1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

""" 

Matplotlib provides sophisticated date plotting capabilities, standing on the 

shoulders of python :mod:`datetime` and the add-on module :mod:`dateutil`. 

 

 

.. _date-format: 

 

Matplotlib date format 

---------------------- 

Matplotlib represents dates using floating point numbers specifying the number 

of days since 0001-01-01 UTC, plus 1. For example, 0001-01-01, 06:00 is 1.25, 

not 0.25. Values < 1, i.e. dates before 0001-01-01 UTC are not supported. 

 

There are a number of helper functions to convert between :mod:`datetime` 

objects and Matplotlib dates: 

 

.. currentmodule:: matplotlib.dates 

 

.. autosummary:: 

:nosignatures: 

 

date2num 

num2date 

num2timedelta 

epoch2num 

num2epoch 

mx2num 

drange 

 

.. note:: 

 

Like Python's datetime, mpl uses the Gregorian calendar for all 

conversions between dates and floating point numbers. This practice 

is not universal, and calendar differences can cause confusing 

differences between what Python and mpl give as the number of days 

since 0001-01-01 and what other software and databases yield. For 

example, the US Naval Observatory uses a calendar that switches 

from Julian to Gregorian in October, 1582. Hence, using their 

calculator, the number of days between 0001-01-01 and 2006-04-01 is 

732403, whereas using the Gregorian calendar via the datetime 

module we find:: 

 

In [1]: date(2006, 4, 1).toordinal() - date(1, 1, 1).toordinal() 

Out[1]: 732401 

 

All the Matplotlib date converters, tickers and formatters are timezone aware. 

If no explicit timezone is provided, the rcParam ``timezone`` is assumend. If 

you want to use a custom time zone, pass a :class:`datetime.tzinfo` instance 

with the tz keyword argument to :func:`num2date`, :func:`.plot_date`, and any 

custom date tickers or locators you create. 

 

A wide range of specific and general purpose date tick locators and 

formatters are provided in this module. See 

:mod:`matplotlib.ticker` for general information on tick locators 

and formatters. These are described below. 

 

 

The `dateutil module <https://dateutil.readthedocs.io>`_ provides 

additional code to handle date ticking, making it easy to place ticks 

on any kinds of dates. See examples below. 

 

Date tickers 

------------ 

 

Most of the date tickers can locate single or multiple values. For 

example:: 

 

# import constants for the days of the week 

from matplotlib.dates import MO, TU, WE, TH, FR, SA, SU 

 

# tick on mondays every week 

loc = WeekdayLocator(byweekday=MO, tz=tz) 

 

# tick on mondays and saturdays 

loc = WeekdayLocator(byweekday=(MO, SA)) 

 

In addition, most of the constructors take an interval argument:: 

 

# tick on mondays every second week 

loc = WeekdayLocator(byweekday=MO, interval=2) 

 

The rrule locator allows completely general date ticking:: 

 

# tick every 5th easter 

rule = rrulewrapper(YEARLY, byeaster=1, interval=5) 

loc = RRuleLocator(rule) 

 

Here are all the date tickers: 

 

* :class:`MicrosecondLocator`: locate microseconds 

 

* :class:`SecondLocator`: locate seconds 

 

* :class:`MinuteLocator`: locate minutes 

 

* :class:`HourLocator`: locate hours 

 

* :class:`DayLocator`: locate specified days of the month 

 

* :class:`WeekdayLocator`: Locate days of the week, e.g., MO, TU 

 

* :class:`MonthLocator`: locate months, e.g., 7 for july 

 

* :class:`YearLocator`: locate years that are multiples of base 

 

* :class:`RRuleLocator`: locate using a 

:class:`matplotlib.dates.rrulewrapper`. The 

:class:`rrulewrapper` is a simple wrapper around a 

:class:`dateutil.rrule` (`dateutil 

<https://dateutil.readthedocs.io>`_) which allow almost 

arbitrary date tick specifications. See `rrule example 

<../gallery/ticks_and_spines/date_demo_rrule.html>`_. 

 

* :class:`AutoDateLocator`: On autoscale, this class picks the best 

:class:`DateLocator` (e.g., :class:`RRuleLocator`) 

to set the view limits and the tick 

locations. If called with ``interval_multiples=True`` it will 

make ticks line up with sensible multiples of the tick intervals. E.g. 

if the interval is 4 hours, it will pick hours 0, 4, 8, etc as ticks. 

This behaviour is not guaranteed by default. 

 

Date formatters 

--------------- 

 

Here all all the date formatters: 

 

* :class:`AutoDateFormatter`: attempts to figure out the best format 

to use. This is most useful when used with the :class:`AutoDateLocator`. 

 

* :class:`DateFormatter`: use :func:`strftime` format strings 

 

* :class:`IndexDateFormatter`: date plots with implicit *x* 

indexing. 

""" 

 

import datetime 

import functools 

import logging 

import math 

import re 

import time 

import warnings 

 

from dateutil.rrule import (rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, 

MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, 

SECONDLY) 

from dateutil.relativedelta import relativedelta 

import dateutil.parser 

import dateutil.tz 

import numpy as np 

 

import matplotlib 

from matplotlib import rcParams 

import matplotlib.units as units 

import matplotlib.cbook as cbook 

import matplotlib.ticker as ticker 

 

_log = logging.getLogger(__name__) 

 

__all__ = ('date2num', 'num2date', 'num2timedelta', 'drange', 'epoch2num', 

'num2epoch', 'mx2num', 'DateFormatter', 

'IndexDateFormatter', 'AutoDateFormatter', 'DateLocator', 

'RRuleLocator', 'AutoDateLocator', 'YearLocator', 

'MonthLocator', 'WeekdayLocator', 

'DayLocator', 'HourLocator', 'MinuteLocator', 

'SecondLocator', 'MicrosecondLocator', 

'rrule', 'MO', 'TU', 'WE', 'TH', 'FR', 'SA', 'SU', 

'YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY', 

'HOURLY', 'MINUTELY', 'SECONDLY', 'MICROSECONDLY', 'relativedelta', 

'seconds', 'minutes', 'hours', 'weeks') 

 

 

_log = logging.getLogger(__name__) 

 

 

UTC = datetime.timezone.utc 

 

 

def _get_rc_timezone(): 

""" 

Retrieve the preferred timeszone from the rcParams dictionary. 

""" 

s = matplotlib.rcParams['timezone'] 

if s == 'UTC': 

return UTC 

return dateutil.tz.gettz(s) 

 

 

""" 

Time-related constants. 

""" 

EPOCH_OFFSET = float(datetime.datetime(1970, 1, 1).toordinal()) 

JULIAN_OFFSET = 1721424.5 # Julian date at 0001-01-01 

MICROSECONDLY = SECONDLY + 1 

HOURS_PER_DAY = 24. 

MIN_PER_HOUR = 60. 

SEC_PER_MIN = 60. 

MONTHS_PER_YEAR = 12. 

 

DAYS_PER_WEEK = 7. 

DAYS_PER_MONTH = 30. 

DAYS_PER_YEAR = 365.0 

 

MINUTES_PER_DAY = MIN_PER_HOUR * HOURS_PER_DAY 

 

SEC_PER_HOUR = SEC_PER_MIN * MIN_PER_HOUR 

SEC_PER_DAY = SEC_PER_HOUR * HOURS_PER_DAY 

SEC_PER_WEEK = SEC_PER_DAY * DAYS_PER_WEEK 

 

MUSECONDS_PER_DAY = 1e6 * SEC_PER_DAY 

 

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY = ( 

MO, TU, WE, TH, FR, SA, SU) 

WEEKDAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) 

 

 

def _to_ordinalf(dt): 

""" 

Convert :mod:`datetime` or :mod:`date` to the Gregorian date as UTC float 

days, preserving hours, minutes, seconds and microseconds. Return value 

is a :func:`float`. 

""" 

# Convert to UTC 

tzi = getattr(dt, 'tzinfo', None) 

if tzi is not None: 

dt = dt.astimezone(UTC) 

tzi = UTC 

 

base = float(dt.toordinal()) 

 

# If it's sufficiently datetime-like, it will have a `date()` method 

cdate = getattr(dt, 'date', lambda: None)() 

if cdate is not None: 

# Get a datetime object at midnight UTC 

midnight_time = datetime.time(0, tzinfo=tzi) 

 

rdt = datetime.datetime.combine(cdate, midnight_time) 

 

# Append the seconds as a fraction of a day 

base += (dt - rdt).total_seconds() / SEC_PER_DAY 

 

return base 

 

 

# a version of _to_ordinalf that can operate on numpy arrays 

_to_ordinalf_np_vectorized = np.vectorize(_to_ordinalf) 

 

 

def _dt64_to_ordinalf(d): 

""" 

Convert `numpy.datetime64` or an ndarray of those types to Gregorian 

date as UTC float. Roundoff is via float64 precision. Practically: 

microseconds for dates between 290301 BC, 294241 AD, milliseconds for 

larger dates (see `numpy.datetime64`). Nanoseconds aren't possible 

because we do times compared to ``0001-01-01T00:00:00`` (plus one day). 

""" 

 

# the "extra" ensures that we at least allow the dynamic range out to 

# seconds. That should get out to +/-2e11 years. 

# NOTE: First cast truncates; second cast back is for NumPy 1.10. 

extra = d - d.astype('datetime64[s]').astype(d.dtype) 

extra = extra.astype('timedelta64[ns]') 

t0 = np.datetime64('0001-01-01T00:00:00').astype('datetime64[s]') 

dt = (d.astype('datetime64[s]') - t0).astype(np.float64) 

dt += extra.astype(np.float64) / 1.0e9 

dt = dt / SEC_PER_DAY + 1.0 

 

NaT_int = np.datetime64('NaT').astype(np.int64) 

d_int = d.astype(np.int64) 

try: 

dt[d_int == NaT_int] = np.nan 

except TypeError: 

if d_int == NaT_int: 

dt = np.nan 

return dt 

 

 

def _from_ordinalf(x, tz=None): 

""" 

Convert Gregorian float of the date, preserving hours, minutes, 

seconds and microseconds. Return value is a `.datetime`. 

 

The input date *x* is a float in ordinal days at UTC, and the output will 

be the specified `.datetime` object corresponding to that time in 

timezone *tz*, or if *tz* is ``None``, in the timezone specified in 

:rc:`timezone`. 

""" 

if tz is None: 

tz = _get_rc_timezone() 

 

ix, remainder = divmod(x, 1) 

ix = int(ix) 

if ix < 1: 

raise ValueError('Cannot convert {} to a date. This often happens if ' 

'non-datetime values are passed to an axis that ' 

'expects datetime objects.'.format(ix)) 

dt = datetime.datetime.fromordinal(ix).replace(tzinfo=UTC) 

 

# Since the input date `x` float is unable to preserve microsecond 

# precision of time representation in non-antique years, the 

# resulting datetime is rounded to the nearest multiple of 

# `musec_prec`. A value of 20 is appropriate for current dates. 

musec_prec = 20 

remainder_musec = int(round(remainder * MUSECONDS_PER_DAY / musec_prec) 

* musec_prec) 

 

# For people trying to plot with full microsecond precision, enable 

# an early-year workaround 

if x < 30 * 365: 

remainder_musec = int(round(remainder * MUSECONDS_PER_DAY)) 

 

# add hours, minutes, seconds, microseconds 

dt += datetime.timedelta(microseconds=remainder_musec) 

 

return dt.astimezone(tz) 

 

 

# a version of _from_ordinalf that can operate on numpy arrays 

_from_ordinalf_np_vectorized = np.vectorize(_from_ordinalf) 

 

 

class strpdate2num(object): 

""" 

Use this class to parse date strings to matplotlib datenums when 

you know the date format string of the date you are parsing. 

""" 

def __init__(self, fmt): 

""" fmt: any valid strptime format is supported """ 

self.fmt = fmt 

 

def __call__(self, s): 

"""s : string to be converted 

return value: a date2num float 

""" 

return date2num(datetime.datetime(*time.strptime(s, self.fmt)[:6])) 

 

 

class bytespdate2num(strpdate2num): 

""" 

Use this class to parse date strings to matplotlib datenums when 

you know the date format string of the date you are parsing. See 

:doc:`/gallery/misc/load_converter.py`. 

""" 

def __init__(self, fmt, encoding='utf-8'): 

""" 

Args: 

fmt: any valid strptime format is supported 

encoding: encoding to use on byte input (default: 'utf-8') 

""" 

super().__init__(fmt) 

self.encoding = encoding 

 

def __call__(self, b): 

""" 

Args: 

b: byte input to be converted 

Returns: 

A date2num float 

""" 

s = b.decode(self.encoding) 

return super().__call__(s) 

 

 

# a version of dateutil.parser.parse that can operate on nump0y arrays 

_dateutil_parser_parse_np_vectorized = np.vectorize(dateutil.parser.parse) 

 

 

def datestr2num(d, default=None): 

""" 

Convert a date string to a datenum using 

:func:`dateutil.parser.parse`. 

 

Parameters 

---------- 

d : string or sequence of strings 

The dates to convert. 

 

default : datetime instance, optional 

The default date to use when fields are missing in *d*. 

""" 

if isinstance(d, str): 

dt = dateutil.parser.parse(d, default=default) 

return date2num(dt) 

else: 

if default is not None: 

d = [dateutil.parser.parse(s, default=default) for s in d] 

d = np.asarray(d) 

if not d.size: 

return d 

return date2num(_dateutil_parser_parse_np_vectorized(d)) 

 

 

def date2num(d): 

""" 

Convert datetime objects to Matplotlib dates. 

 

Parameters 

---------- 

d : `datetime.datetime` or `numpy.datetime64` or sequences of these 

 

Returns 

------- 

float or sequence of floats 

Number of days (fraction part represents hours, minutes, seconds, ms) 

since 0001-01-01 00:00:00 UTC, plus one. 

 

Notes 

----- 

The addition of one here is a historical artifact. Also, note that the 

Gregorian calendar is assumed; this is not universal practice. 

For details see the module docstring. 

""" 

if hasattr(d, "values"): 

# this unpacks pandas series or dataframes... 

d = d.values 

if not np.iterable(d): 

if (isinstance(d, np.datetime64) or (isinstance(d, np.ndarray) and 

np.issubdtype(d.dtype, np.datetime64))): 

return _dt64_to_ordinalf(d) 

return _to_ordinalf(d) 

 

else: 

d = np.asarray(d) 

if np.issubdtype(d.dtype, np.datetime64): 

return _dt64_to_ordinalf(d) 

if not d.size: 

return d 

return _to_ordinalf_np_vectorized(d) 

 

 

def julian2num(j): 

""" 

Convert a Julian date (or sequence) to a Matplotlib date (or sequence). 

 

Parameters 

---------- 

j : float or sequence of floats 

Julian date(s) 

 

Returns 

------- 

float or sequence of floats 

Matplotlib date(s) 

""" 

if cbook.iterable(j): 

j = np.asarray(j) 

return j - JULIAN_OFFSET 

 

 

def num2julian(n): 

""" 

Convert a Matplotlib date (or sequence) to a Julian date (or sequence). 

 

Parameters 

---------- 

n : float or sequence of floats 

Matplotlib date(s) 

 

Returns 

------- 

float or sequence of floats 

Julian date(s) 

""" 

if cbook.iterable(n): 

n = np.asarray(n) 

return n + JULIAN_OFFSET 

 

 

def num2date(x, tz=None): 

""" 

Convert Matplotlib dates to `~datetime.datetime` objects. 

 

Parameters 

---------- 

x : float or sequence of floats 

Number of days (fraction part represents hours, minutes, seconds) 

since 0001-01-01 00:00:00 UTC, plus one. 

tz : string, optional 

Timezone of *x* (defaults to rcparams ``timezone``). 

 

Returns 

------- 

`~datetime.datetime` or sequence of `~datetime.datetime` 

Dates are returned in timezone *tz*. 

 

If *x* is a sequence, a sequence of :class:`datetime` objects will 

be returned. 

 

Notes 

----- 

The addition of one here is a historical artifact. Also, note that the 

Gregorian calendar is assumed; this is not universal practice. 

For details, see the module docstring. 

""" 

if tz is None: 

tz = _get_rc_timezone() 

if not cbook.iterable(x): 

return _from_ordinalf(x, tz) 

else: 

x = np.asarray(x) 

if not x.size: 

return x 

return _from_ordinalf_np_vectorized(x, tz).tolist() 

 

 

def _ordinalf_to_timedelta(x): 

return datetime.timedelta(days=x) 

 

 

_ordinalf_to_timedelta_np_vectorized = np.vectorize(_ordinalf_to_timedelta) 

 

 

def num2timedelta(x): 

""" 

Convert number of days to a `~datetime.timedelta` object. 

 

If *x* is a sequence, a sequence of `~datetime.timedelta` objects will 

be returned. 

 

Parameters 

---------- 

x : float, sequence of floats 

Number of days. The fraction part represents hours, minutes, seconds. 

 

Returns 

------- 

`datetime.timedelta` or list[`datetime.timedelta`] 

 

""" 

if not cbook.iterable(x): 

return _ordinalf_to_timedelta(x) 

else: 

x = np.asarray(x) 

if not x.size: 

return x 

return _ordinalf_to_timedelta_np_vectorized(x).tolist() 

 

 

def drange(dstart, dend, delta): 

""" 

Return a sequence of equally spaced Matplotlib dates. 

 

The dates start at *dstart* and reach up to, but not including *dend*. 

They are spaced by *delta*. 

 

Parameters 

---------- 

dstart, dend : `~datetime.datetime` 

The date limits. 

delta : `datetime.timedelta` 

Spacing of the dates. 

 

Returns 

------- 

drange : `numpy.array` 

A list floats representing Matplotlib dates. 

 

""" 

f1 = date2num(dstart) 

f2 = date2num(dend) 

step = delta.total_seconds() / SEC_PER_DAY 

 

# calculate the difference between dend and dstart in times of delta 

num = int(np.ceil((f2 - f1) / step)) 

 

# calculate end of the interval which will be generated 

dinterval_end = dstart + num * delta 

 

# ensure, that an half open interval will be generated [dstart, dend) 

if dinterval_end >= dend: 

# if the endpoint is greated than dend, just subtract one delta 

dinterval_end -= delta 

num -= 1 

 

f2 = date2num(dinterval_end) # new float-endpoint 

return np.linspace(f1, f2, num + 1) 

 

### date tickers and formatters ### 

 

 

class DateFormatter(ticker.Formatter): 

""" 

Tick location is seconds since the epoch. Use a :func:`strftime` 

format string. 

 

Python only supports :mod:`datetime` :func:`strftime` formatting 

for years greater than 1900. Thanks to Andrew Dalke, Dalke 

Scientific Software who contributed the :func:`strftime` code 

below to include dates earlier than this year. 

""" 

 

illegal_s = re.compile(r"((^|[^%])(%%)*%s)") 

 

def __init__(self, fmt, tz=None): 

""" 

*fmt* is a :func:`strftime` format string; *tz* is the 

:class:`tzinfo` instance. 

""" 

if tz is None: 

tz = _get_rc_timezone() 

self.fmt = fmt 

self.tz = tz 

 

def __call__(self, x, pos=0): 

if x == 0: 

raise ValueError('DateFormatter found a value of x=0, which is ' 

'an illegal date; this usually occurs because ' 

'you have not informed the axis that it is ' 

'plotting dates, e.g., with ax.xaxis_date()') 

return num2date(x, self.tz).strftime(self.fmt) 

 

def set_tzinfo(self, tz): 

self.tz = tz 

 

@cbook.deprecated("3.0") 

def _replace_common_substr(self, s1, s2, sub1, sub2, replacement): 

"""Helper function for replacing substrings sub1 and sub2 

located at the same indexes in strings s1 and s2 respectively, 

with the string replacement. It is expected that sub1 and sub2 

have the same length. Returns the pair s1, s2 after the 

substitutions. 

""" 

# Find common indexes of substrings sub1 in s1 and sub2 in s2 

# and make substitutions inplace. Because this is inplace, 

# it is okay if len(replacement) != len(sub1), len(sub2). 

i = 0 

while True: 

j = s1.find(sub1, i) 

if j == -1: 

break 

 

i = j + 1 

if s2[j:j + len(sub2)] != sub2: 

continue 

 

s1 = s1[:j] + replacement + s1[j + len(sub1):] 

s2 = s2[:j] + replacement + s2[j + len(sub2):] 

 

return s1, s2 

 

@cbook.deprecated("3.0") 

def strftime_pre_1900(self, dt, fmt=None): 

"""Call time.strftime for years before 1900 by rolling 

forward a multiple of 28 years. 

 

*fmt* is a :func:`strftime` format string. 

 

Dalke: I hope I did this math right. Every 28 years the 

calendar repeats, except through century leap years excepting 

the 400 year leap years. But only if you're using the Gregorian 

calendar. 

""" 

if fmt is None: 

fmt = self.fmt 

 

# Since python's time module's strftime implementation does not 

# support %f microsecond (but the datetime module does), use a 

# regular expression substitution to replace instances of %f. 

# Note that this can be useful since python's floating-point 

# precision representation for datetime causes precision to be 

# more accurate closer to year 0 (around the year 2000, precision 

# can be at 10s of microseconds). 

fmt = re.sub(r'((^|[^%])(%%)*)%f', 

r'\g<1>{0:06d}'.format(dt.microsecond), fmt) 

 

year = dt.year 

# For every non-leap year century, advance by 

# 6 years to get into the 28-year repeat cycle 

delta = 2000 - year 

off = 6 * (delta // 100 + delta // 400) 

year = year + off 

 

# Move to between the years 1973 and 2000 

year1 = year + ((2000 - year) // 28) * 28 

year2 = year1 + 28 

timetuple = dt.timetuple() 

# Generate timestamp string for year and year+28 

s1 = time.strftime(fmt, (year1,) + timetuple[1:]) 

s2 = time.strftime(fmt, (year2,) + timetuple[1:]) 

 

# Replace instances of respective years (both 2-digit and 4-digit) 

# that are located at the same indexes of s1, s2 with dt's year. 

# Note that C++'s strftime implementation does not use padded 

# zeros or padded whitespace for %y or %Y for years before 100, but 

# uses padded zeros for %x. (For example, try the runnable examples 

# with .tm_year in the interval [-1900, -1800] on 

# http://en.cppreference.com/w/c/chrono/strftime.) For ease of 

# implementation, we always use padded zeros for %y, %Y, and %x. 

s1, s2 = self._replace_common_substr(s1, s2, 

"{0:04d}".format(year1), 

"{0:04d}".format(year2), 

"{0:04d}".format(dt.year)) 

s1, s2 = self._replace_common_substr(s1, s2, 

"{0:02d}".format(year1 % 100), 

"{0:02d}".format(year2 % 100), 

"{0:02d}".format(dt.year % 100)) 

return cbook.unicode_safe(s1) 

 

@cbook.deprecated("3.0") 

def strftime(self, dt, fmt=None): 

""" 

Refer to documentation for :meth:`datetime.datetime.strftime` 

 

*fmt* is a :meth:`datetime.datetime.strftime` format string. 

 

Warning: For years before 1900, depending upon the current 

locale it is possible that the year displayed with %x might 

be incorrect. For years before 100, %y and %Y will yield 

zero-padded strings. 

""" 

if fmt is None: 

fmt = self.fmt 

fmt = self.illegal_s.sub(r"\1", fmt) 

fmt = fmt.replace("%s", "s") 

if dt.year >= 1900: 

# Note: in python 3.3 this is okay for years >= 1000, 

# refer to http://bugs.python.org/issue1777412 

return cbook.unicode_safe(dt.strftime(fmt)) 

 

return self.strftime_pre_1900(dt, fmt) 

 

 

class IndexDateFormatter(ticker.Formatter): 

""" 

Use with :class:`~matplotlib.ticker.IndexLocator` to cycle format 

strings by index. 

""" 

def __init__(self, t, fmt, tz=None): 

""" 

*t* is a sequence of dates (floating point days). *fmt* is a 

:func:`strftime` format string. 

""" 

if tz is None: 

tz = _get_rc_timezone() 

self.t = t 

self.fmt = fmt 

self.tz = tz 

 

def __call__(self, x, pos=0): 

'Return the label for time *x* at position *pos*' 

ind = int(np.round(x)) 

if ind >= len(self.t) or ind <= 0: 

return '' 

return num2date(self.t[ind], self.tz).strftime(self.fmt) 

 

 

class AutoDateFormatter(ticker.Formatter): 

""" 

This class attempts to figure out the best format to use. This is 

most useful when used with the :class:`AutoDateLocator`. 

 

 

The AutoDateFormatter has a scale dictionary that maps the scale 

of the tick (the distance in days between one major tick) and a 

format string. The default looks like this:: 

 

self.scaled = { 

DAYS_PER_YEAR: rcParams['date.autoformat.year'], 

DAYS_PER_MONTH: rcParams['date.autoformat.month'], 

1.0: rcParams['date.autoformat.day'], 

1. / HOURS_PER_DAY: rcParams['date.autoformat.hour'], 

1. / (MINUTES_PER_DAY): rcParams['date.autoformat.minute'], 

1. / (SEC_PER_DAY): rcParams['date.autoformat.second'], 

1. / (MUSECONDS_PER_DAY): rcParams['date.autoformat.microsecond'], 

} 

 

 

The algorithm picks the key in the dictionary that is >= the 

current scale and uses that format string. You can customize this 

dictionary by doing:: 

 

 

>>> locator = AutoDateLocator() 

>>> formatter = AutoDateFormatter(locator) 

>>> formatter.scaled[1/(24.*60.)] = '%M:%S' # only show min and sec 

 

A custom :class:`~matplotlib.ticker.FuncFormatter` can also be used. 

The following example shows how to use a custom format function to strip 

trailing zeros from decimal seconds and adds the date to the first 

ticklabel:: 

 

>>> def my_format_function(x, pos=None): 

... x = matplotlib.dates.num2date(x) 

... if pos == 0: 

... fmt = '%D %H:%M:%S.%f' 

... else: 

... fmt = '%H:%M:%S.%f' 

... label = x.strftime(fmt) 

... label = label.rstrip("0") 

... label = label.rstrip(".") 

... return label 

>>> from matplotlib.ticker import FuncFormatter 

>>> formatter.scaled[1/(24.*60.)] = FuncFormatter(my_format_function) 

""" 

 

# This can be improved by providing some user-level direction on 

# how to choose the best format (precedence, etc...) 

 

# Perhaps a 'struct' that has a field for each time-type where a 

# zero would indicate "don't show" and a number would indicate 

# "show" with some sort of priority. Same priorities could mean 

# show all with the same priority. 

 

# Or more simply, perhaps just a format string for each 

# possibility... 

 

def __init__(self, locator, tz=None, defaultfmt='%Y-%m-%d'): 

""" 

Autoformat the date labels. The default format is the one to use 

if none of the values in ``self.scaled`` are greater than the unit 

returned by ``locator._get_unit()``. 

""" 

self._locator = locator 

self._tz = tz 

self.defaultfmt = defaultfmt 

self._formatter = DateFormatter(self.defaultfmt, tz) 

self.scaled = {DAYS_PER_YEAR: rcParams['date.autoformatter.year'], 

DAYS_PER_MONTH: rcParams['date.autoformatter.month'], 

1.0: rcParams['date.autoformatter.day'], 

1. / HOURS_PER_DAY: rcParams['date.autoformatter.hour'], 

1. / (MINUTES_PER_DAY): 

rcParams['date.autoformatter.minute'], 

1. / (SEC_PER_DAY): 

rcParams['date.autoformatter.second'], 

1. / (MUSECONDS_PER_DAY): 

rcParams['date.autoformatter.microsecond']} 

 

def __call__(self, x, pos=None): 

locator_unit_scale = float(self._locator._get_unit()) 

# Pick the first scale which is greater than the locator unit. 

fmt = next((fmt for scale, fmt in sorted(self.scaled.items()) 

if scale >= locator_unit_scale), 

self.defaultfmt) 

 

if isinstance(fmt, str): 

self._formatter = DateFormatter(fmt, self._tz) 

result = self._formatter(x, pos) 

elif callable(fmt): 

result = fmt(x, pos) 

else: 

raise TypeError('Unexpected type passed to {0!r}.'.format(self)) 

 

return result 

 

 

class rrulewrapper(object): 

def __init__(self, freq, tzinfo=None, **kwargs): 

kwargs['freq'] = freq 

self._base_tzinfo = tzinfo 

 

self._update_rrule(**kwargs) 

 

def set(self, **kwargs): 

self._construct.update(kwargs) 

 

self._update_rrule(**self._construct) 

 

def _update_rrule(self, **kwargs): 

tzinfo = self._base_tzinfo 

 

# rrule does not play nicely with time zones - especially pytz time 

# zones, it's best to use naive zones and attach timezones once the 

# datetimes are returned 

if 'dtstart' in kwargs: 

dtstart = kwargs['dtstart'] 

if dtstart.tzinfo is not None: 

if tzinfo is None: 

tzinfo = dtstart.tzinfo 

else: 

dtstart = dtstart.astimezone(tzinfo) 

 

kwargs['dtstart'] = dtstart.replace(tzinfo=None) 

 

if 'until' in kwargs: 

until = kwargs['until'] 

if until.tzinfo is not None: 

if tzinfo is not None: 

until = until.astimezone(tzinfo) 

else: 

raise ValueError('until cannot be aware if dtstart ' 

'is naive and tzinfo is None') 

 

kwargs['until'] = until.replace(tzinfo=None) 

 

self._construct = kwargs.copy() 

self._tzinfo = tzinfo 

self._rrule = rrule(**self._construct) 

 

def _attach_tzinfo(self, dt, tzinfo): 

# pytz zones are attached by "localizing" the datetime 

if hasattr(tzinfo, 'localize'): 

return tzinfo.localize(dt, is_dst=True) 

 

return dt.replace(tzinfo=tzinfo) 

 

def _aware_return_wrapper(self, f, returns_list=False): 

"""Decorator function that allows rrule methods to handle tzinfo.""" 

# This is only necessary if we're actually attaching a tzinfo 

if self._tzinfo is None: 

return f 

 

# All datetime arguments must be naive. If they are not naive, they are 

# converted to the _tzinfo zone before dropping the zone. 

def normalize_arg(arg): 

if isinstance(arg, datetime.datetime) and arg.tzinfo is not None: 

if arg.tzinfo is not self._tzinfo: 

arg = arg.astimezone(self._tzinfo) 

 

return arg.replace(tzinfo=None) 

 

return arg 

 

def normalize_args(args, kwargs): 

args = tuple(normalize_arg(arg) for arg in args) 

kwargs = {kw: normalize_arg(arg) for kw, arg in kwargs.items()} 

 

return args, kwargs 

 

# There are two kinds of functions we care about - ones that return 

# dates and ones that return lists of dates. 

if not returns_list: 

def inner_func(*args, **kwargs): 

args, kwargs = normalize_args(args, kwargs) 

dt = f(*args, **kwargs) 

return self._attach_tzinfo(dt, self._tzinfo) 

else: 

def inner_func(*args, **kwargs): 

args, kwargs = normalize_args(args, kwargs) 

dts = f(*args, **kwargs) 

return [self._attach_tzinfo(dt, self._tzinfo) for dt in dts] 

 

return functools.wraps(f)(inner_func) 

 

def __getattr__(self, name): 

if name in self.__dict__: 

return self.__dict__[name] 

 

f = getattr(self._rrule, name) 

 

if name in {'after', 'before'}: 

return self._aware_return_wrapper(f) 

elif name in {'xafter', 'xbefore', 'between'}: 

return self._aware_return_wrapper(f, returns_list=True) 

else: 

return f 

 

def __setstate__(self, state): 

self.__dict__.update(state) 

 

 

class DateLocator(ticker.Locator): 

""" 

Determines the tick locations when plotting dates. 

 

This class is subclassed by other Locators and 

is not meant to be used on its own. 

""" 

hms0d = {'byhour': 0, 'byminute': 0, 'bysecond': 0} 

 

def __init__(self, tz=None): 

""" 

*tz* is a :class:`tzinfo` instance. 

""" 

if tz is None: 

tz = _get_rc_timezone() 

self.tz = tz 

 

def set_tzinfo(self, tz): 

""" 

Set time zone info. 

""" 

self.tz = tz 

 

def datalim_to_dt(self): 

""" 

Convert axis data interval to datetime objects. 

""" 

dmin, dmax = self.axis.get_data_interval() 

if dmin > dmax: 

dmin, dmax = dmax, dmin 

if dmin < 1: 

raise ValueError('datalim minimum {} is less than 1 and ' 

'is an invalid Matplotlib date value. This often ' 

'happens if you pass a non-datetime ' 

'value to an axis that has datetime units' 

.format(dmin)) 

return num2date(dmin, self.tz), num2date(dmax, self.tz) 

 

def viewlim_to_dt(self): 

""" 

Converts the view interval to datetime objects. 

""" 

vmin, vmax = self.axis.get_view_interval() 

if vmin > vmax: 

vmin, vmax = vmax, vmin 

if vmin < 1: 

raise ValueError('view limit minimum {} is less than 1 and ' 

'is an invalid Matplotlib date value. This ' 

'often happens if you pass a non-datetime ' 

'value to an axis that has datetime units' 

.format(vmin)) 

return num2date(vmin, self.tz), num2date(vmax, self.tz) 

 

def _get_unit(self): 

""" 

Return how many days a unit of the locator is; used for 

intelligent autoscaling. 

""" 

return 1 

 

def _get_interval(self): 

""" 

Return the number of units for each tick. 

""" 

return 1 

 

def nonsingular(self, vmin, vmax): 

""" 

Given the proposed upper and lower extent, adjust the range 

if it is too close to being singular (i.e. a range of ~0). 

 

""" 

unit = self._get_unit() 

interval = self._get_interval() 

if abs(vmax - vmin) < 1e-6: 

vmin -= 2 * unit * interval 

vmax += 2 * unit * interval 

return vmin, vmax 

 

 

class RRuleLocator(DateLocator): 

# use the dateutil rrule instance 

 

def __init__(self, o, tz=None): 

DateLocator.__init__(self, tz) 

self.rule = o 

 

def __call__(self): 

# if no data have been set, this will tank with a ValueError 

try: 

dmin, dmax = self.viewlim_to_dt() 

except ValueError: 

return [] 

 

return self.tick_values(dmin, dmax) 

 

def tick_values(self, vmin, vmax): 

delta = relativedelta(vmax, vmin) 

 

# We need to cap at the endpoints of valid datetime 

try: 

start = vmin - delta 

except (ValueError, OverflowError): 

start = _from_ordinalf(1.0) 

 

try: 

stop = vmax + delta 

except (ValueError, OverflowError): 

# The magic number! 

stop = _from_ordinalf(3652059.9999999) 

 

self.rule.set(dtstart=start, until=stop) 

 

dates = self.rule.between(vmin, vmax, True) 

if len(dates) == 0: 

return date2num([vmin, vmax]) 

return self.raise_if_exceeds(date2num(dates)) 

 

def _get_unit(self): 

""" 

Return how many days a unit of the locator is; used for 

intelligent autoscaling. 

""" 

freq = self.rule._rrule._freq 

return self.get_unit_generic(freq) 

 

@staticmethod 

def get_unit_generic(freq): 

if freq == YEARLY: 

return DAYS_PER_YEAR 

elif freq == MONTHLY: 

return DAYS_PER_MONTH 

elif freq == WEEKLY: 

return DAYS_PER_WEEK 

elif freq == DAILY: 

return 1.0 

elif freq == HOURLY: 

return 1.0 / HOURS_PER_DAY 

elif freq == MINUTELY: 

return 1.0 / MINUTES_PER_DAY 

elif freq == SECONDLY: 

return 1.0 / SEC_PER_DAY 

else: 

# error 

return -1 # or should this just return '1'? 

 

def _get_interval(self): 

return self.rule._rrule._interval 

 

def autoscale(self): 

""" 

Set the view limits to include the data range. 

""" 

dmin, dmax = self.datalim_to_dt() 

delta = relativedelta(dmax, dmin) 

 

# We need to cap at the endpoints of valid datetime 

try: 

start = dmin - delta 

except ValueError: 

start = _from_ordinalf(1.0) 

 

try: 

stop = dmax + delta 

except ValueError: 

# The magic number! 

stop = _from_ordinalf(3652059.9999999) 

 

self.rule.set(dtstart=start, until=stop) 

dmin, dmax = self.datalim_to_dt() 

 

vmin = self.rule.before(dmin, True) 

if not vmin: 

vmin = dmin 

 

vmax = self.rule.after(dmax, True) 

if not vmax: 

vmax = dmax 

 

vmin = date2num(vmin) 

vmax = date2num(vmax) 

 

return self.nonsingular(vmin, vmax) 

 

 

class AutoDateLocator(DateLocator): 

""" 

On autoscale, this class picks the best 

:class:`DateLocator` to set the view limits and the tick 

locations. 

""" 

def __init__(self, tz=None, minticks=5, maxticks=None, 

interval_multiples=True): 

""" 

*minticks* is the minimum number of ticks desired, which is used to 

select the type of ticking (yearly, monthly, etc.). 

 

*maxticks* is the maximum number of ticks desired, which controls 

any interval between ticks (ticking every other, every 3, etc.). 

For really fine-grained control, this can be a dictionary mapping 

individual rrule frequency constants (YEARLY, MONTHLY, etc.) 

to their own maximum number of ticks. This can be used to keep 

the number of ticks appropriate to the format chosen in 

:class:`AutoDateFormatter`. Any frequency not specified in this 

dictionary is given a default value. 

 

*tz* is a :class:`tzinfo` instance. 

 

*interval_multiples* is a boolean that indicates whether ticks 

should be chosen to be multiple of the interval. This will lock 

ticks to 'nicer' locations. For example, this will force the 

ticks to be at hours 0,6,12,18 when hourly ticking is done at 

6 hour intervals. 

 

The AutoDateLocator has an interval dictionary that maps the 

frequency of the tick (a constant from dateutil.rrule) and a 

multiple allowed for that ticking. The default looks like this:: 

 

self.intervald = { 

YEARLY : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 

1000, 2000, 4000, 5000, 10000], 

MONTHLY : [1, 2, 3, 4, 6], 

DAILY : [1, 2, 3, 7, 14], 

HOURLY : [1, 2, 3, 4, 6, 12], 

MINUTELY: [1, 5, 10, 15, 30], 

SECONDLY: [1, 5, 10, 15, 30], 

MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 

5000, 10000, 20000, 50000, 100000, 200000, 500000, 

1000000], 

} 

 

The interval is used to specify multiples that are appropriate for 

the frequency of ticking. For instance, every 7 days is sensible 

for daily ticks, but for minutes/seconds, 15 or 30 make sense. 

You can customize this dictionary by doing:: 

 

locator = AutoDateLocator() 

locator.intervald[HOURLY] = [3] # only show every 3 hours 

""" 

DateLocator.__init__(self, tz) 

self._locator = YearLocator() 

self._freq = YEARLY 

self._freqs = [YEARLY, MONTHLY, DAILY, HOURLY, MINUTELY, 

SECONDLY, MICROSECONDLY] 

self.minticks = minticks 

 

self.maxticks = {YEARLY: 11, MONTHLY: 12, DAILY: 11, HOURLY: 12, 

MINUTELY: 11, SECONDLY: 11, MICROSECONDLY: 8} 

if maxticks is not None: 

try: 

self.maxticks.update(maxticks) 

except TypeError: 

# Assume we were given an integer. Use this as the maximum 

# number of ticks for every frequency and create a 

# dictionary for this 

self.maxticks = dict.fromkeys(self._freqs, maxticks) 

self.interval_multiples = interval_multiples 

self.intervald = { 

YEARLY: [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 

1000, 2000, 4000, 5000, 10000], 

MONTHLY: [1, 2, 3, 4, 6], 

DAILY: [1, 2, 3, 7, 14, 21], 

HOURLY: [1, 2, 3, 4, 6, 12], 

MINUTELY: [1, 5, 10, 15, 30], 

SECONDLY: [1, 5, 10, 15, 30], 

MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 

5000, 10000, 20000, 50000, 100000, 200000, 500000, 

1000000]} 

if interval_multiples: 

# Swap "3" for "4" in the DAILY list; If we use 3 we get bad 

# tick loc for months w/ 31 days: 1, 4,..., 28, 31, 1 

# If we use 4 then we get: 1, 5, ... 25, 29, 1 

self.intervald[DAILY] = [1, 2, 4, 7, 14, 21] 

 

self._byranges = [None, range(1, 13), range(1, 32), 

range(0, 24), range(0, 60), range(0, 60), None] 

 

def __call__(self): 

'Return the locations of the ticks' 

self.refresh() 

return self._locator() 

 

def tick_values(self, vmin, vmax): 

return self.get_locator(vmin, vmax).tick_values(vmin, vmax) 

 

def nonsingular(self, vmin, vmax): 

# whatever is thrown at us, we can scale the unit. 

# But default nonsingular date plots at an ~4 year period. 

if vmin == vmax: 

vmin = vmin - DAYS_PER_YEAR * 2 

vmax = vmax + DAYS_PER_YEAR * 2 

return vmin, vmax 

 

def set_axis(self, axis): 

DateLocator.set_axis(self, axis) 

self._locator.set_axis(axis) 

 

def refresh(self): 

'Refresh internal information based on current limits.' 

dmin, dmax = self.viewlim_to_dt() 

self._locator = self.get_locator(dmin, dmax) 

 

def _get_unit(self): 

if self._freq in [MICROSECONDLY]: 

return 1. / MUSECONDS_PER_DAY 

else: 

return RRuleLocator.get_unit_generic(self._freq) 

 

def autoscale(self): 

'Try to choose the view limits intelligently.' 

dmin, dmax = self.datalim_to_dt() 

self._locator = self.get_locator(dmin, dmax) 

return self._locator.autoscale() 

 

def get_locator(self, dmin, dmax): 

'Pick the best locator based on a distance.' 

delta = relativedelta(dmax, dmin) 

tdelta = dmax - dmin 

 

# take absolute difference 

if dmin > dmax: 

delta = -delta 

tdelta = -tdelta 

 

# The following uses a mix of calls to relativedelta and timedelta 

# methods because there is incomplete overlap in the functionality of 

# these similar functions, and it's best to avoid doing our own math 

# whenever possible. 

numYears = float(delta.years) 

numMonths = numYears * MONTHS_PER_YEAR + delta.months 

numDays = tdelta.days # Avoids estimates of days/month, days/year 

numHours = numDays * HOURS_PER_DAY + delta.hours 

numMinutes = numHours * MIN_PER_HOUR + delta.minutes 

numSeconds = np.floor(tdelta.total_seconds()) 

numMicroseconds = np.floor(tdelta.total_seconds() * 1e6) 

 

nums = [numYears, numMonths, numDays, numHours, numMinutes, 

numSeconds, numMicroseconds] 

 

use_rrule_locator = [True] * 6 + [False] 

 

# Default setting of bymonth, etc. to pass to rrule 

# [unused (for year), bymonth, bymonthday, byhour, byminute, 

# bysecond, unused (for microseconds)] 

byranges = [None, 1, 1, 0, 0, 0, None] 

 

# Loop over all the frequencies and try to find one that gives at 

# least a minticks tick positions. Once this is found, look for 

# an interval from an list specific to that frequency that gives no 

# more than maxticks tick positions. Also, set up some ranges 

# (bymonth, etc.) as appropriate to be passed to rrulewrapper. 

for i, (freq, num) in enumerate(zip(self._freqs, nums)): 

# If this particular frequency doesn't give enough ticks, continue 

if num < self.minticks: 

# Since we're not using this particular frequency, set 

# the corresponding by_ to None so the rrule can act as 

# appropriate 

byranges[i] = None 

continue 

 

# Find the first available interval that doesn't give too many 

# ticks 

for interval in self.intervald[freq]: 

if num <= interval * (self.maxticks[freq] - 1): 

break 

else: 

# We went through the whole loop without breaking, default to 

# the last interval in the list and raise a warning 

warnings.warn('AutoDateLocator was unable to pick an ' 

'appropriate interval for this date range. ' 

'It may be necessary to add an interval value ' 

"to the AutoDateLocator's intervald dictionary." 

' Defaulting to {0}.'.format(interval)) 

 

# Set some parameters as appropriate 

self._freq = freq 

 

if self._byranges[i] and self.interval_multiples: 

if i == DAILY and interval == 14: 

# just make first and 15th. Avoids 30th. 

byranges[i] = [1, 15] 

else: 

byranges[i] = self._byranges[i][::interval] 

interval = 1 

else: 

byranges[i] = self._byranges[i] 

 

break 

else: 

raise ValueError('No sensible date limit could be found in the ' 

'AutoDateLocator.') 

 

if (freq == YEARLY) and self.interval_multiples: 

locator = YearLocator(interval) 

elif use_rrule_locator[i]: 

_, bymonth, bymonthday, byhour, byminute, bysecond, _ = byranges 

rrule = rrulewrapper(self._freq, interval=interval, 

dtstart=dmin, until=dmax, 

bymonth=bymonth, bymonthday=bymonthday, 

byhour=byhour, byminute=byminute, 

bysecond=bysecond) 

 

locator = RRuleLocator(rrule, self.tz) 

else: 

locator = MicrosecondLocator(interval, tz=self.tz) 

if dmin.year > 20 and interval < 1000: 

_log.warn('Plotting microsecond time intervals is not' 

' well supported. Please see the' 

' MicrosecondLocator documentation' 

' for details.') 

 

locator.set_axis(self.axis) 

 

if self.axis is not None: 

locator.set_view_interval(*self.axis.get_view_interval()) 

locator.set_data_interval(*self.axis.get_data_interval()) 

return locator 

 

 

class YearLocator(DateLocator): 

""" 

Make ticks on a given day of each year that is a multiple of base. 

 

Examples:: 

 

# Tick every year on Jan 1st 

locator = YearLocator() 

 

# Tick every 5 years on July 4th 

locator = YearLocator(5, month=7, day=4) 

""" 

def __init__(self, base=1, month=1, day=1, tz=None): 

""" 

Mark years that are multiple of base on a given month and day 

(default jan 1). 

""" 

DateLocator.__init__(self, tz) 

self.base = ticker._Edge_integer(base, 0) 

self.replaced = {'month': month, 

'day': day, 

'hour': 0, 

'minute': 0, 

'second': 0, 

'tzinfo': tz 

} 

 

def __call__(self): 

# if no data have been set, this will tank with a ValueError 

try: 

dmin, dmax = self.viewlim_to_dt() 

except ValueError: 

return [] 

 

return self.tick_values(dmin, dmax) 

 

def tick_values(self, vmin, vmax): 

ymin = self.base.le(vmin.year) * self.base.step 

ymax = self.base.ge(vmax.year) * self.base.step 

 

ticks = [vmin.replace(year=ymin, **self.replaced)] 

while True: 

dt = ticks[-1] 

if dt.year >= ymax: 

return date2num(ticks) 

year = dt.year + self.base.step 

ticks.append(dt.replace(year=year, **self.replaced)) 

 

def autoscale(self): 

""" 

Set the view limits to include the data range. 

""" 

dmin, dmax = self.datalim_to_dt() 

 

ymin = self.base.le(dmin.year) 

ymax = self.base.ge(dmax.year) 

vmin = dmin.replace(year=ymin, **self.replaced) 

vmax = dmax.replace(year=ymax, **self.replaced) 

 

vmin = date2num(vmin) 

vmax = date2num(vmax) 

return self.nonsingular(vmin, vmax) 

 

 

class MonthLocator(RRuleLocator): 

""" 

Make ticks on occurrences of each month, e.g., 1, 3, 12. 

""" 

def __init__(self, bymonth=None, bymonthday=1, interval=1, tz=None): 

""" 

Mark every month in *bymonth*; *bymonth* can be an int or 

sequence. Default is ``range(1,13)``, i.e. every month. 

 

*interval* is the interval between each iteration. For 

example, if ``interval=2``, mark every second occurrence. 

""" 

if bymonth is None: 

bymonth = range(1, 13) 

elif isinstance(bymonth, np.ndarray): 

# This fixes a bug in dateutil <= 2.3 which prevents the use of 

# numpy arrays in (among other things) the bymonthday, byweekday 

# and bymonth parameters. 

bymonth = [x.item() for x in bymonth.astype(int)] 

 

rule = rrulewrapper(MONTHLY, bymonth=bymonth, bymonthday=bymonthday, 

interval=interval, **self.hms0d) 

RRuleLocator.__init__(self, rule, tz) 

 

 

class WeekdayLocator(RRuleLocator): 

""" 

Make ticks on occurrences of each weekday. 

""" 

 

def __init__(self, byweekday=1, interval=1, tz=None): 

""" 

Mark every weekday in *byweekday*; *byweekday* can be a number or 

sequence. 

 

Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA, 

SU, the constants from :mod:`dateutil.rrule`, which have been 

imported into the :mod:`matplotlib.dates` namespace. 

 

*interval* specifies the number of weeks to skip. For example, 

``interval=2`` plots every second week. 

""" 

if isinstance(byweekday, np.ndarray): 

# This fixes a bug in dateutil <= 2.3 which prevents the use of 

# numpy arrays in (among other things) the bymonthday, byweekday 

# and bymonth parameters. 

[x.item() for x in byweekday.astype(int)] 

 

rule = rrulewrapper(DAILY, byweekday=byweekday, 

interval=interval, **self.hms0d) 

RRuleLocator.__init__(self, rule, tz) 

 

 

class DayLocator(RRuleLocator): 

""" 

Make ticks on occurrences of each day of the month. For example, 

1, 15, 30. 

""" 

def __init__(self, bymonthday=None, interval=1, tz=None): 

""" 

Mark every day in *bymonthday*; *bymonthday* can be an int or 

sequence. 

 

Default is to tick every day of the month: ``bymonthday=range(1,32)`` 

""" 

if not interval == int(interval) or interval < 1: 

raise ValueError("interval must be an integer greater than 0") 

if bymonthday is None: 

bymonthday = range(1, 32) 

elif isinstance(bymonthday, np.ndarray): 

# This fixes a bug in dateutil <= 2.3 which prevents the use of 

# numpy arrays in (among other things) the bymonthday, byweekday 

# and bymonth parameters. 

bymonthday = [x.item() for x in bymonthday.astype(int)] 

 

rule = rrulewrapper(DAILY, bymonthday=bymonthday, 

interval=interval, **self.hms0d) 

RRuleLocator.__init__(self, rule, tz) 

 

 

class HourLocator(RRuleLocator): 

""" 

Make ticks on occurrences of each hour. 

""" 

def __init__(self, byhour=None, interval=1, tz=None): 

""" 

Mark every hour in *byhour*; *byhour* can be an int or sequence. 

Default is to tick every hour: ``byhour=range(24)`` 

 

*interval* is the interval between each iteration. For 

example, if ``interval=2``, mark every second occurrence. 

""" 

if byhour is None: 

byhour = range(24) 

 

rule = rrulewrapper(HOURLY, byhour=byhour, interval=interval, 

byminute=0, bysecond=0) 

RRuleLocator.__init__(self, rule, tz) 

 

 

class MinuteLocator(RRuleLocator): 

""" 

Make ticks on occurrences of each minute. 

""" 

def __init__(self, byminute=None, interval=1, tz=None): 

""" 

Mark every minute in *byminute*; *byminute* can be an int or 

sequence. Default is to tick every minute: ``byminute=range(60)`` 

 

*interval* is the interval between each iteration. For 

example, if ``interval=2``, mark every second occurrence. 

""" 

if byminute is None: 

byminute = range(60) 

 

rule = rrulewrapper(MINUTELY, byminute=byminute, interval=interval, 

bysecond=0) 

RRuleLocator.__init__(self, rule, tz) 

 

 

class SecondLocator(RRuleLocator): 

""" 

Make ticks on occurrences of each second. 

""" 

def __init__(self, bysecond=None, interval=1, tz=None): 

""" 

Mark every second in *bysecond*; *bysecond* can be an int or 

sequence. Default is to tick every second: ``bysecond = range(60)`` 

 

*interval* is the interval between each iteration. For 

example, if ``interval=2``, mark every second occurrence. 

 

""" 

if bysecond is None: 

bysecond = range(60) 

 

rule = rrulewrapper(SECONDLY, bysecond=bysecond, interval=interval) 

RRuleLocator.__init__(self, rule, tz) 

 

 

class MicrosecondLocator(DateLocator): 

""" 

Make ticks on regular intervals of one or more microsecond(s). 

 

.. note:: 

 

Due to the floating point representation of time in days since 

0001-01-01 UTC (plus 1), plotting data with microsecond time 

resolution does not work well with current dates. 

 

If you want microsecond resolution time plots, it is strongly 

recommended to use floating point seconds, not datetime-like 

time representation. 

 

If you really must use datetime.datetime() or similar and still 

need microsecond precision, your only chance is to use very 

early years; using year 0001 is recommended. 

 

""" 

def __init__(self, interval=1, tz=None): 

""" 

*interval* is the interval between each iteration. For 

example, if ``interval=2``, mark every second microsecond. 

 

""" 

self._interval = interval 

self._wrapped_locator = ticker.MultipleLocator(interval) 

self.tz = tz 

 

def set_axis(self, axis): 

self._wrapped_locator.set_axis(axis) 

return DateLocator.set_axis(self, axis) 

 

def set_view_interval(self, vmin, vmax): 

self._wrapped_locator.set_view_interval(vmin, vmax) 

return DateLocator.set_view_interval(self, vmin, vmax) 

 

def set_data_interval(self, vmin, vmax): 

self._wrapped_locator.set_data_interval(vmin, vmax) 

return DateLocator.set_data_interval(self, vmin, vmax) 

 

def __call__(self): 

# if no data have been set, this will tank with a ValueError 

try: 

dmin, dmax = self.viewlim_to_dt() 

except ValueError: 

return [] 

 

return self.tick_values(dmin, dmax) 

 

def tick_values(self, vmin, vmax): 

nmin, nmax = date2num((vmin, vmax)) 

nmin *= MUSECONDS_PER_DAY 

nmax *= MUSECONDS_PER_DAY 

ticks = self._wrapped_locator.tick_values(nmin, nmax) 

ticks = [tick / MUSECONDS_PER_DAY for tick in ticks] 

return ticks 

 

def _get_unit(self): 

""" 

Return how many days a unit of the locator is; used for 

intelligent autoscaling. 

""" 

return 1. / MUSECONDS_PER_DAY 

 

def _get_interval(self): 

""" 

Return the number of units for each tick. 

""" 

return self._interval 

 

 

def _close_to_dt(d1, d2, epsilon=5): 

""" 

Assert that datetimes *d1* and *d2* are within *epsilon* microseconds. 

""" 

delta = d2 - d1 

mus = abs(delta.total_seconds() * 1e6) 

assert mus < epsilon 

 

 

def _close_to_num(o1, o2, epsilon=5): 

""" 

Assert that float ordinals *o1* and *o2* are within *epsilon* 

microseconds. 

""" 

delta = abs((o2 - o1) * MUSECONDS_PER_DAY) 

assert delta < epsilon 

 

 

def epoch2num(e): 

""" 

Convert an epoch or sequence of epochs to the new date format, 

that is days since 0001. 

""" 

return EPOCH_OFFSET + np.asarray(e) / SEC_PER_DAY 

 

 

def num2epoch(d): 

""" 

Convert days since 0001 to epoch. *d* can be a number or sequence. 

""" 

return (np.asarray(d) - EPOCH_OFFSET) * SEC_PER_DAY 

 

 

def mx2num(mxdates): 

""" 

Convert mx :class:`datetime` instance (or sequence of mx 

instances) to the new date format. 

""" 

scalar = False 

if not cbook.iterable(mxdates): 

scalar = True 

mxdates = [mxdates] 

ret = epoch2num([m.ticks() for m in mxdates]) 

if scalar: 

return ret[0] 

else: 

return ret 

 

 

def date_ticker_factory(span, tz=None, numticks=5): 

""" 

Create a date locator with *numticks* (approx) and a date formatter 

for *span* in days. Return value is (locator, formatter). 

""" 

 

if span == 0: 

span = 1 / HOURS_PER_DAY 

 

mins = span * MINUTES_PER_DAY 

hrs = span * HOURS_PER_DAY 

days = span 

wks = span / DAYS_PER_WEEK 

months = span / DAYS_PER_MONTH # Approx 

years = span / DAYS_PER_YEAR # Approx 

 

if years > numticks: 

locator = YearLocator(int(years / numticks), tz=tz) # define 

fmt = '%Y' 

elif months > numticks: 

locator = MonthLocator(tz=tz) 

fmt = '%b %Y' 

elif wks > numticks: 

locator = WeekdayLocator(tz=tz) 

fmt = '%a, %b %d' 

elif days > numticks: 

locator = DayLocator(interval=int(math.ceil(days / numticks)), tz=tz) 

fmt = '%b %d' 

elif hrs > numticks: 

locator = HourLocator(interval=int(math.ceil(hrs / numticks)), tz=tz) 

fmt = '%H:%M\n%b %d' 

elif mins > numticks: 

locator = MinuteLocator(interval=int(math.ceil(mins / numticks)), 

tz=tz) 

fmt = '%H:%M:%S' 

else: 

locator = MinuteLocator(tz=tz) 

fmt = '%H:%M:%S' 

 

formatter = DateFormatter(fmt, tz=tz) 

return locator, formatter 

 

 

def seconds(s): 

""" 

Return seconds as days. 

""" 

return s / SEC_PER_DAY 

 

 

def minutes(m): 

""" 

Return minutes as days. 

""" 

return m / MINUTES_PER_DAY 

 

 

def hours(h): 

""" 

Return hours as days. 

""" 

return h / HOURS_PER_DAY 

 

 

def weeks(w): 

""" 

Return weeks as days. 

""" 

return w * DAYS_PER_WEEK 

 

 

class DateConverter(units.ConversionInterface): 

""" 

Converter for datetime.date and datetime.datetime data, 

or for date/time data represented as it would be converted 

by :func:`date2num`. 

 

The 'unit' tag for such data is None or a tzinfo instance. 

""" 

 

@staticmethod 

def axisinfo(unit, axis): 

""" 

Return the :class:`~matplotlib.units.AxisInfo` for *unit*. 

 

*unit* is a tzinfo instance or None. 

The *axis* argument is required but not used. 

""" 

tz = unit 

 

majloc = AutoDateLocator(tz=tz) 

majfmt = AutoDateFormatter(majloc, tz=tz) 

datemin = datetime.date(2000, 1, 1) 

datemax = datetime.date(2010, 1, 1) 

 

return units.AxisInfo(majloc=majloc, majfmt=majfmt, label='', 

default_limits=(datemin, datemax)) 

 

@staticmethod 

def convert(value, unit, axis): 

""" 

If *value* is not already a number or sequence of numbers, 

convert it with :func:`date2num`. 

 

The *unit* and *axis* arguments are not used. 

""" 

return date2num(value) 

 

@staticmethod 

def default_units(x, axis): 

""" 

Return the tzinfo instance of *x* or of its first element, or None 

""" 

if isinstance(x, np.ndarray): 

x = x.ravel() 

 

try: 

x = cbook.safe_first_element(x) 

except (TypeError, StopIteration): 

pass 

 

try: 

return x.tzinfo 

except AttributeError: 

pass 

return None 

 

 

units.registry[np.datetime64] = DateConverter() 

units.registry[datetime.date] = DateConverter() 

units.registry[datetime.datetime] = DateConverter()