1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

""" 

These are classes to support contour plotting and labelling for the Axes class. 

""" 

 

from numbers import Integral 

import warnings 

 

import numpy as np 

from numpy import ma 

 

import matplotlib as mpl 

import matplotlib._contour as _contour 

import matplotlib.path as mpath 

import matplotlib.ticker as ticker 

import matplotlib.cm as cm 

import matplotlib.colors as mcolors 

import matplotlib.collections as mcoll 

import matplotlib.font_manager as font_manager 

import matplotlib.text as text 

import matplotlib.cbook as cbook 

import matplotlib.mathtext as mathtext 

import matplotlib.patches as mpatches 

import matplotlib.texmanager as texmanager 

import matplotlib.transforms as mtransforms 

 

# Import needed for adding manual selection capability to clabel 

from matplotlib.blocking_input import BlockingContourLabeler 

 

# We can't use a single line collection for contour because a line 

# collection can have only a single line style, and we want to be able to have 

# dashed negative contours, for example, and solid positive contours. 

# We could use a single polygon collection for filled contours, but it 

# seems better to keep line and filled contours similar, with one collection 

# per level. 

 

 

class ClabelText(text.Text): 

""" 

Unlike the ordinary text, the get_rotation returns an updated 

angle in the pixel coordinate assuming that the input rotation is 

an angle in data coordinate (or whatever transform set). 

""" 

def get_rotation(self): 

angle = text.Text.get_rotation(self) 

trans = self.get_transform() 

x, y = self.get_position() 

new_angles = trans.transform_angles(np.array([angle]), 

np.array([[x, y]])) 

return new_angles[0] 

 

 

class ContourLabeler(object): 

"""Mixin to provide labelling capability to `.ContourSet`.""" 

 

def clabel(self, *args, 

fontsize=None, inline=True, inline_spacing=5, fmt='%1.3f', 

colors=None, use_clabeltext=False, manual=False, 

rightside_up=True): 

""" 

Label a contour plot. 

 

Call signature:: 

 

clabel(cs, [levels,] **kwargs) 

 

Adds labels to line contours in *cs*, where *cs* is a 

:class:`~matplotlib.contour.ContourSet` object returned by 

``contour()``. 

 

Parameters 

---------- 

cs : `.ContourSet` 

The ContourSet to label. 

 

levels : array-like, optional 

A list of level values, that should be labeled. The list must be 

a subset of ``cs.levels``. If not given, all levels are labeled. 

 

fontsize : string or float, optional 

Size in points or relative size e.g., 'smaller', 'x-large'. 

See `.Text.set_size` for accepted string values. 

 

colors : color-spec, optional 

The label colors: 

 

- If *None*, the color of each label matches the color of 

the corresponding contour. 

 

- If one string color, e.g., *colors* = 'r' or *colors* = 

'red', all labels will be plotted in this color. 

 

- If a tuple of matplotlib color args (string, float, rgb, etc), 

different labels will be plotted in different colors in the order 

specified. 

 

inline : bool, optional 

If ``True`` the underlying contour is removed where the label is 

placed. Default is ``True``. 

 

inline_spacing : float, optional 

Space in pixels to leave on each side of label when 

placing inline. Defaults to 5. 

 

This spacing will be exact for labels at locations where the 

contour is straight, less so for labels on curved contours. 

 

fmt : string or dict, optional 

A format string for the label. Default is '%1.3f' 

 

Alternatively, this can be a dictionary matching contour 

levels with arbitrary strings to use for each contour level 

(i.e., fmt[level]=string), or it can be any callable, such 

as a :class:`~matplotlib.ticker.Formatter` instance, that 

returns a string when called with a numeric contour level. 

 

manual : bool or iterable, optional 

If ``True``, contour labels will be placed manually using 

mouse clicks. Click the first button near a contour to 

add a label, click the second button (or potentially both 

mouse buttons at once) to finish adding labels. The third 

button can be used to remove the last label added, but 

only if labels are not inline. Alternatively, the keyboard 

can be used to select label locations (enter to end label 

placement, delete or backspace act like the third mouse button, 

and any other key will select a label location). 

 

*manual* can also be an iterable object of x,y tuples. 

Contour labels will be created as if mouse is clicked at each 

x,y positions. 

 

rightside_up : bool, optional 

If ``True``, label rotations will always be plus 

or minus 90 degrees from level. Default is ``True``. 

 

use_clabeltext : bool, optional 

If ``True``, `.ClabelText` class (instead of `.Text`) is used to 

create labels. `ClabelText` recalculates rotation angles 

of texts during the drawing time, therefore this can be used if 

aspect of the axes changes. Default is ``False``. 

 

Returns 

------- 

labels 

A list of `.Text` instances for the labels. 

""" 

 

""" 

NOTES on how this all works: 

 

clabel basically takes the input arguments and uses them to 

add a list of "label specific" attributes to the ContourSet 

object. These attributes are all of the form label* and names 

should be fairly self explanatory. 

 

Once these attributes are set, clabel passes control to the 

labels method (case of automatic label placement) or 

`BlockingContourLabeler` (case of manual label placement). 

""" 

 

self.labelFmt = fmt 

self._use_clabeltext = use_clabeltext 

# Detect if manual selection is desired and remove from argument list. 

self.labelManual = manual 

self.rightside_up = rightside_up 

 

if len(args) == 0: 

levels = self.levels 

indices = list(range(len(self.cvalues))) 

elif len(args) == 1: 

levlabs = list(args[0]) 

indices, levels = [], [] 

for i, lev in enumerate(self.levels): 

if lev in levlabs: 

indices.append(i) 

levels.append(lev) 

if len(levels) < len(levlabs): 

raise ValueError("Specified levels {} don't match available " 

"levels {}".format(levlabs, self.levels)) 

else: 

raise TypeError("Illegal arguments to clabel, see help(clabel)") 

self.labelLevelList = levels 

self.labelIndiceList = indices 

 

self.labelFontProps = font_manager.FontProperties() 

self.labelFontProps.set_size(fontsize) 

font_size_pts = self.labelFontProps.get_size_in_points() 

self.labelFontSizeList = [font_size_pts] * len(levels) 

 

if colors is None: 

self.labelMappable = self 

self.labelCValueList = np.take(self.cvalues, self.labelIndiceList) 

else: 

cmap = mcolors.ListedColormap(colors, N=len(self.labelLevelList)) 

self.labelCValueList = list(range(len(self.labelLevelList))) 

self.labelMappable = cm.ScalarMappable(cmap=cmap, 

norm=mcolors.NoNorm()) 

 

self.labelXYs = [] 

 

if cbook.iterable(self.labelManual): 

for x, y in self.labelManual: 

self.add_label_near(x, y, inline, 

inline_spacing) 

 

elif self.labelManual: 

print('Select label locations manually using first mouse button.') 

print('End manual selection with second mouse button.') 

if not inline: 

print('Remove last label by clicking third mouse button.') 

 

blocking_contour_labeler = BlockingContourLabeler(self) 

blocking_contour_labeler(inline, inline_spacing) 

else: 

self.labels(inline, inline_spacing) 

 

self.labelTextsList = cbook.silent_list('text.Text', self.labelTexts) 

return self.labelTextsList 

 

cl = property(cbook.deprecated("3.0", alternative="labelTexts")( 

lambda self: self.labelTexts)) 

cl_xy = property(cbook.deprecated("3.0", alternative="labelXYs")( 

lambda self: self.labelXYs)) 

cl_cvalues = property(cbook.deprecated("3.0", alternative="labelCValues")( 

lambda self: self.labelCValues)) 

 

def print_label(self, linecontour, labelwidth): 

"Return *False* if contours are too short for a label." 

return (len(linecontour) > 10 * labelwidth 

or (np.ptp(linecontour, axis=0) > 1.2 * labelwidth).any()) 

 

def too_close(self, x, y, lw): 

"Return *True* if a label is already near this location." 

for loc in self.labelXYs: 

d = np.sqrt((x - loc[0]) ** 2 + (y - loc[1]) ** 2) 

if d < 1.2 * lw: 

return True 

return False 

 

def get_label_coords(self, distances, XX, YY, ysize, lw): 

""" 

Return x, y, and the index of a label location. 

 

Labels are plotted at a location with the smallest 

deviation of the contour from a straight line 

unless there is another label nearby, in which case 

the next best place on the contour is picked up. 

If all such candidates are rejected, the beginning 

of the contour is chosen. 

""" 

hysize = int(ysize / 2) 

adist = np.argsort(distances) 

 

for ind in adist: 

x, y = XX[ind][hysize], YY[ind][hysize] 

if self.too_close(x, y, lw): 

continue 

return x, y, ind 

 

ind = adist[0] 

x, y = XX[ind][hysize], YY[ind][hysize] 

return x, y, ind 

 

def get_label_width(self, lev, fmt, fsize): 

""" 

Return the width of the label in points. 

""" 

if not isinstance(lev, str): 

lev = self.get_text(lev, fmt) 

 

lev, ismath = text.Text.is_math_text(lev) 

if ismath == 'TeX': 

if not hasattr(self, '_TeX_manager'): 

self._TeX_manager = texmanager.TexManager() 

lw, _, _ = self._TeX_manager.get_text_width_height_descent(lev, 

fsize) 

elif ismath: 

if not hasattr(self, '_mathtext_parser'): 

self._mathtext_parser = mathtext.MathTextParser('bitmap') 

img, _ = self._mathtext_parser.parse(lev, dpi=72, 

prop=self.labelFontProps) 

lw = img.get_width() # at dpi=72, the units are PostScript points 

else: 

# width is much less than "font size" 

lw = (len(lev)) * fsize * 0.6 

 

return lw 

 

@cbook.deprecated("2.2") 

def get_real_label_width(self, lev, fmt, fsize): 

""" 

This computes actual onscreen label width. 

This uses some black magic to determine onscreen extent of non-drawn 

label. This magic may not be very robust. 

 

This method is not being used, and may be modified or removed. 

""" 

# Find middle of axes 

xx = np.mean(np.asarray(self.ax.axis()).reshape(2, 2), axis=1) 

 

# Temporarily create text object 

t = text.Text(xx[0], xx[1]) 

self.set_label_props(t, self.get_text(lev, fmt), 'k') 

 

# Some black magic to get onscreen extent 

# NOTE: This will only work for already drawn figures, as the canvas 

# does not have a renderer otherwise. This is the reason this function 

# can't be integrated into the rest of the code. 

bbox = t.get_window_extent(renderer=self.ax.figure.canvas.renderer) 

 

# difference in pixel extent of image 

lw = np.diff(bbox.corners()[0::2, 0])[0] 

 

return lw 

 

def set_label_props(self, label, text, color): 

"""Set the label properties - color, fontsize, text.""" 

label.set_text(text) 

label.set_color(color) 

label.set_fontproperties(self.labelFontProps) 

label.set_clip_box(self.ax.bbox) 

 

def get_text(self, lev, fmt): 

"""Get the text of the label.""" 

if isinstance(lev, str): 

return lev 

else: 

if isinstance(fmt, dict): 

return fmt.get(lev, '%1.3f') 

elif callable(fmt): 

return fmt(lev) 

else: 

return fmt % lev 

 

def locate_label(self, linecontour, labelwidth): 

""" 

Find good place to draw a label (relatively flat part of the contour). 

""" 

 

# Number of contour points 

nsize = len(linecontour) 

if labelwidth > 1: 

xsize = int(np.ceil(nsize / labelwidth)) 

else: 

xsize = 1 

if xsize == 1: 

ysize = nsize 

else: 

ysize = int(labelwidth) 

 

XX = np.resize(linecontour[:, 0], (xsize, ysize)) 

YY = np.resize(linecontour[:, 1], (xsize, ysize)) 

# I might have fouled up the following: 

yfirst = YY[:, :1] 

ylast = YY[:, -1:] 

xfirst = XX[:, :1] 

xlast = XX[:, -1:] 

s = (yfirst - YY) * (xlast - xfirst) - (xfirst - XX) * (ylast - yfirst) 

L = np.hypot(xlast - xfirst, ylast - yfirst) 

# Ignore warning that divide by zero throws, as this is a valid option 

with np.errstate(divide='ignore', invalid='ignore'): 

dist = np.sum(np.abs(s) / L, axis=-1) 

x, y, ind = self.get_label_coords(dist, XX, YY, ysize, labelwidth) 

 

# There must be a more efficient way... 

lc = [tuple(l) for l in linecontour] 

dind = lc.index((x, y)) 

 

return x, y, dind 

 

def calc_label_rot_and_inline(self, slc, ind, lw, lc=None, spacing=5): 

""" 

This function calculates the appropriate label rotation given 

the linecontour coordinates in screen units, the index of the 

label location and the label width. 

 

It will also break contour and calculate inlining if *lc* is 

not empty (lc defaults to the empty list if None). *spacing* 

is the space around the label in pixels to leave empty. 

 

Do both of these tasks at once to avoid calculating path lengths 

multiple times, which is relatively costly. 

 

The method used here involves calculating the path length 

along the contour in pixel coordinates and then looking 

approximately label width / 2 away from central point to 

determine rotation and then to break contour if desired. 

""" 

 

if lc is None: 

lc = [] 

# Half the label width 

hlw = lw / 2.0 

 

# Check if closed and, if so, rotate contour so label is at edge 

closed = _is_closed_polygon(slc) 

if closed: 

slc = np.r_[slc[ind:-1], slc[:ind + 1]] 

 

if len(lc): # Rotate lc also if not empty 

lc = np.r_[lc[ind:-1], lc[:ind + 1]] 

 

ind = 0 

 

# Calculate path lengths 

pl = np.zeros(slc.shape[0], dtype=float) 

dx = np.diff(slc, axis=0) 

pl[1:] = np.cumsum(np.hypot(dx[:, 0], dx[:, 1])) 

pl = pl - pl[ind] 

 

# Use linear interpolation to get points around label 

xi = np.array([-hlw, hlw]) 

if closed: # Look at end also for closed contours 

dp = np.array([pl[-1], 0]) 

else: 

dp = np.zeros_like(xi) 

 

# Get angle of vector between the two ends of the label - must be 

# calculated in pixel space for text rotation to work correctly. 

(dx,), (dy,) = (np.diff(np.interp(dp + xi, pl, slc_col)) 

for slc_col in slc.T) 

rotation = np.rad2deg(np.arctan2(dy, dx)) 

 

if self.rightside_up: 

# Fix angle so text is never upside-down 

rotation = (rotation + 90) % 180 - 90 

 

# Break contour if desired 

nlc = [] 

if len(lc): 

# Expand range by spacing 

xi = dp + xi + np.array([-spacing, spacing]) 

 

# Get (integer) indices near points of interest; use -1 as marker 

# for out of bounds. 

I = np.interp(xi, pl, np.arange(len(pl)), left=-1, right=-1) 

I = [np.floor(I[0]).astype(int), np.ceil(I[1]).astype(int)] 

if I[0] != -1: 

xy1 = [np.interp(xi[0], pl, lc_col) for lc_col in lc.T] 

if I[1] != -1: 

xy2 = [np.interp(xi[1], pl, lc_col) for lc_col in lc.T] 

 

# Actually break contours 

if closed: 

# This will remove contour if shorter than label 

if all(i != -1 for i in I): 

nlc.append(np.row_stack([xy2, lc[I[1]:I[0]+1], xy1])) 

else: 

# These will remove pieces of contour if they have length zero 

if I[0] != -1: 

nlc.append(np.row_stack([lc[:I[0]+1], xy1])) 

if I[1] != -1: 

nlc.append(np.row_stack([xy2, lc[I[1]:]])) 

 

# The current implementation removes contours completely 

# covered by labels. Uncomment line below to keep 

# original contour if this is the preferred behavior. 

# if not len(nlc): nlc = [ lc ] 

 

return rotation, nlc 

 

def _get_label_text(self, x, y, rotation): 

dx, dy = self.ax.transData.inverted().transform_point((x, y)) 

t = text.Text(dx, dy, rotation=rotation, 

horizontalalignment='center', 

verticalalignment='center') 

return t 

 

def _get_label_clabeltext(self, x, y, rotation): 

# x, y, rotation is given in pixel coordinate. Convert them to 

# the data coordinate and create a label using ClabelText 

# class. This way, the roation of the clabel is along the 

# contour line always. 

transDataInv = self.ax.transData.inverted() 

dx, dy = transDataInv.transform_point((x, y)) 

drotation = transDataInv.transform_angles(np.array([rotation]), 

np.array([[x, y]])) 

t = ClabelText(dx, dy, rotation=drotation[0], 

horizontalalignment='center', 

verticalalignment='center') 

 

return t 

 

def _add_label(self, t, x, y, lev, cvalue): 

color = self.labelMappable.to_rgba(cvalue, alpha=self.alpha) 

 

_text = self.get_text(lev, self.labelFmt) 

self.set_label_props(t, _text, color) 

self.labelTexts.append(t) 

self.labelCValues.append(cvalue) 

self.labelXYs.append((x, y)) 

 

# Add label to plot here - useful for manual mode label selection 

self.ax.add_artist(t) 

 

def add_label(self, x, y, rotation, lev, cvalue): 

""" 

Add contour label using :class:`~matplotlib.text.Text` class. 

""" 

 

t = self._get_label_text(x, y, rotation) 

self._add_label(t, x, y, lev, cvalue) 

 

def add_label_clabeltext(self, x, y, rotation, lev, cvalue): 

""" 

Add contour label using :class:`ClabelText` class. 

""" 

# x, y, rotation is given in pixel coordinate. Convert them to 

# the data coordinate and create a label using ClabelText 

# class. This way, the roation of the clabel is along the 

# contour line always. 

 

t = self._get_label_clabeltext(x, y, rotation) 

self._add_label(t, x, y, lev, cvalue) 

 

def add_label_near(self, x, y, inline=True, inline_spacing=5, 

transform=None): 

""" 

Add a label near the point (x, y). If transform is None 

(default), (x, y) is in data coordinates; if transform is 

False, (x, y) is in display coordinates; otherwise, the 

specified transform will be used to translate (x, y) into 

display coordinates. 

 

Parameters 

---------- 

x, y : float 

The approximate location of the label. 

 

inline : bool, optional, default: True 

If *True* remove the segment of the contour beneath the label. 

 

inline_spacing : int, optional, default: 5 

Space in pixels to leave on each side of label when placing 

inline. This spacing will be exact for labels at locations where 

the contour is straight, less so for labels on curved contours. 

""" 

 

if transform is None: 

transform = self.ax.transData 

 

if transform: 

x, y = transform.transform_point((x, y)) 

 

# find the nearest contour _in screen units_ 

conmin, segmin, imin, xmin, ymin = self.find_nearest_contour( 

x, y, self.labelIndiceList)[:5] 

 

# The calc_label_rot_and_inline routine requires that (xmin,ymin) 

# be a vertex in the path. So, if it isn't, add a vertex here 

 

# grab the paths from the collections 

paths = self.collections[conmin].get_paths() 

# grab the correct segment 

active_path = paths[segmin] 

# grab its vertices 

lc = active_path.vertices 

# sort out where the new vertex should be added data-units 

xcmin = self.ax.transData.inverted().transform_point([xmin, ymin]) 

# if there isn't a vertex close enough 

if not np.allclose(xcmin, lc[imin]): 

# insert new data into the vertex list 

lc = np.r_[lc[:imin], np.array(xcmin)[None, :], lc[imin:]] 

# replace the path with the new one 

paths[segmin] = mpath.Path(lc) 

 

# Get index of nearest level in subset of levels used for labeling 

lmin = self.labelIndiceList.index(conmin) 

 

# Coordinates of contour 

paths = self.collections[conmin].get_paths() 

lc = paths[segmin].vertices 

 

# In pixel/screen space 

slc = self.ax.transData.transform(lc) 

 

# Get label width for rotating labels and breaking contours 

lw = self.get_label_width(self.labelLevelList[lmin], 

self.labelFmt, self.labelFontSizeList[lmin]) 

# lw is in points. 

lw *= self.ax.figure.dpi / 72.0 # scale to screen coordinates 

# now lw in pixels 

 

# Figure out label rotation. 

if inline: 

lcarg = lc 

else: 

lcarg = None 

rotation, nlc = self.calc_label_rot_and_inline( 

slc, imin, lw, lcarg, 

inline_spacing) 

 

self.add_label(xmin, ymin, rotation, self.labelLevelList[lmin], 

self.labelCValueList[lmin]) 

 

if inline: 

# Remove old, not looping over paths so we can do this up front 

paths.pop(segmin) 

 

# Add paths if not empty or single point 

for n in nlc: 

if len(n) > 1: 

paths.append(mpath.Path(n)) 

 

def pop_label(self, index=-1): 

"""Defaults to removing last label, but any index can be supplied""" 

self.labelCValues.pop(index) 

t = self.labelTexts.pop(index) 

t.remove() 

 

def labels(self, inline, inline_spacing): 

 

if self._use_clabeltext: 

add_label = self.add_label_clabeltext 

else: 

add_label = self.add_label 

 

for icon, lev, fsize, cvalue in zip( 

self.labelIndiceList, self.labelLevelList, 

self.labelFontSizeList, self.labelCValueList): 

 

con = self.collections[icon] 

trans = con.get_transform() 

lw = self.get_label_width(lev, self.labelFmt, fsize) 

lw *= self.ax.figure.dpi / 72.0 # scale to screen coordinates 

additions = [] 

paths = con.get_paths() 

for segNum, linepath in enumerate(paths): 

lc = linepath.vertices # Line contour 

slc0 = trans.transform(lc) # Line contour in screen coords 

 

# For closed polygons, add extra point to avoid division by 

# zero in print_label and locate_label. Other than these 

# functions, this is not necessary and should probably be 

# eventually removed. 

if _is_closed_polygon(lc): 

slc = np.r_[slc0, slc0[1:2, :]] 

else: 

slc = slc0 

 

# Check if long enough for a label 

if self.print_label(slc, lw): 

x, y, ind = self.locate_label(slc, lw) 

 

if inline: 

lcarg = lc 

else: 

lcarg = None 

rotation, new = self.calc_label_rot_and_inline( 

slc0, ind, lw, lcarg, 

inline_spacing) 

 

# Actually add the label 

add_label(x, y, rotation, lev, cvalue) 

 

# If inline, add new contours 

if inline: 

for n in new: 

# Add path if not empty or single point 

if len(n) > 1: 

additions.append(mpath.Path(n)) 

else: # If not adding label, keep old path 

additions.append(linepath) 

 

# After looping over all segments on a contour, remove old 

# paths and add new ones if inlining 

if inline: 

del paths[:] 

paths.extend(additions) 

 

 

def _find_closest_point_on_leg(p1, p2, p0): 

"""Find the closest point to p0 on line segment connecting p1 and p2.""" 

 

# handle degenerate case 

if np.all(p2 == p1): 

d = np.sum((p0 - p1)**2) 

return d, p1 

 

d21 = p2 - p1 

d01 = p0 - p1 

 

# project on to line segment to find closest point 

proj = np.dot(d01, d21) / np.dot(d21, d21) 

if proj < 0: 

proj = 0 

if proj > 1: 

proj = 1 

pc = p1 + proj * d21 

 

# find squared distance 

d = np.sum((pc-p0)**2) 

 

return d, pc 

 

 

def _is_closed_polygon(X): 

""" 

Return whether first and last object in a sequence are the same. These are 

presumably coordinates on a polygonal curve, in which case this function 

tests if that curve is closed. 

""" 

return np.all(X[0] == X[-1]) 

 

 

def _find_closest_point_on_path(lc, point): 

""" 

lc: coordinates of vertices 

point: coordinates of test point 

""" 

 

# find index of closest vertex for this segment 

ds = np.sum((lc - point[None, :])**2, 1) 

imin = np.argmin(ds) 

 

dmin = np.inf 

xcmin = None 

legmin = (None, None) 

 

closed = _is_closed_polygon(lc) 

 

# build list of legs before and after this vertex 

legs = [] 

if imin > 0 or closed: 

legs.append(((imin-1) % len(lc), imin)) 

if imin < len(lc) - 1 or closed: 

legs.append((imin, (imin+1) % len(lc))) 

 

for leg in legs: 

d, xc = _find_closest_point_on_leg(lc[leg[0]], lc[leg[1]], point) 

if d < dmin: 

dmin = d 

xcmin = xc 

legmin = leg 

 

return (dmin, xcmin, legmin) 

 

 

class ContourSet(cm.ScalarMappable, ContourLabeler): 

""" 

Store a set of contour lines or filled regions. 

 

User-callable method: `~.axes.Axes.clabel` 

 

Parameters 

---------- 

ax : `~.axes.Axes` 

 

levels : [level0, level1, ..., leveln] 

A list of floating point numbers indicating the contour 

levels. 

 

allsegs : [level0segs, level1segs, ...] 

List of all the polygon segments for all the *levels*. 

For contour lines ``len(allsegs) == len(levels)``, and for 

filled contour regions ``len(allsegs) = len(levels)-1``. The lists 

should look like:: 

 

level0segs = [polygon0, polygon1, ...] 

polygon0 = array_like [[x0,y0], [x1,y1], ...] 

 

allkinds : ``None`` or [level0kinds, level1kinds, ...] 

Optional list of all the polygon vertex kinds (code types), as 

described and used in Path. This is used to allow multiply- 

connected paths such as holes within filled polygons. 

If not ``None``, ``len(allkinds) == len(allsegs)``. The lists 

should look like:: 

 

level0kinds = [polygon0kinds, ...] 

polygon0kinds = [vertexcode0, vertexcode1, ...] 

 

If *allkinds* is not ``None``, usually all polygons for a 

particular contour level are grouped together so that 

``level0segs = [polygon0]`` and ``level0kinds = [polygon0kinds]``. 

 

kwargs : 

Keyword arguments are as described in the docstring of 

`~.axes.Axes.contour`. 

 

Attributes 

---------- 

ax: 

The axes object in which the contours are drawn. 

 

collections: 

A silent_list of LineCollections or PolyCollections. 

 

levels: 

Contour levels. 

 

layers: 

Same as levels for line contours; half-way between 

levels for filled contours. See :meth:`_process_colors`. 

""" 

 

def __init__(self, ax, *args, 

levels=None, filled=False, linewidths=None, linestyles=None, 

alpha=None, origin=None, extent=None, 

cmap=None, colors=None, norm=None, vmin=None, vmax=None, 

extend='neither', antialiased=None, 

**kwargs): 

""" 

Draw contour lines or filled regions, depending on 

whether keyword arg *filled* is ``False`` (default) or ``True``. 

 

Call signature:: 

 

ContourSet(ax, levels, allsegs, [allkinds], **kwargs) 

 

Parameters 

---------- 

ax : 

The `~.axes.Axes` object to draw on. 

 

levels : [level0, level1, ..., leveln] 

A list of floating point numbers indicating the contour 

levels. 

 

allsegs : [level0segs, level1segs, ...] 

List of all the polygon segments for all the *levels*. 

For contour lines ``len(allsegs) == len(levels)``, and for 

filled contour regions ``len(allsegs) = len(levels)-1``. The lists 

should look like:: 

 

level0segs = [polygon0, polygon1, ...] 

polygon0 = array_like [[x0,y0], [x1,y1], ...] 

 

allkinds : [level0kinds, level1kinds, ...], optional 

Optional list of all the polygon vertex kinds (code types), as 

described and used in Path. This is used to allow multiply- 

connected paths such as holes within filled polygons. 

If not ``None``, ``len(allkinds) == len(allsegs)``. The lists 

should look like:: 

 

level0kinds = [polygon0kinds, ...] 

polygon0kinds = [vertexcode0, vertexcode1, ...] 

 

If *allkinds* is not ``None``, usually all polygons for a 

particular contour level are grouped together so that 

``level0segs = [polygon0]`` and ``level0kinds = [polygon0kinds]``. 

 

**kwargs 

Keyword arguments are as described in the docstring of 

`~axes.Axes.contour`. 

""" 

self.ax = ax 

self.levels = levels 

self.filled = filled 

self.linewidths = linewidths 

self.linestyles = linestyles 

self.hatches = kwargs.pop('hatches', [None]) 

self.alpha = alpha 

self.origin = origin 

self.extent = extent 

self.colors = colors 

self.extend = extend 

self.antialiased = antialiased 

if self.antialiased is None and self.filled: 

self.antialiased = False # eliminate artifacts; we are not 

# stroking the boundaries. 

# The default for line contours will be taken from 

# the LineCollection default, which uses the 

# rcParams['lines.antialiased'] 

 

self.nchunk = kwargs.pop('nchunk', 0) 

self.locator = kwargs.pop('locator', None) 

if (isinstance(norm, mcolors.LogNorm) 

or isinstance(self.locator, ticker.LogLocator)): 

self.logscale = True 

if norm is None: 

norm = mcolors.LogNorm() 

else: 

self.logscale = False 

 

if self.origin not in [None, 'lower', 'upper', 'image']: 

raise ValueError("If given, *origin* must be one of [ 'lower' |" 

" 'upper' | 'image']") 

if self.extent is not None and len(self.extent) != 4: 

raise ValueError("If given, *extent* must be '[ *None* |" 

" (x0,x1,y0,y1) ]'") 

if self.colors is not None and cmap is not None: 

raise ValueError('Either colors or cmap must be None') 

if self.origin == 'image': 

self.origin = mpl.rcParams['image.origin'] 

 

self._transform = kwargs.pop('transform', None) 

 

kwargs = self._process_args(*args, **kwargs) 

self._process_levels() 

 

if self.colors is not None: 

ncolors = len(self.levels) 

if self.filled: 

ncolors -= 1 

i0 = 0 

 

# Handle the case where colors are given for the extended 

# parts of the contour. 

extend_min = self.extend in ['min', 'both'] 

extend_max = self.extend in ['max', 'both'] 

use_set_under_over = False 

# if we are extending the lower end, and we've been given enough 

# colors then skip the first color in the resulting cmap. For the 

# extend_max case we don't need to worry about passing more colors 

# than ncolors as ListedColormap will clip. 

total_levels = ncolors + int(extend_min) + int(extend_max) 

if len(self.colors) == total_levels and (extend_min or extend_max): 

use_set_under_over = True 

if extend_min: 

i0 = 1 

 

cmap = mcolors.ListedColormap(self.colors[i0:None], N=ncolors) 

 

if use_set_under_over: 

if extend_min: 

cmap.set_under(self.colors[0]) 

if extend_max: 

cmap.set_over(self.colors[-1]) 

 

if self.filled: 

self.collections = cbook.silent_list('mcoll.PathCollection') 

else: 

self.collections = cbook.silent_list('mcoll.LineCollection') 

# label lists must be initialized here 

self.labelTexts = [] 

self.labelCValues = [] 

 

kw = {'cmap': cmap} 

if norm is not None: 

kw['norm'] = norm 

# sets self.cmap, norm if needed; 

cm.ScalarMappable.__init__(self, **kw) 

if vmin is not None: 

self.norm.vmin = vmin 

if vmax is not None: 

self.norm.vmax = vmax 

self._process_colors() 

 

self.allsegs, self.allkinds = self._get_allsegs_and_allkinds() 

 

if self.filled: 

if self.linewidths is not None: 

warnings.warn('linewidths is ignored by contourf') 

 

# Lower and upper contour levels. 

lowers, uppers = self._get_lowers_and_uppers() 

 

# Ensure allkinds can be zipped below. 

if self.allkinds is None: 

self.allkinds = [None] * len(self.allsegs) 

 

# Default zorder taken from Collection 

zorder = kwargs.pop('zorder', 1) 

for level, level_upper, segs, kinds in \ 

zip(lowers, uppers, self.allsegs, self.allkinds): 

paths = self._make_paths(segs, kinds) 

 

col = mcoll.PathCollection( 

paths, 

antialiaseds=(self.antialiased,), 

edgecolors='none', 

alpha=self.alpha, 

transform=self.get_transform(), 

zorder=zorder) 

self.ax.add_collection(col, autolim=False) 

self.collections.append(col) 

else: 

tlinewidths = self._process_linewidths() 

self.tlinewidths = tlinewidths 

tlinestyles = self._process_linestyles() 

aa = self.antialiased 

if aa is not None: 

aa = (self.antialiased,) 

# Default zorder taken from LineCollection 

zorder = kwargs.pop('zorder', 2) 

for level, width, lstyle, segs in \ 

zip(self.levels, tlinewidths, tlinestyles, self.allsegs): 

col = mcoll.LineCollection( 

segs, 

antialiaseds=aa, 

linewidths=width, 

linestyles=[lstyle], 

alpha=self.alpha, 

transform=self.get_transform(), 

zorder=zorder) 

col.set_label('_nolegend_') 

self.ax.add_collection(col, autolim=False) 

self.collections.append(col) 

 

for col in self.collections: 

col.sticky_edges.x[:] = [self._mins[0], self._maxs[0]] 

col.sticky_edges.y[:] = [self._mins[1], self._maxs[1]] 

self.ax.update_datalim([self._mins, self._maxs]) 

self.ax.autoscale_view(tight=True) 

 

self.changed() # set the colors 

 

if kwargs: 

s = ", ".join(map(repr, kwargs)) 

warnings.warn('The following kwargs were not used by contour: ' + 

s) 

 

def get_transform(self): 

""" 

Return the :class:`~matplotlib.transforms.Transform` 

instance used by this ContourSet. 

""" 

if self._transform is None: 

self._transform = self.ax.transData 

elif (not isinstance(self._transform, mtransforms.Transform) 

and hasattr(self._transform, '_as_mpl_transform')): 

self._transform = self._transform._as_mpl_transform(self.ax) 

return self._transform 

 

def __getstate__(self): 

state = self.__dict__.copy() 

# the C object _contour_generator cannot currently be pickled. This 

# isn't a big issue as it is not actually used once the contour has 

# been calculated. 

state['_contour_generator'] = None 

return state 

 

def legend_elements(self, variable_name='x', str_format=str): 

""" 

Return a list of artists and labels suitable for passing through 

to :func:`plt.legend` which represent this ContourSet. 

 

The labels have the form "0 < x <= 1" stating the data ranges which 

the artists represent. 

 

Parameters 

---------- 

variable_name : str 

The string used inside the inequality used on the labels. 

 

str_format : function: float -> str 

Function used to format the numbers in the labels. 

 

Returns 

------- 

artists : List[`.Artist`] 

A list of the artists. 

 

labels : List[str] 

A list of the labels. 

 

""" 

artists = [] 

labels = [] 

 

if self.filled: 

lowers, uppers = self._get_lowers_and_uppers() 

n_levels = len(self.collections) 

 

for i, (collection, lower, upper) in enumerate( 

zip(self.collections, lowers, uppers)): 

patch = mpatches.Rectangle( 

(0, 0), 1, 1, 

facecolor=collection.get_facecolor()[0], 

hatch=collection.get_hatch(), 

alpha=collection.get_alpha()) 

artists.append(patch) 

 

lower = str_format(lower) 

upper = str_format(upper) 

 

if i == 0 and self.extend in ('min', 'both'): 

labels.append(r'$%s \leq %s$' % (variable_name, 

lower)) 

elif i == n_levels - 1 and self.extend in ('max', 'both'): 

labels.append(r'$%s > %s$' % (variable_name, 

upper)) 

else: 

labels.append(r'$%s < %s \leq %s$' % (lower, 

variable_name, 

upper)) 

else: 

for collection, level in zip(self.collections, self.levels): 

 

patch = mcoll.LineCollection(None) 

patch.update_from(collection) 

 

artists.append(patch) 

# format the level for insertion into the labels 

level = str_format(level) 

labels.append(r'$%s = %s$' % (variable_name, level)) 

 

return artists, labels 

 

def _process_args(self, *args, **kwargs): 

""" 

Process *args* and *kwargs*; override in derived classes. 

 

Must set self.levels, self.zmin and self.zmax, and update axes 

limits. 

""" 

self.levels = args[0] 

self.allsegs = args[1] 

self.allkinds = len(args) > 2 and args[2] or None 

self.zmax = np.max(self.levels) 

self.zmin = np.min(self.levels) 

self._auto = False 

 

# Check lengths of levels and allsegs. 

if self.filled: 

if len(self.allsegs) != len(self.levels) - 1: 

raise ValueError('must be one less number of segments as ' 

'levels') 

else: 

if len(self.allsegs) != len(self.levels): 

raise ValueError('must be same number of segments as levels') 

 

# Check length of allkinds. 

if (self.allkinds is not None and 

len(self.allkinds) != len(self.allsegs)): 

raise ValueError('allkinds has different length to allsegs') 

 

# Determine x,y bounds and update axes data limits. 

flatseglist = [s for seg in self.allsegs for s in seg] 

points = np.concatenate(flatseglist, axis=0) 

self._mins = points.min(axis=0) 

self._maxs = points.max(axis=0) 

 

return kwargs 

 

def _get_allsegs_and_allkinds(self): 

""" 

Override in derived classes to create and return allsegs and allkinds. 

allkinds can be None. 

""" 

return self.allsegs, self.allkinds 

 

def _get_lowers_and_uppers(self): 

""" 

Return (lowers,uppers) for filled contours. 

""" 

lowers = self._levels[:-1] 

if self.zmin == lowers[0]: 

# Include minimum values in lowest interval 

lowers = lowers.copy() # so we don't change self._levels 

if self.logscale: 

lowers[0] = 0.99 * self.zmin 

else: 

lowers[0] -= 1 

uppers = self._levels[1:] 

return (lowers, uppers) 

 

def _make_paths(self, segs, kinds): 

if kinds is not None: 

return [mpath.Path(seg, codes=kind) 

for seg, kind in zip(segs, kinds)] 

else: 

return [mpath.Path(seg) for seg in segs] 

 

def changed(self): 

tcolors = [(tuple(rgba),) 

for rgba in self.to_rgba(self.cvalues, alpha=self.alpha)] 

self.tcolors = tcolors 

hatches = self.hatches * len(tcolors) 

for color, hatch, collection in zip(tcolors, hatches, 

self.collections): 

if self.filled: 

collection.set_facecolor(color) 

# update the collection's hatch (may be None) 

collection.set_hatch(hatch) 

else: 

collection.set_color(color) 

for label, cv in zip(self.labelTexts, self.labelCValues): 

label.set_alpha(self.alpha) 

label.set_color(self.labelMappable.to_rgba(cv)) 

# add label colors 

cm.ScalarMappable.changed(self) 

 

def _autolev(self, N): 

""" 

Select contour levels to span the data. 

 

The target number of levels, *N*, is used only when the 

scale is not log and default locator is used. 

 

We need two more levels for filled contours than for 

line contours, because for the latter we need to specify 

the lower and upper boundary of each range. For example, 

a single contour boundary, say at z = 0, requires only 

one contour line, but two filled regions, and therefore 

three levels to provide boundaries for both regions. 

""" 

self._auto = True 

if self.locator is None: 

if self.logscale: 

self.locator = ticker.LogLocator() 

else: 

self.locator = ticker.MaxNLocator(N + 1, min_n_ticks=1) 

 

lev = self.locator.tick_values(self.zmin, self.zmax) 

 

try: 

if self.locator._symmetric: 

return lev 

except AttributeError: 

pass 

 

# Trim excess levels the locator may have supplied. 

under = np.nonzero(lev < self.zmin)[0] 

i0 = under[-1] if len(under) else 0 

over = np.nonzero(lev > self.zmax)[0] 

i1 = over[0] + 1 if len(over) else len(lev) 

if self.extend in ('min', 'both'): 

i0 += 1 

if self.extend in ('max', 'both'): 

i1 -= 1 

 

if i1 - i0 < 3: 

i0, i1 = 0, len(lev) 

 

return lev[i0:i1] 

 

def _contour_level_args(self, z, args): 

""" 

Determine the contour levels and store in self.levels. 

""" 

if self.filled: 

fn = 'contourf' 

else: 

fn = 'contour' 

self._auto = False 

if self.levels is None: 

if len(args) == 0: 

levels_arg = 7 # Default, hard-wired. 

else: 

levels_arg = args[0] 

else: 

levels_arg = self.levels 

if isinstance(levels_arg, Integral): 

self.levels = self._autolev(levels_arg) 

else: 

self.levels = np.asarray(levels_arg).astype(np.float64) 

 

if not self.filled: 

inside = (self.levels > self.zmin) & (self.levels < self.zmax) 

levels_in = self.levels[inside] 

if len(levels_in) == 0: 

self.levels = [self.zmin] 

warnings.warn("No contour levels were found" 

" within the data range.") 

 

if self.filled and len(self.levels) < 2: 

raise ValueError("Filled contours require at least 2 levels.") 

 

if len(self.levels) > 1 and np.min(np.diff(self.levels)) <= 0.0: 

raise ValueError("Contour levels must be increasing") 

 

def _process_levels(self): 

""" 

Assign values to :attr:`layers` based on :attr:`levels`, 

adding extended layers as needed if contours are filled. 

 

For line contours, layers simply coincide with levels; 

a line is a thin layer. No extended levels are needed 

with line contours. 

""" 

# Make a private _levels to include extended regions; we 

# want to leave the original levels attribute unchanged. 

# (Colorbar needs this even for line contours.) 

self._levels = list(self.levels) 

 

if self.logscale: 

lower, upper = 1e-250, 1e250 

else: 

lower, upper = -1e250, 1e250 

 

if self.extend in ('both', 'min'): 

self._levels.insert(0, lower) 

if self.extend in ('both', 'max'): 

self._levels.append(upper) 

self._levels = np.asarray(self._levels) 

 

if not self.filled: 

self.layers = self.levels 

return 

 

# Layer values are mid-way between levels in screen space. 

if self.logscale: 

# Avoid overflow by taking sqrt before multiplying. 

self.layers = (np.sqrt(self._levels[:-1]) 

* np.sqrt(self._levels[1:])) 

else: 

self.layers = 0.5 * (self._levels[:-1] + self._levels[1:]) 

 

def _process_colors(self): 

""" 

Color argument processing for contouring. 

 

Note that we base the color mapping on the contour levels 

and layers, not on the actual range of the Z values. This 

means we don't have to worry about bad values in Z, and we 

always have the full dynamic range available for the selected 

levels. 

 

The color is based on the midpoint of the layer, except for 

extended end layers. By default, the norm vmin and vmax 

are the extreme values of the non-extended levels. Hence, 

the layer color extremes are not the extreme values of 

the colormap itself, but approach those values as the number 

of levels increases. An advantage of this scheme is that 

line contours, when added to filled contours, take on 

colors that are consistent with those of the filled regions; 

for example, a contour line on the boundary between two 

regions will have a color intermediate between those 

of the regions. 

 

""" 

self.monochrome = self.cmap.monochrome 

if self.colors is not None: 

# Generate integers for direct indexing. 

i0, i1 = 0, len(self.levels) 

if self.filled: 

i1 -= 1 

# Out of range indices for over and under: 

if self.extend in ('both', 'min'): 

i0 -= 1 

if self.extend in ('both', 'max'): 

i1 += 1 

self.cvalues = list(range(i0, i1)) 

self.set_norm(mcolors.NoNorm()) 

else: 

self.cvalues = self.layers 

self.set_array(self.levels) 

self.autoscale_None() 

if self.extend in ('both', 'max', 'min'): 

self.norm.clip = False 

 

# self.tcolors are set by the "changed" method 

 

def _process_linewidths(self): 

linewidths = self.linewidths 

Nlev = len(self.levels) 

if linewidths is None: 

tlinewidths = [(mpl.rcParams['lines.linewidth'],)] * Nlev 

else: 

if not cbook.iterable(linewidths): 

linewidths = [linewidths] * Nlev 

else: 

linewidths = list(linewidths) 

if len(linewidths) < Nlev: 

nreps = int(np.ceil(Nlev / len(linewidths))) 

linewidths = linewidths * nreps 

if len(linewidths) > Nlev: 

linewidths = linewidths[:Nlev] 

tlinewidths = [(w,) for w in linewidths] 

return tlinewidths 

 

def _process_linestyles(self): 

linestyles = self.linestyles 

Nlev = len(self.levels) 

if linestyles is None: 

tlinestyles = ['solid'] * Nlev 

if self.monochrome: 

neg_ls = mpl.rcParams['contour.negative_linestyle'] 

eps = - (self.zmax - self.zmin) * 1e-15 

for i, lev in enumerate(self.levels): 

if lev < eps: 

tlinestyles[i] = neg_ls 

else: 

if isinstance(linestyles, str): 

tlinestyles = [linestyles] * Nlev 

elif cbook.iterable(linestyles): 

tlinestyles = list(linestyles) 

if len(tlinestyles) < Nlev: 

nreps = int(np.ceil(Nlev / len(linestyles))) 

tlinestyles = tlinestyles * nreps 

if len(tlinestyles) > Nlev: 

tlinestyles = tlinestyles[:Nlev] 

else: 

raise ValueError("Unrecognized type for linestyles kwarg") 

return tlinestyles 

 

def get_alpha(self): 

"""returns alpha to be applied to all ContourSet artists""" 

return self.alpha 

 

def set_alpha(self, alpha): 

""" 

Set the alpha blending value for all ContourSet artists. 

*alpha* must be between 0 (transparent) and 1 (opaque). 

""" 

self.alpha = alpha 

self.changed() 

 

def find_nearest_contour(self, x, y, indices=None, pixel=True): 

""" 

Finds contour that is closest to a point. Defaults to 

measuring distance in pixels (screen space - useful for manual 

contour labeling), but this can be controlled via a keyword 

argument. 

 

Returns a tuple containing the contour, segment, index of 

segment, x & y of segment point and distance to minimum point. 

 

Optional keyword arguments: 

 

*indices*: 

Indexes of contour levels to consider when looking for 

nearest point. Defaults to using all levels. 

 

*pixel*: 

If *True*, measure distance in pixel space, if not, measure 

distance in axes space. Defaults to *True*. 

 

""" 

 

# This function uses a method that is probably quite 

# inefficient based on converting each contour segment to 

# pixel coordinates and then comparing the given point to 

# those coordinates for each contour. This will probably be 

# quite slow for complex contours, but for normal use it works 

# sufficiently well that the time is not noticeable. 

# Nonetheless, improvements could probably be made. 

 

if indices is None: 

indices = list(range(len(self.levels))) 

 

dmin = np.inf 

conmin = None 

segmin = None 

xmin = None 

ymin = None 

 

point = np.array([x, y]) 

 

for icon in indices: 

con = self.collections[icon] 

trans = con.get_transform() 

paths = con.get_paths() 

 

for segNum, linepath in enumerate(paths): 

lc = linepath.vertices 

# transfer all data points to screen coordinates if desired 

if pixel: 

lc = trans.transform(lc) 

 

d, xc, leg = _find_closest_point_on_path(lc, point) 

if d < dmin: 

dmin = d 

conmin = icon 

segmin = segNum 

imin = leg[1] 

xmin = xc[0] 

ymin = xc[1] 

 

return (conmin, segmin, imin, xmin, ymin, dmin) 

 

 

class QuadContourSet(ContourSet): 

""" 

Create and store a set of contour lines or filled regions. 

 

User-callable method: `~axes.Axes.clabel` 

 

Attributes 

---------- 

ax: 

The axes object in which the contours are drawn. 

 

collections: 

A silent_list of LineCollections or PolyCollections. 

 

levels: 

Contour levels. 

 

layers: 

Same as levels for line contours; half-way between 

levels for filled contours. See :meth:`_process_colors` method. 

""" 

 

def _process_args(self, *args, **kwargs): 

""" 

Process args and kwargs. 

""" 

if isinstance(args[0], QuadContourSet): 

if self.levels is None: 

self.levels = args[0].levels 

self.zmin = args[0].zmin 

self.zmax = args[0].zmax 

self._corner_mask = args[0]._corner_mask 

contour_generator = args[0]._contour_generator 

self._mins = args[0]._mins 

self._maxs = args[0]._maxs 

else: 

self._corner_mask = kwargs.pop('corner_mask', None) 

if self._corner_mask is None: 

self._corner_mask = mpl.rcParams['contour.corner_mask'] 

 

x, y, z = self._contour_args(args, kwargs) 

 

_mask = ma.getmask(z) 

if _mask is ma.nomask or not _mask.any(): 

_mask = None 

 

contour_generator = _contour.QuadContourGenerator( 

x, y, z.filled(), _mask, self._corner_mask, self.nchunk) 

 

t = self.get_transform() 

 

# if the transform is not trans data, and some part of it 

# contains transData, transform the xs and ys to data coordinates 

if (t != self.ax.transData and 

any(t.contains_branch_seperately(self.ax.transData))): 

trans_to_data = t - self.ax.transData 

pts = (np.vstack([x.flat, y.flat]).T) 

transformed_pts = trans_to_data.transform(pts) 

x = transformed_pts[..., 0] 

y = transformed_pts[..., 1] 

 

self._mins = [ma.min(x), ma.min(y)] 

self._maxs = [ma.max(x), ma.max(y)] 

 

self._contour_generator = contour_generator 

 

return kwargs 

 

def _get_allsegs_and_allkinds(self): 

"""Compute ``allsegs`` and ``allkinds`` using C extension.""" 

allsegs = [] 

if self.filled: 

lowers, uppers = self._get_lowers_and_uppers() 

allkinds = [] 

for level, level_upper in zip(lowers, uppers): 

vertices, kinds = \ 

self._contour_generator.create_filled_contour( 

level, level_upper) 

allsegs.append(vertices) 

allkinds.append(kinds) 

else: 

allkinds = None 

for level in self.levels: 

vertices = self._contour_generator.create_contour(level) 

allsegs.append(vertices) 

return allsegs, allkinds 

 

def _contour_args(self, args, kwargs): 

if self.filled: 

fn = 'contourf' 

else: 

fn = 'contour' 

Nargs = len(args) 

if Nargs <= 2: 

z = ma.asarray(args[0], dtype=np.float64) 

x, y = self._initialize_x_y(z) 

args = args[1:] 

elif Nargs <= 4: 

x, y, z = self._check_xyz(args[:3], kwargs) 

args = args[3:] 

else: 

raise TypeError("Too many arguments to %s; see help(%s)" % 

(fn, fn)) 

z = ma.masked_invalid(z, copy=False) 

self.zmax = float(z.max()) 

self.zmin = float(z.min()) 

if self.logscale and self.zmin <= 0: 

z = ma.masked_where(z <= 0, z) 

warnings.warn('Log scale: values of z <= 0 have been masked') 

self.zmin = float(z.min()) 

self._contour_level_args(z, args) 

return (x, y, z) 

 

def _check_xyz(self, args, kwargs): 

""" 

For functions like contour, check that the dimensions 

of the input arrays match; if x and y are 1D, convert 

them to 2D using meshgrid. 

 

Possible change: I think we should make and use an ArgumentError 

Exception class (here and elsewhere). 

""" 

x, y = args[:2] 

kwargs = self.ax._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) 

x = self.ax.convert_xunits(x) 

y = self.ax.convert_yunits(y) 

 

x = np.asarray(x, dtype=np.float64) 

y = np.asarray(y, dtype=np.float64) 

z = ma.asarray(args[2], dtype=np.float64) 

 

if z.ndim != 2: 

raise TypeError("Input z must be a 2D array.") 

elif z.shape[0] < 2 or z.shape[1] < 2: 

raise TypeError("Input z must be at least a 2x2 array.") 

else: 

Ny, Nx = z.shape 

 

if x.ndim != y.ndim: 

raise TypeError("Number of dimensions of x and y should match.") 

 

if x.ndim == 1: 

 

nx, = x.shape 

ny, = y.shape 

 

if nx != Nx: 

raise TypeError("Length of x must be number of columns in z.") 

 

if ny != Ny: 

raise TypeError("Length of y must be number of rows in z.") 

 

x, y = np.meshgrid(x, y) 

 

elif x.ndim == 2: 

 

if x.shape != z.shape: 

raise TypeError("Shape of x does not match that of z: found " 

"{0} instead of {1}.".format(x.shape, z.shape)) 

 

if y.shape != z.shape: 

raise TypeError("Shape of y does not match that of z: found " 

"{0} instead of {1}.".format(y.shape, z.shape)) 

else: 

raise TypeError("Inputs x and y must be 1D or 2D.") 

 

return x, y, z 

 

def _initialize_x_y(self, z): 

""" 

Return X, Y arrays such that contour(Z) will match imshow(Z) 

if origin is not None. 

The center of pixel Z[i,j] depends on origin: 

if origin is None, x = j, y = i; 

if origin is 'lower', x = j + 0.5, y = i + 0.5; 

if origin is 'upper', x = j + 0.5, y = Nrows - i - 0.5 

If extent is not None, x and y will be scaled to match, 

as in imshow. 

If origin is None and extent is not None, then extent 

will give the minimum and maximum values of x and y. 

""" 

if z.ndim != 2: 

raise TypeError("Input must be a 2D array.") 

elif z.shape[0] < 2 or z.shape[1] < 2: 

raise TypeError("Input z must be at least a 2x2 array.") 

else: 

Ny, Nx = z.shape 

if self.origin is None: # Not for image-matching. 

if self.extent is None: 

return np.meshgrid(np.arange(Nx), np.arange(Ny)) 

else: 

x0, x1, y0, y1 = self.extent 

x = np.linspace(x0, x1, Nx) 

y = np.linspace(y0, y1, Ny) 

return np.meshgrid(x, y) 

# Match image behavior: 

if self.extent is None: 

x0, x1, y0, y1 = (0, Nx, 0, Ny) 

else: 

x0, x1, y0, y1 = self.extent 

dx = (x1 - x0) / Nx 

dy = (y1 - y0) / Ny 

x = x0 + (np.arange(Nx) + 0.5) * dx 

y = y0 + (np.arange(Ny) + 0.5) * dy 

if self.origin == 'upper': 

y = y[::-1] 

return np.meshgrid(x, y) 

 

_contour_doc = """ 

Plot contours. 

 

Call signature:: 

 

contour([X, Y,] Z, [levels], **kwargs) 

 

:func:`~matplotlib.pyplot.contour` and 

:func:`~matplotlib.pyplot.contourf` draw contour lines and 

filled contours, respectively. Except as noted, function 

signatures and return values are the same for both versions. 

 

 

Parameters 

---------- 

X, Y : array-like, optional 

The coordinates of the values in *Z*. 

 

*X* and *Y* must both be 2-D with the same shape as *Z* (e.g. 

created via :func:`numpy.meshgrid`), or they must both be 1-D such 

that ``len(X) == M`` is the number of columns in *Z* and 

``len(Y) == N`` is the number of rows in *Z*. 

 

If not given, they are assumed to be integer indices, i.e. 

``X = range(M)``, ``Y = range(N)``. 

 

Z : array-like(N, M) 

The height values over which the contour is drawn. 

 

levels : int or array-like, optional 

Determines the number and positions of the contour lines / regions. 

 

If an int *n*, use *n* data intervals; i.e. draw *n+1* contour 

lines. The level heights are automatically chosen. 

 

If array-like, draw contour lines at the specified levels. 

The values must be in increasing order. 

 

Returns 

------- 

c : `~.contour.QuadContourSet` 

 

Other Parameters 

---------------- 

corner_mask : bool, optional 

Enable/disable corner masking, which only has an effect if *Z* is 

a masked array. If ``False``, any quad touching a masked point is 

masked out. If ``True``, only the triangular corners of quads 

nearest those points are always masked out, other triangular 

corners comprising three unmasked points are contoured as usual. 

 

Defaults to ``rcParams['contour.corner_mask']``, which defaults to 

``True``. 

 

colors : color string or sequence of colors, optional 

The colors of the levels, i.e. the lines for `.contour` and the 

areas for `.contourf`. 

 

The sequence is cycled for the levels in ascending order. If the 

sequence is shorter than the number of levels, it's repeated. 

 

As a shortcut, single color strings may be used in place of 

one-element lists, i.e. ``'red'`` instead of ``['red']`` to color 

all levels with the same color. This shortcut does only work for 

color strings, not for other ways of specifying colors. 

 

By default (value *None*), the colormap specified by *cmap* 

will be used. 

 

alpha : float, optional 

The alpha blending value, between 0 (transparent) and 1 (opaque). 

 

cmap : str or `.Colormap`, optional 

A `.Colormap` instance or registered colormap name. The colormap 

maps the level values to colors. 

Defaults to :rc:`image.cmap`. 

 

If given, *colors* take precedence over *cmap*. 

 

norm : `~matplotlib.colors.Normalize`, optional 

If a colormap is used, the `.Normalize` instance scales the level 

values to the canonical colormap range [0, 1] for mapping to 

colors. If not given, the default linear scaling is used. 

 

vmin, vmax : float, optional 

If not *None*, either or both of these values will be supplied to 

the `.Normalize` instance, overriding the default color scaling 

based on *levels*. 

 

origin : {*None*, 'upper', 'lower', 'image'}, optional 

Determines the orientation and exact position of *Z* by specifying 

the position of ``Z[0, 0]``. This is only relevant, if *X*, *Y* 

are not given. 

 

- *None*: ``Z[0, 0]`` is at X=0, Y=0 in the lower left corner. 

- 'lower': ``Z[0, 0]`` is at X=0.5, Y=0.5 in the lower left corner. 

- 'upper': ``Z[0, 0]`` is at X=N+0.5, Y=0.5 in the upper left 

corner. 

- 'image': Use the value from :rc:`image.origin`. Note: The value 

*None* in the rcParam is currently handled as 'lower'. 

 

extent : (x0, x1, y0, y1), optional 

If *origin* is not *None*, then *extent* is interpreted as 

in :func:`matplotlib.pyplot.imshow`: it gives the outer 

pixel boundaries. In this case, the position of Z[0,0] 

is the center of the pixel, not a corner. If *origin* is 

*None*, then (*x0*, *y0*) is the position of Z[0,0], and 

(*x1*, *y1*) is the position of Z[-1,-1]. 

 

This keyword is not active if *X* and *Y* are specified in 

the call to contour. 

 

locator : ticker.Locator subclass, optional 

The locator is used to determine the contour levels if they 

are not given explicitly via *levels*. 

Defaults to `~.ticker.MaxNLocator`. 

 

extend : {'neither', 'both', 'min', 'max'}, optional 

Unless this is 'neither', contour levels are automatically 

added to one or both ends of the range so that all data 

are included. These added ranges are then mapped to the 

special colormap values which default to the ends of the 

colormap range, but can be set via 

:meth:`matplotlib.colors.Colormap.set_under` and 

:meth:`matplotlib.colors.Colormap.set_over` methods. 

 

xunits, yunits : registered units, optional 

Override axis units by specifying an instance of a 

:class:`matplotlib.units.ConversionInterface`. 

 

antialiased : bool, optinal 

Enable antialiasing, overriding the defaults. For 

filled contours, the default is *True*. For line contours, 

it is taken from :rc:`lines.antialiased`. 

 

Nchunk : int >= 0, optional 

If 0, no subdivision of the domain. Specify a positive integer to 

divide the domain into subdomains of *nchunk* by *nchunk* quads. 

Chunking reduces the maximum length of polygons generated by the 

contouring algorithm which reduces the rendering workload passed 

on to the backend and also requires slightly less RAM. It can 

however introduce rendering artifacts at chunk boundaries depending 

on the backend, the *antialiased* flag and value of *alpha*. 

 

linewidths : float or sequence of float, optional 

*Only applies to* `.contour`. 

 

The line width of the contour lines. 

 

If a number, all levels will be plotted with this linewidth. 

 

If a sequence, the levels in ascending order will be plotted with 

the linewidths in the order specified. 

 

Defaults to :rc:`lines.linewidth`. 

 

linestyles : {*None*, 'solid', 'dashed', 'dashdot', 'dotted'}, optional 

*Only applies to* `.contour`. 

 

If *linestyles* is *None*, the default is 'solid' unless the lines 

are monochrome. In that case, negative contours will take their 

linestyle from :rc:`contour.negative_linestyle` setting. 

 

*linestyles* can also be an iterable of the above strings 

specifying a set of linestyles to be used. If this 

iterable is shorter than the number of contour levels 

it will be repeated as necessary. 

 

hatches : List[str], optional 

*Only applies to* `.contourf`. 

 

A list of cross hatch patterns to use on the filled areas. 

If None, no hatching will be added to the contour. 

Hatching is supported in the PostScript, PDF, SVG and Agg 

backends only. 

 

 

Notes 

----- 

1. :func:`~matplotlib.pyplot.contourf` differs from the MATLAB 

version in that it does not draw the polygon edges. 

To draw edges, add line contours with 

calls to :func:`~matplotlib.pyplot.contour`. 

 

2. contourf fills intervals that are closed at the top; that 

is, for boundaries *z1* and *z2*, the filled region is:: 

 

z1 < Z <= z2 

 

There is one exception: if the lowest boundary coincides with 

the minimum value of the *Z* array, then that minimum value 

will be included in the lowest interval. 

"""