(self.cmap.N + 1) * self.cmap.N - 0.5 

v = np.zeros((len(b) - 1,), dtype=np.int16) 

v[self._inside] = np.arange(self.cmap.N, dtype=np.int16) 

if self._extend_lower(): 

v[0] = -1 

if self._extend_upper(): 

v[-1] = self.cmap.N 

self._boundaries = b 

self._values = v 

return 

elif isinstance(self.norm, colors.BoundaryNorm): 

b = list(self.norm.boundaries) 

if self._extend_lower(): 

b = [b[0] - 1] + b 

if self._extend_upper(): 

b = b + [b[-1] + 1] 

b = np.array(b) 

v = np.zeros((len(b) - 1,), dtype=float) 

bi = self.norm.boundaries 

v[self._inside] = 0.5 * (bi[:-1] + bi[1:]) 

if self._extend_lower(): 

v[0] = b[0] - 1 

if self._extend_upper(): 

v[-1] = b[-1] + 1 

self._boundaries = b 

self._values = v 

return 

else: 

if not self.norm.scaled(): 

self.norm.vmin = 0 

self.norm.vmax = 1 

 

self.norm.vmin, self.norm.vmax = mtransforms.nonsingular( 

self.norm.vmin, 

self.norm.vmax, 

expander=0.1) 

 

b = self.norm.inverse(self._uniform_y(self.cmap.N + 1)) 

 

if isinstance(self.norm, (colors.PowerNorm, colors.LogNorm)): 

# If using a lognorm or powernorm, ensure extensions don't 

# go negative 

if self._extend_lower(): 

b[0] = 0.9 * b[0] 

if self._extend_upper(): 

b[-1] = 1.1 * b[-1] 

else: 

if self._extend_lower(): 

b[0] = b[0] - 1 

if self._extend_upper(): 

b[-1] = b[-1] + 1 

self._process_values(b) 

 

def _find_range(self): 

''' 

Set :attr:`vmin` and :attr:`vmax` attributes to the first and 

last boundary excluding extended end boundaries. 

''' 

b = self._boundaries[self._inside] 

self.vmin = b[0] 

self.vmax = b[-1] 

 

def _central_N(self): 

'''number of boundaries **before** extension of ends''' 

nb = len(self._boundaries) 

if self.extend == 'both': 

nb -= 2 

elif self.extend in ('min', 'max'): 

nb -= 1 

return nb 

 

def _extended_N(self): 

''' 

Based on the colormap and extend variable, return the 

number of boundaries. 

''' 

N = self.cmap.N + 1 

if self.extend == 'both': 

N += 2 

elif self.extend in ('min', 'max'): 

N += 1 

return N 

 

def _get_extension_lengths(self, frac, automin, automax, default=0.05): 

''' 

Get the lengths of colorbar extensions. 

 

A helper method for _uniform_y and _proportional_y. 

''' 

# Set the default value. 

extendlength = np.array([default, default]) 

if isinstance(frac, str): 

if frac.lower() == 'auto': 

# Use the provided values when 'auto' is required. 

extendlength[:] = [automin, automax] 

else: 

# Any other string is invalid. 

raise ValueError('invalid value for extendfrac') 

elif frac is not None: 

try: 

# Try to set min and max extension fractions directly. 

extendlength[:] = frac 

# If frac is a sequence containing None then NaN may 

# be encountered. This is an error. 

if np.isnan(extendlength).any(): 

raise ValueError() 

except (TypeError, ValueError): 

# Raise an error on encountering an invalid value for frac. 

raise ValueError('invalid value for extendfrac') 

return extendlength 

 

def _uniform_y(self, N): 

''' 

Return colorbar data coordinates for *N* uniformly 

spaced boundaries, plus ends if required. 

''' 

if self.extend == 'neither': 

y = np.linspace(0, 1, N) 

else: 

automin = automax = 1. / (N - 1.) 

extendlength = self._get_extension_lengths(self.extendfrac, 

automin, automax, 

default=0.05) 

if self.extend == 'both': 

y = np.zeros(N + 2, 'd') 

y[0] = 0. - extendlength[0] 

y[-1] = 1. + extendlength[1] 

elif self.extend == 'min': 

y = np.zeros(N + 1, 'd') 

y[0] = 0. - extendlength[0] 

else: 

y = np.zeros(N + 1, 'd') 

y[-1] = 1. + extendlength[1] 

y[self._inside] = np.linspace(0, 1, N) 

return y 

 

def _proportional_y(self): 

''' 

Return colorbar data coordinates for the boundaries of 

a proportional colorbar. 

''' 

if isinstance(self.norm, colors.BoundaryNorm): 

y = (self._boundaries - self._boundaries[0]) 

y = y / (self._boundaries[-1] - self._boundaries[0]) 

else: 

y = self.norm(self._boundaries.copy()) 

y = np.ma.filled(y, np.nan) 

if self.extend == 'min': 

# Exclude leftmost interval of y. 

clen = y[-1] - y[1] 

automin = (y[2] - y[1]) / clen 

automax = (y[-1] - y[-2]) / clen 

elif self.extend == 'max': 

# Exclude rightmost interval in y. 

clen = y[-2] - y[0] 

automin = (y[1] - y[0]) / clen 

automax = (y[-2] - y[-3]) / clen 

elif self.extend == 'both': 

# Exclude leftmost and rightmost intervals in y. 

clen = y[-2] - y[1] 

automin = (y[2] - y[1]) / clen 

automax = (y[-2] - y[-3]) / clen 

if self.extend in ('both', 'min', 'max'): 

extendlength = self._get_extension_lengths(self.extendfrac, 

automin, automax, 

default=0.05) 

if self.extend in ('both', 'min'): 

y[0] = 0. - extendlength[0] 

if self.extend in ('both', 'max'): 

y[-1] = 1. + extendlength[1] 

yi = y[self._inside] 

norm = colors.Normalize(yi[0], yi[-1]) 

y[self._inside] = np.ma.filled(norm(yi), np.nan) 

return y 

 

def _mesh(self): 

''' 

Return X,Y, the coordinate arrays for the colorbar pcolormesh. 

These are suitable for a vertical colorbar; swapping and 

transposition for a horizontal colorbar are done outside 

this function. 

''' 

# if boundaries and values are None, then we can go ahead and 

# scale this up for Auto tick location. Otherwise we 

# want to keep normalized between 0 and 1 and use manual tick 

# locations. 

 

x = np.array([0.0, 1.0]) 

if self.spacing == 'uniform': 

y = self._uniform_y(self._central_N()) 

else: 

y = self._proportional_y() 

if self._use_auto_colorbar_locator(): 

y = self.norm.inverse(y) 

x = self.norm.inverse(x) 

self._y = y 

X, Y = np.meshgrid(x, y) 

if self._use_auto_colorbar_locator(): 

xmid = self.norm.inverse(0.5) 

else: 

xmid = 0.5 

if self._extend_lower() and not self.extendrect: 

X[0, :] = xmid 

if self._extend_upper() and not self.extendrect: 

X[-1, :] = xmid 

return X, Y 

 

def _locate(self, x): 

''' 

Given a set of color data values, return their 

corresponding colorbar data coordinates. 

''' 

if isinstance(self.norm, (colors.NoNorm, colors.BoundaryNorm)): 

b = self._boundaries 

xn = x 

else: 

# Do calculations using normalized coordinates so 

# as to make the interpolation more accurate. 

b = self.norm(self._boundaries, clip=False).filled() 

xn = self.norm(x, clip=False).filled() 

 

# The rest is linear interpolation with extrapolation at ends. 

ii = np.searchsorted(b, xn) 

i0 = ii - 1 

itop = (ii == len(b)) 

ibot = (ii == 0) 

i0[itop] -= 1 

ii[itop] -= 1 

i0[ibot] += 1 

ii[ibot] += 1 

 

db = np.take(b, ii) - np.take(b, i0) 

y = self._y 

dy = np.take(y, ii) - np.take(y, i0) 

z = np.take(y, i0) + (xn - np.take(b, i0)) * dy / db 

return z 

 

def set_alpha(self, alpha): 

self.alpha = alpha 

 

def remove(self): 

""" 

Remove this colorbar from the figure 

""" 

 

fig = self.ax.figure 

fig.delaxes(self.ax) 

 

 

class Colorbar(ColorbarBase): 

""" 

This class connects a :class:`ColorbarBase` to a 

:class:`~matplotlib.cm.ScalarMappable` such as a 

:class:`~matplotlib.image.AxesImage` generated via 

:meth:`~matplotlib.axes.Axes.imshow`. 

 

It is not intended to be instantiated directly; instead, 

use :meth:`~matplotlib.figure.Figure.colorbar` or 

:func:`~matplotlib.pyplot.colorbar` to make your colorbar. 

 

""" 

def __init__(self, ax, mappable, **kw): 

# Ensure the given mappable's norm has appropriate vmin and vmax set 

# even if mappable.draw has not yet been called. 

mappable.autoscale_None() 

 

self.mappable = mappable 

kw['cmap'] = cmap = mappable.cmap 

kw['norm'] = norm = mappable.norm 

 

if isinstance(mappable, contour.ContourSet): 

CS = mappable 

kw['alpha'] = mappable.get_alpha() 

kw['boundaries'] = CS._levels 

kw['values'] = CS.cvalues 

kw['extend'] = CS.extend 

#kw['ticks'] = CS._levels 

kw.setdefault('ticks', ticker.FixedLocator(CS.levels, nbins=10)) 

kw['filled'] = CS.filled 

ColorbarBase.__init__(self, ax, **kw) 

if not CS.filled: 

self.add_lines(CS) 

else: 

if getattr(cmap, 'colorbar_extend', False) is not False: 

kw.setdefault('extend', cmap.colorbar_extend) 

 

if isinstance(mappable, martist.Artist): 

kw['alpha'] = mappable.get_alpha() 

 

ColorbarBase.__init__(self, ax, **kw) 

 

def on_mappable_changed(self, mappable): 

""" 

Updates this colorbar to match the mappable's properties. 

 

Typically this is automatically registered as an event handler 

by :func:`colorbar_factory` and should not be called manually. 

 

""" 

self.set_cmap(mappable.get_cmap()) 

self.set_clim(mappable.get_clim()) 

self.update_normal(mappable) 

 

def add_lines(self, CS, erase=True): 

''' 

Add the lines from a non-filled 

:class:`~matplotlib.contour.ContourSet` to the colorbar. 

 

Set *erase* to False if these lines should be added to 

any pre-existing lines. 

''' 

if not isinstance(CS, contour.ContourSet) or CS.filled: 

raise ValueError('add_lines is only for a ContourSet of lines') 

tcolors = [c[0] for c in CS.tcolors] 

tlinewidths = [t[0] for t in CS.tlinewidths] 

# The following was an attempt to get the colorbar lines 

# to follow subsequent changes in the contour lines, 

# but more work is needed: specifically, a careful 

# look at event sequences, and at how 

# to make one object track another automatically. 

#tcolors = [col.get_colors()[0] for col in CS.collections] 

#tlinewidths = [col.get_linewidth()[0] for lw in CS.collections] 

ColorbarBase.add_lines(self, CS.levels, tcolors, tlinewidths, 

erase=erase) 

 

def update_normal(self, mappable): 

''' 

update solid, lines, etc. Unlike update_bruteforce, it does 

not clear the axes. This is meant to be called when the image 

or contour plot to which this colorbar belongs is changed. 

''' 

self.draw_all() 

if isinstance(self.mappable, contour.ContourSet): 

CS = self.mappable 

if not CS.filled: 

self.add_lines(CS) 

self.stale = True 

 

def update_bruteforce(self, mappable): 

''' 

Destroy and rebuild the colorbar. This is 

intended to become obsolete, and will probably be 

deprecated and then removed. It is not called when 

the pyplot.colorbar function or the Figure.colorbar 

method are used to create the colorbar. 

 

''' 

# We are using an ugly brute-force method: clearing and 

# redrawing the whole thing. The problem is that if any 

# properties have been changed by methods other than the 

# colorbar methods, those changes will be lost. 

self.ax.cla() 

# clearing the axes will delete outline, patch, solids, and lines: 

self.outline = None 

self.patch = None 

self.solids = None 

self.lines = list() 

self.dividers = None 

self.set_alpha(mappable.get_alpha()) 

self.cmap = mappable.cmap 

self.norm = mappable.norm 

self.draw_all() 

if isinstance(self.mappable, contour.ContourSet): 

CS = self.mappable 

if not CS.filled: 

self.add_lines(CS) 

#if self.lines is not None: 

# tcolors = [c[0] for c in CS.tcolors] 

# self.lines.set_color(tcolors) 

#Fixme? Recalculate boundaries, ticks if vmin, vmax have changed. 

#Fixme: Some refactoring may be needed; we should not 

# be recalculating everything if there was a simple alpha 

# change. 

 

def remove(self): 

""" 

Remove this colorbar from the figure. If the colorbar was created with 

``use_gridspec=True`` then restore the gridspec to its previous value. 

""" 

 

ColorbarBase.remove(self) 

self.mappable.callbacksSM.disconnect(self.mappable.colorbar_cid) 

self.mappable.colorbar = None 

self.mappable.colorbar_cid = None 

 

try: 

ax = self.mappable.axes 

except AttributeError: 

return 

 

try: 

gs = ax.get_subplotspec().get_gridspec() 

subplotspec = gs.get_topmost_subplotspec() 

except AttributeError: 

# use_gridspec was False 

pos = ax.get_position(original=True) 

ax._set_position(pos) 

else: 

# use_gridspec was True 

ax.set_subplotspec(subplotspec) 

 

def minorticks_on(self): 

""" 

Turns on the minor ticks on the colorbar without extruding 

into the "extend regions". 

""" 

ax = self.ax 

long_axis = ax.yaxis if self.orientation == 'vertical' else ax.xaxis 

 

if long_axis.get_scale() == 'log': 

warnings.warn('minorticks_on() has no effect on a ' 

'logarithmic colorbar axis') 

else: 

long_axis.set_minor_locator(_ColorbarAutoMinorLocator(self)) 

 

def minorticks_off(self): 

""" 

Turns off the minor ticks on the colorbar. 

""" 

ax = self.ax 

long_axis = ax.yaxis if self.orientation == 'vertical' else ax.xaxis 

 

if long_axis.get_scale() == 'log': 

warnings.warn('minorticks_off() has no effect on a ' 

'logarithmic colorbar axis') 

else: 

long_axis.set_minor_locator(ticker.NullLocator()) 

 

 

@docstring.Substitution(make_axes_kw_doc) 

def make_axes(parents, location=None, orientation=None, fraction=0.15, 

shrink=1.0, aspect=20, **kw): 

''' 

Resize and reposition parent axes, and return a child 

axes suitable for a colorbar. 

 

Keyword arguments may include the following (with defaults): 

 

location : [None|'left'|'right'|'top'|'bottom'] 

The position, relative to **parents**, where the colorbar axes 

should be created. If None, the value will either come from the 

given ``orientation``, else it will default to 'right'. 

 

orientation : [None|'vertical'|'horizontal'] 

The orientation of the colorbar. Typically, this keyword shouldn't 

be used, as it can be derived from the ``location`` keyword. 

 

%s 

 

Returns (cax, kw), the child axes and the reduced kw dictionary to be 

passed when creating the colorbar instance. 

''' 

 

locations = ["left", "right", "top", "bottom"] 

if orientation is not None and location is not None: 

raise TypeError('position and orientation are mutually exclusive. ' 

'Consider setting the position to any of {}' 

.format(', '.join(locations))) 

 

# provide a default location 

if location is None and orientation is None: 

location = 'right' 

 

# allow the user to not specify the location by specifying the 

# orientation instead 

if location is None: 

location = 'right' if orientation == 'vertical' else 'bottom' 

 

if location not in locations: 

raise ValueError('Invalid colorbar location. Must be one ' 

'of %s' % ', '.join(locations)) 

 

default_location_settings = {'left': {'anchor': (1.0, 0.5), 

'panchor': (0.0, 0.5), 

'pad': 0.10, 

'orientation': 'vertical'}, 

'right': {'anchor': (0.0, 0.5), 

'panchor': (1.0, 0.5), 

'pad': 0.05, 

'orientation': 'vertical'}, 

'top': {'anchor': (0.5, 0.0), 

'panchor': (0.5, 1.0), 

'pad': 0.05, 

'orientation': 'horizontal'}, 

'bottom': {'anchor': (0.5, 1.0), 

'panchor': (0.5, 0.0), 

'pad': 0.15, # backwards compat 

'orientation': 'horizontal'}, 

} 

 

loc_settings = default_location_settings[location] 

 

# put appropriate values into the kw dict for passing back to 

# the Colorbar class 

kw['orientation'] = loc_settings['orientation'] 

kw['ticklocation'] = location 

 

anchor = kw.pop('anchor', loc_settings['anchor']) 

parent_anchor = kw.pop('panchor', loc_settings['panchor']) 

 

parents_iterable = cbook.iterable(parents) 

# turn parents into a list if it is not already. We do this w/ np 

# because `plt.subplots` can return an ndarray and is natural to 

# pass to `colorbar`. 

parents = np.atleast_1d(parents).ravel() 

 

# check if using constrained_layout: 

try: 

gs = parents[0].get_subplotspec().get_gridspec() 

using_constrained_layout = (gs._layoutbox is not None) 

except AttributeError: 

using_constrained_layout = False 

 

# defaults are not appropriate for constrained_layout: 

pad0 = loc_settings['pad'] 

if using_constrained_layout: 

pad0 = 0.02 

pad = kw.pop('pad', pad0) 

 

fig = parents[0].get_figure() 

if not all(fig is ax.get_figure() for ax in parents): 

raise ValueError('Unable to create a colorbar axes as not all ' 

'parents share the same figure.') 

 

# take a bounding box around all of the given axes 

parents_bbox = mtransforms.Bbox.union( 

[ax.get_position(original=True).frozen() for ax in parents]) 

 

pb = parents_bbox 

if location in ('left', 'right'): 

if location == 'left': 

pbcb, _, pb1 = pb.splitx(fraction, fraction + pad) 

else: 

pb1, _, pbcb = pb.splitx(1 - fraction - pad, 1 - fraction) 

pbcb = pbcb.shrunk(1.0, shrink).anchored(anchor, pbcb) 

else: 

if location == 'bottom': 

pbcb, _, pb1 = pb.splity(fraction, fraction + pad) 

else: 

pb1, _, pbcb = pb.splity(1 - fraction - pad, 1 - fraction) 

pbcb = pbcb.shrunk(shrink, 1.0).anchored(anchor, pbcb) 

 

# define the aspect ratio in terms of y's per x rather than x's per y 

aspect = 1.0 / aspect 

 

# define a transform which takes us from old axes coordinates to 

# new axes coordinates 

shrinking_trans = mtransforms.BboxTransform(parents_bbox, pb1) 

 

# transform each of the axes in parents using the new transform 

for ax in parents: 

new_posn = shrinking_trans.transform(ax.get_position(original=True)) 

new_posn = mtransforms.Bbox(new_posn) 

ax._set_position(new_posn) 

if parent_anchor is not False: 

ax.set_anchor(parent_anchor) 

 

cax = fig.add_axes(pbcb) 

 

# OK, now make a layoutbox for the cb axis. Later, we will use this 

# to make the colorbar fit nicely. 

if not using_constrained_layout: 

# no layout boxes: 

lb = None 

lbpos = None 

# and we need to set the aspect ratio by hand... 

cax.set_aspect(aspect, anchor=anchor, adjustable='box') 

else: 

if not parents_iterable: 

# this is a single axis... 

ax = parents[0] 

lb, lbpos = constrained_layout.layoutcolorbarsingle( 

ax, cax, shrink, aspect, location, pad=pad) 

else: # there is more than one parent, so lets use gridspec 

# the colorbar will be a sibling of this gridspec, so the 

# parent is the same parent as the gridspec. Either the figure, 

# or a subplotspec. 

 

lb, lbpos = constrained_layout.layoutcolorbargridspec( 

parents, cax, shrink, aspect, location, pad) 

 

cax._layoutbox = lb 

cax._poslayoutbox = lbpos 

 

return cax, kw 

 

 

@docstring.Substitution(make_axes_kw_doc) 

def make_axes_gridspec(parent, *, fraction=0.15, shrink=1.0, aspect=20, **kw): 

''' 

Resize and reposition a parent axes, and return a child axes 

suitable for a colorbar. This function is similar to 

make_axes. Prmary differences are 

 

* *make_axes_gridspec* only handles the *orientation* keyword 

and cannot handle the "location" keyword. 

 

* *make_axes_gridspec* should only be used with a subplot parent. 

 

* *make_axes* creates an instance of Axes. *make_axes_gridspec* 

creates an instance of Subplot. 

 

* *make_axes* updates the position of the 

parent. *make_axes_gridspec* replaces the grid_spec attribute 

of the parent with a new one. 

 

While this function is meant to be compatible with *make_axes*, 

there could be some minor differences. 

 

Keyword arguments may include the following (with defaults): 

 

*orientation* 

'vertical' or 'horizontal' 

 

%s 

 

All but the first of these are stripped from the input kw set. 

 

Returns (cax, kw), the child axes and the reduced kw dictionary to be 

passed when creating the colorbar instance. 

''' 

 

orientation = kw.setdefault('orientation', 'vertical') 

kw['ticklocation'] = 'auto' 

 

x1 = 1 - fraction 

 

# for shrinking 

pad_s = (1 - shrink) * 0.5 

wh_ratios = [pad_s, shrink, pad_s] 

 

# we need to none the tree of layoutboxes because 

# constrained_layout can't remove and replace the tree 

# hierarchy w/o a seg fault. 

gs = parent.get_subplotspec().get_gridspec() 

layoutbox.nonetree(gs._layoutbox) 

gs_from_subplotspec = gridspec.GridSpecFromSubplotSpec 

if orientation == 'vertical': 

pad = kw.pop('pad', 0.05) 

wh_space = 2 * pad / (1 - pad) 

gs = gs_from_subplotspec(1, 2, 

subplot_spec=parent.get_subplotspec(), 

wspace=wh_space, 

width_ratios=[x1 - pad, fraction]) 

gs2 = gs_from_subplotspec(3, 1, 

subplot_spec=gs[1], 

hspace=0., 

height_ratios=wh_ratios) 

anchor = (0.0, 0.5) 

panchor = (1.0, 0.5) 

else: 

pad = kw.pop('pad', 0.15) 

wh_space = 2 * pad / (1 - pad) 

gs = gs_from_subplotspec(2, 1, 

subplot_spec=parent.get_subplotspec(), 

hspace=wh_space, 

height_ratios=[x1 - pad, fraction]) 

gs2 = gs_from_subplotspec(1, 3, 

subplot_spec=gs[1], 

wspace=0., 

width_ratios=wh_ratios) 

aspect = 1 / aspect 

anchor = (0.5, 1.0) 

panchor = (0.5, 0.0) 

 

parent.set_subplotspec(gs[0]) 

parent.update_params() 

parent._set_position(parent.figbox) 

parent.set_anchor(panchor) 

 

fig = parent.get_figure() 

cax = fig.add_subplot(gs2[1]) 

cax.set_aspect(aspect, anchor=anchor, adjustable='box') 

return cax, kw 

 

 

class ColorbarPatch(Colorbar): 

""" 

A Colorbar which is created using :class:`~matplotlib.patches.Patch` 

rather than the default :func:`~matplotlib.axes.pcolor`. 

 

It uses a list of Patch instances instead of a 

:class:`~matplotlib.collections.PatchCollection` because the 

latter does not allow the hatch pattern to vary among the 

members of the collection. 

""" 

def __init__(self, ax, mappable, **kw): 

# we do not want to override the behaviour of solids 

# so add a new attribute which will be a list of the 

# colored patches in the colorbar 

self.solids_patches = [] 

Colorbar.__init__(self, ax, mappable, **kw) 

 

def _add_solids(self, X, Y, C): 

""" 

Draw the colors using :class:`~matplotlib.patches.Patch`; 

optionally add separators. 

""" 

kw = {'alpha': self.alpha, } 

 

n_segments = len(C) 

 

# ensure there are sufficient hatches 

hatches = self.mappable.hatches * n_segments 

 

patches = [] 

for i in range(len(X) - 1): 

val = C[i][0] 

hatch = hatches[i] 

 

xy = np.array([[X[i][0], Y[i][0]], 

[X[i][1], Y[i][0]], 

[X[i + 1][1], Y[i + 1][0]], 

[X[i + 1][0], Y[i + 1][1]]]) 

 

if self.orientation == 'horizontal': 

# if horizontal swap the xs and ys 

xy = xy[..., ::-1] 

 

patch = mpatches.PathPatch(mpath.Path(xy), 

facecolor=self.cmap(self.norm(val)), 

hatch=hatch, linewidth=0, 

antialiased=False, **kw) 

self.ax.add_patch(patch) 

patches.append(patch) 

 

if self.solids_patches: 

for solid in self.solids_patches: 

solid.remove() 

 

self.solids_patches = patches 

 

if self.dividers is not None: 

self.dividers.remove() 

self.dividers = None 

 

if self.drawedges: 

self.dividers = collections.LineCollection( 

self._edges(X, Y), 

colors=(mpl.rcParams['axes.edgecolor'],), 

linewidths=(0.5 * mpl.rcParams['axes.linewidth'],)) 

self.ax.add_collection(self.dividers) 

 

 

def colorbar_factory(cax, mappable, **kwargs): 

""" 

Creates a colorbar on the given axes for the given mappable. 

 

Typically, for automatic colorbar placement given only a mappable use 

:meth:`~matplotlib.figure.Figure.colorbar`. 

 

""" 

# if the given mappable is a contourset with any hatching, use 

# ColorbarPatch else use Colorbar 

if (isinstance(mappable, contour.ContourSet) 

and any(hatch is not None for hatch in mappable.hatches)): 

cb = ColorbarPatch(cax, mappable, **kwargs) 

else: 

cb = Colorbar(cax, mappable, **kwargs) 

 

cid = mappable.callbacksSM.connect('changed', cb.on_mappable_changed) 

mappable.colorbar = cb 

mappable.colorbar_cid = cid 

 

return cb