1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

""" 

The image module supports basic image loading, rescaling and display 

operations. 

""" 

 

from io import BytesIO 

from math import ceil 

import os 

import logging 

import urllib.parse 

import urllib.request 

import warnings 

 

import numpy as np 

 

from matplotlib import rcParams 

import matplotlib.artist as martist 

from matplotlib.artist import allow_rasterization 

from matplotlib.backend_bases import FigureCanvasBase 

import matplotlib.colors as mcolors 

import matplotlib.cm as cm 

import matplotlib.cbook as cbook 

 

# For clarity, names from _image are given explicitly in this module: 

import matplotlib._image as _image 

import matplotlib._png as _png 

 

# For user convenience, the names from _image are also imported into 

# the image namespace: 

from matplotlib._image import * 

 

from matplotlib.transforms import (Affine2D, BboxBase, Bbox, BboxTransform, 

IdentityTransform, TransformedBbox) 

 

_log = logging.getLogger(__name__) 

 

# map interpolation strings to module constants 

_interpd_ = { 

'none': _image.NEAREST, # fall back to nearest when not supported 

'nearest': _image.NEAREST, 

'bilinear': _image.BILINEAR, 

'bicubic': _image.BICUBIC, 

'spline16': _image.SPLINE16, 

'spline36': _image.SPLINE36, 

'hanning': _image.HANNING, 

'hamming': _image.HAMMING, 

'hermite': _image.HERMITE, 

'kaiser': _image.KAISER, 

'quadric': _image.QUADRIC, 

'catrom': _image.CATROM, 

'gaussian': _image.GAUSSIAN, 

'bessel': _image.BESSEL, 

'mitchell': _image.MITCHELL, 

'sinc': _image.SINC, 

'lanczos': _image.LANCZOS, 

'blackman': _image.BLACKMAN, 

} 

 

interpolations_names = set(_interpd_) 

 

 

def composite_images(images, renderer, magnification=1.0): 

""" 

Composite a number of RGBA images into one. The images are 

composited in the order in which they appear in the `images` list. 

 

Parameters 

---------- 

images : list of Images 

Each must have a `make_image` method. For each image, 

`can_composite` should return `True`, though this is not 

enforced by this function. Each image must have a purely 

affine transformation with no shear. 

 

renderer : RendererBase instance 

 

magnification : float 

The additional magnification to apply for the renderer in use. 

 

Returns 

------- 

tuple : image, offset_x, offset_y 

Returns the tuple: 

 

- image: A numpy array of the same type as the input images. 

 

- offset_x, offset_y: The offset of the image (left, bottom) 

in the output figure. 

""" 

if len(images) == 0: 

return np.empty((0, 0, 4), dtype=np.uint8), 0, 0 

 

parts = [] 

bboxes = [] 

for image in images: 

data, x, y, trans = image.make_image(renderer, magnification) 

if data is not None: 

x *= magnification 

y *= magnification 

parts.append((data, x, y, image.get_alpha() or 1.0)) 

bboxes.append( 

Bbox([[x, y], [x + data.shape[1], y + data.shape[0]]])) 

 

if len(parts) == 0: 

return np.empty((0, 0, 4), dtype=np.uint8), 0, 0 

 

bbox = Bbox.union(bboxes) 

 

output = np.zeros( 

(int(bbox.height), int(bbox.width), 4), dtype=np.uint8) 

 

for data, x, y, alpha in parts: 

trans = Affine2D().translate(x - bbox.x0, y - bbox.y0) 

_image.resample(data, output, trans, _image.NEAREST, 

resample=False, alpha=alpha) 

 

return output, bbox.x0 / magnification, bbox.y0 / magnification 

 

 

def _draw_list_compositing_images( 

renderer, parent, artists, suppress_composite=None): 

""" 

Draw a sorted list of artists, compositing images into a single 

image where possible. 

 

For internal matplotlib use only: It is here to reduce duplication 

between `Figure.draw` and `Axes.draw`, but otherwise should not be 

generally useful. 

""" 

has_images = any(isinstance(x, _ImageBase) for x in artists) 

 

# override the renderer default if suppressComposite is not None 

not_composite = (suppress_composite if suppress_composite is not None 

else renderer.option_image_nocomposite()) 

 

if not_composite or not has_images: 

for a in artists: 

a.draw(renderer) 

else: 

# Composite any adjacent images together 

image_group = [] 

mag = renderer.get_image_magnification() 

 

def flush_images(): 

if len(image_group) == 1: 

image_group[0].draw(renderer) 

elif len(image_group) > 1: 

data, l, b = composite_images(image_group, renderer, mag) 

if data.size != 0: 

gc = renderer.new_gc() 

gc.set_clip_rectangle(parent.bbox) 

gc.set_clip_path(parent.get_clip_path()) 

renderer.draw_image(gc, np.round(l), np.round(b), data) 

gc.restore() 

del image_group[:] 

 

for a in artists: 

if isinstance(a, _ImageBase) and a.can_composite(): 

image_group.append(a) 

else: 

flush_images() 

a.draw(renderer) 

flush_images() 

 

 

def _rgb_to_rgba(A): 

""" 

Convert an RGB image to RGBA, as required by the image resample C++ 

extension. 

""" 

rgba = np.zeros((A.shape[0], A.shape[1], 4), dtype=A.dtype) 

rgba[:, :, :3] = A 

if rgba.dtype == np.uint8: 

rgba[:, :, 3] = 255 

else: 

rgba[:, :, 3] = 1.0 

return rgba 

 

 

class _ImageBase(martist.Artist, cm.ScalarMappable): 

zorder = 0 

 

def __str__(self): 

return "AxesImage(%g,%g;%gx%g)" % tuple(self.axes.bbox.bounds) 

 

def __init__(self, ax, 

cmap=None, 

norm=None, 

interpolation=None, 

origin=None, 

filternorm=True, 

filterrad=4.0, 

resample=False, 

**kwargs 

): 

""" 

interpolation and cmap default to their rc settings 

 

cmap is a colors.Colormap instance 

norm is a colors.Normalize instance to map luminance to 0-1 

 

extent is data axes (left, right, bottom, top) for making image plots 

registered with data plots. Default is to label the pixel 

centers with the zero-based row and column indices. 

 

Additional kwargs are matplotlib.artist properties 

 

""" 

martist.Artist.__init__(self) 

cm.ScalarMappable.__init__(self, norm, cmap) 

self._mouseover = True 

if origin is None: 

origin = rcParams['image.origin'] 

self.origin = origin 

self.set_filternorm(filternorm) 

self.set_filterrad(filterrad) 

self.set_interpolation(interpolation) 

self.set_resample(resample) 

self.axes = ax 

 

self._imcache = None 

 

self.update(kwargs) 

 

def __getstate__(self): 

state = super().__getstate__() 

# We can't pickle the C Image cached object. 

state['_imcache'] = None 

return state 

 

def get_size(self): 

"""Get the numrows, numcols of the input image""" 

if self._A is None: 

raise RuntimeError('You must first set the image array') 

 

return self._A.shape[:2] 

 

def set_alpha(self, alpha): 

""" 

Set the alpha value used for blending - not supported on all backends. 

 

Parameters 

---------- 

alpha : float 

""" 

martist.Artist.set_alpha(self, alpha) 

self._imcache = None 

 

def changed(self): 

""" 

Call this whenever the mappable is changed so observers can 

update state 

""" 

self._imcache = None 

self._rgbacache = None 

cm.ScalarMappable.changed(self) 

 

def _make_image(self, A, in_bbox, out_bbox, clip_bbox, magnification=1.0, 

unsampled=False, round_to_pixel_border=True): 

""" 

Normalize, rescale and color the image `A` from the given 

in_bbox (in data space), to the given out_bbox (in pixel 

space) clipped to the given clip_bbox (also in pixel space), 

and magnified by the magnification factor. 

 

`A` may be a greyscale image (MxN) with a dtype of `float32`, 

`float64`, `float128`, `uint16` or `uint8`, or an RGBA image (MxNx4) 

with a dtype of `float32`, `float64`, `float128`, or `uint8`. 

 

If `unsampled` is True, the image will not be scaled, but an 

appropriate affine transformation will be returned instead. 

 

If `round_to_pixel_border` is True, the output image size will 

be rounded to the nearest pixel boundary. This makes the 

images align correctly with the axes. It should not be used 

in cases where you want exact scaling, however, such as 

FigureImage. 

 

Returns the resulting (image, x, y, trans), where (x, y) is 

the upper left corner of the result in pixel space, and 

`trans` is the affine transformation from the image to pixel 

space. 

""" 

if A is None: 

raise RuntimeError('You must first set the image ' 

'array or the image attribute') 

if A.size == 0: 

raise RuntimeError("_make_image must get a non-empty image. " 

"Your Artist's draw method must filter before " 

"this method is called.") 

 

clipped_bbox = Bbox.intersection(out_bbox, clip_bbox) 

 

if clipped_bbox is None: 

return None, 0, 0, None 

 

out_width_base = clipped_bbox.width * magnification 

out_height_base = clipped_bbox.height * magnification 

 

if out_width_base == 0 or out_height_base == 0: 

return None, 0, 0, None 

 

if self.origin == 'upper': 

# Flip the input image using a transform. This avoids the 

# problem with flipping the array, which results in a copy 

# when it is converted to contiguous in the C wrapper 

t0 = Affine2D().translate(0, -A.shape[0]).scale(1, -1) 

else: 

t0 = IdentityTransform() 

 

t0 += ( 

Affine2D() 

.scale( 

in_bbox.width / A.shape[1], 

in_bbox.height / A.shape[0]) 

.translate(in_bbox.x0, in_bbox.y0) 

+ self.get_transform()) 

 

t = (t0 

+ Affine2D().translate( 

-clipped_bbox.x0, 

-clipped_bbox.y0) 

.scale(magnification, magnification)) 

 

# So that the image is aligned with the edge of the axes, we want 

# to round up the output width to the next integer. This also 

# means scaling the transform just slightly to account for the 

# extra subpixel. 

if (t.is_affine and round_to_pixel_border and 

(out_width_base % 1.0 != 0.0 or out_height_base % 1.0 != 0.0)): 

out_width = int(ceil(out_width_base)) 

out_height = int(ceil(out_height_base)) 

extra_width = (out_width - out_width_base) / out_width_base 

extra_height = (out_height - out_height_base) / out_height_base 

t += Affine2D().scale(1.0 + extra_width, 1.0 + extra_height) 

else: 

out_width = int(out_width_base) 

out_height = int(out_height_base) 

 

if not unsampled: 

if A.ndim not in (2, 3): 

raise ValueError("Invalid dimensions, got {}".format(A.shape)) 

 

if A.ndim == 2: 

# if we are a 2D array, then we are running through the 

# norm + colormap transformation. However, in general the 

# input data is not going to match the size on the screen so we 

# have to resample to the correct number of pixels 

# need to 

 

# TODO slice input array first 

inp_dtype = A.dtype 

a_min = A.min() 

a_max = A.max() 

# figure out the type we should scale to. For floats, 

# leave as is. For integers cast to an appropriate-sized 

# float. Small integers get smaller floats in an attempt 

# to keep the memory footprint reasonable. 

if a_min is np.ma.masked: 

# all masked, so values don't matter 

a_min, a_max = np.int32(0), np.int32(1) 

if inp_dtype.kind == 'f': 

scaled_dtype = A.dtype 

# Cast to float64 

if A.dtype not in (np.float32, np.float16): 

if A.dtype != np.float64: 

warnings.warn( 

"Casting input data from '{0}' to 'float64'" 

"for imshow".format(A.dtype)) 

scaled_dtype = np.float64 

else: 

# probably an integer of some type. 

da = a_max.astype(np.float64) - a_min.astype(np.float64) 

if da > 1e8: 

# give more breathing room if a big dynamic range 

scaled_dtype = np.float64 

else: 

scaled_dtype = np.float32 

 

# scale the input data to [.1, .9]. The Agg 

# interpolators clip to [0, 1] internally, use a 

# smaller input scale to identify which of the 

# interpolated points need to be should be flagged as 

# over / under. 

# This may introduce numeric instabilities in very broadly 

# scaled data 

A_scaled = np.empty(A.shape, dtype=scaled_dtype) 

A_scaled[:] = A 

# clip scaled data around norm if necessary. 

# This is necessary for big numbers at the edge of 

# float64's ability to represent changes. Applying 

# a norm first would be good, but ruins the interpolation 

# of over numbers. 

self.norm.autoscale_None(A) 

dv = (np.float64(self.norm.vmax) - 

np.float64(self.norm.vmin)) 

vmid = self.norm.vmin + dv / 2 

fact = 1e7 if scaled_dtype == np.float64 else 1e4 

newmin = vmid - dv * fact 

if newmin < a_min: 

newmin = None 

else: 

a_min = np.float64(newmin) 

newmax = vmid + dv * fact 

if newmax > a_max: 

newmax = None 

else: 

a_max = np.float64(newmax) 

if newmax is not None or newmin is not None: 

A_scaled = np.clip(A_scaled, newmin, newmax) 

 

A_scaled -= a_min 

# a_min and a_max might be ndarray subclasses so use 

# item to avoid errors 

a_min = a_min.astype(scaled_dtype).item() 

a_max = a_max.astype(scaled_dtype).item() 

 

if a_min != a_max: 

A_scaled /= ((a_max - a_min) / 0.8) 

A_scaled += 0.1 

A_resampled = np.zeros((out_height, out_width), 

dtype=A_scaled.dtype) 

# resample the input data to the correct resolution and shape 

_image.resample(A_scaled, A_resampled, 

t, 

_interpd_[self.get_interpolation()], 

self.get_resample(), 1.0, 

self.get_filternorm(), 

self.get_filterrad()) 

 

# we are done with A_scaled now, remove from namespace 

# to be sure! 

del A_scaled 

# un-scale the resampled data to approximately the 

# original range things that interpolated to above / 

# below the original min/max will still be above / 

# below, but possibly clipped in the case of higher order 

# interpolation + drastically changing data. 

A_resampled -= 0.1 

if a_min != a_max: 

A_resampled *= ((a_max - a_min) / 0.8) 

A_resampled += a_min 

# if using NoNorm, cast back to the original datatype 

if isinstance(self.norm, mcolors.NoNorm): 

A_resampled = A_resampled.astype(A.dtype) 

 

mask = np.empty(A.shape, dtype=np.float32) 

if A.mask.shape == A.shape: 

# this is the case of a nontrivial mask 

mask[:] = np.where(A.mask, np.float32(np.nan), 

np.float32(1)) 

else: 

mask[:] = 1 

 

# we always have to interpolate the mask to account for 

# non-affine transformations 

out_mask = np.zeros((out_height, out_width), 

dtype=mask.dtype) 

_image.resample(mask, out_mask, 

t, 

_interpd_[self.get_interpolation()], 

True, 1, 

self.get_filternorm(), 

self.get_filterrad()) 

# we are done with the mask, delete from namespace to be sure! 

del mask 

# Agg updates the out_mask in place. If the pixel has 

# no image data it will not be updated (and still be 0 

# as we initialized it), if input data that would go 

# into that output pixel than it will be `nan`, if all 

# the input data for a pixel is good it will be 1, and 

# if there is _some_ good data in that output pixel it 

# will be between [0, 1] (such as a rotated image). 

 

out_alpha = np.array(out_mask) 

out_mask = np.isnan(out_mask) 

out_alpha[out_mask] = 1 

 

# mask and run through the norm 

output = self.norm(np.ma.masked_array(A_resampled, out_mask)) 

else: 

# Always convert to RGBA, even if only RGB input 

if A.shape[2] == 3: 

A = _rgb_to_rgba(A) 

elif A.shape[2] != 4: 

raise ValueError("Invalid dimensions, got %s" % (A.shape,)) 

 

output = np.zeros((out_height, out_width, 4), dtype=A.dtype) 

 

alpha = self.get_alpha() 

if alpha is None: 

alpha = 1.0 

 

_image.resample( 

A, output, t, _interpd_[self.get_interpolation()], 

self.get_resample(), alpha, 

self.get_filternorm(), self.get_filterrad()) 

 

# at this point output is either a 2D array of normed data 

# (of int or float) 

# or an RGBA array of re-sampled input 

output = self.to_rgba(output, bytes=True, norm=False) 

# output is now a correctly sized RGBA array of uint8 

 

# Apply alpha *after* if the input was greyscale without a mask 

if A.ndim == 2: 

alpha = self.get_alpha() 

if alpha is None: 

alpha = 1 

alpha_channel = output[:, :, 3] 

alpha_channel[:] = np.asarray( 

np.asarray(alpha_channel, np.float32) * out_alpha * alpha, 

np.uint8) 

 

else: 

if self._imcache is None: 

self._imcache = self.to_rgba(A, bytes=True, norm=(A.ndim == 2)) 

output = self._imcache 

 

# Subset the input image to only the part that will be 

# displayed 

subset = TransformedBbox( 

clip_bbox, t0.frozen().inverted()).frozen() 

output = output[ 

int(max(subset.ymin, 0)): 

int(min(subset.ymax + 1, output.shape[0])), 

int(max(subset.xmin, 0)): 

int(min(subset.xmax + 1, output.shape[1]))] 

 

t = Affine2D().translate( 

int(max(subset.xmin, 0)), int(max(subset.ymin, 0))) + t 

 

return output, clipped_bbox.x0, clipped_bbox.y0, t 

 

def make_image(self, renderer, magnification=1.0, unsampled=False): 

raise RuntimeError('The make_image method must be overridden.') 

 

def _draw_unsampled_image(self, renderer, gc): 

""" 

draw unsampled image. The renderer should support a draw_image method 

with scale parameter. 

""" 

 

im, l, b, trans = self.make_image(renderer, unsampled=True) 

 

if im is None: 

return 

 

trans = Affine2D().scale(im.shape[1], im.shape[0]) + trans 

 

renderer.draw_image(gc, l, b, im, trans) 

 

def _check_unsampled_image(self, renderer): 

""" 

return True if the image is better to be drawn unsampled. 

The derived class needs to override it. 

""" 

return False 

 

@allow_rasterization 

def draw(self, renderer, *args, **kwargs): 

# if not visible, declare victory and return 

if not self.get_visible(): 

self.stale = False 

return 

 

# for empty images, there is nothing to draw! 

if self.get_array().size == 0: 

self.stale = False 

return 

 

# actually render the image. 

gc = renderer.new_gc() 

self._set_gc_clip(gc) 

gc.set_alpha(self.get_alpha()) 

gc.set_url(self.get_url()) 

gc.set_gid(self.get_gid()) 

 

if (self._check_unsampled_image(renderer) and 

self.get_transform().is_affine): 

self._draw_unsampled_image(renderer, gc) 

else: 

im, l, b, trans = self.make_image( 

renderer, renderer.get_image_magnification()) 

if im is not None: 

renderer.draw_image(gc, l, b, im) 

gc.restore() 

self.stale = False 

 

def contains(self, mouseevent): 

""" 

Test whether the mouse event occurred within the image. 

""" 

if callable(self._contains): 

return self._contains(self, mouseevent) 

# TODO: make sure this is consistent with patch and patch 

# collection on nonlinear transformed coordinates. 

# TODO: consider returning image coordinates (shouldn't 

# be too difficult given that the image is rectilinear 

x, y = mouseevent.xdata, mouseevent.ydata 

xmin, xmax, ymin, ymax = self.get_extent() 

if xmin > xmax: 

xmin, xmax = xmax, xmin 

if ymin > ymax: 

ymin, ymax = ymax, ymin 

 

if x is not None and y is not None: 

inside = (xmin <= x <= xmax) and (ymin <= y <= ymax) 

else: 

inside = False 

 

return inside, {} 

 

def write_png(self, fname): 

"""Write the image to png file with fname""" 

im = self.to_rgba(self._A[::-1] if self.origin == 'lower' else self._A, 

bytes=True, norm=True) 

_png.write_png(im, fname) 

 

def set_data(self, A): 

""" 

Set the image array. 

 

Note that this function does *not* update the normalization used. 

 

Parameters 

---------- 

A : array-like 

""" 

# check if data is PIL Image without importing Image 

if hasattr(A, 'getpixel'): 

if A.mode == 'L': 

# greyscale image, but our logic assumes rgba: 

self._A = pil_to_array(A.convert('RGBA')) 

else: 

self._A = pil_to_array(A) 

else: 

self._A = cbook.safe_masked_invalid(A, copy=True) 

 

if (self._A.dtype != np.uint8 and 

not np.can_cast(self._A.dtype, float, "same_kind")): 

raise TypeError("Image data cannot be converted to float") 

 

if not (self._A.ndim == 2 

or self._A.ndim == 3 and self._A.shape[-1] in [3, 4]): 

raise TypeError("Invalid dimensions for image data") 

 

if self._A.ndim == 3: 

# If the input data has values outside the valid range (after 

# normalisation), we issue a warning and then clip X to the bounds 

# - otherwise casting wraps extreme values, hiding outliers and 

# making reliable interpretation impossible. 

high = 255 if np.issubdtype(self._A.dtype, np.integer) else 1 

if self._A.min() < 0 or high < self._A.max(): 

_log.warning( 

'Clipping input data to the valid range for imshow with ' 

'RGB data ([0..1] for floats or [0..255] for integers).' 

) 

self._A = np.clip(self._A, 0, high) 

# Cast unsupported integer types to uint8 

if self._A.dtype != np.uint8 and np.issubdtype(self._A.dtype, 

np.integer): 

self._A = self._A.astype(np.uint8) 

 

self._imcache = None 

self._rgbacache = None 

self.stale = True 

 

def set_array(self, A): 

""" 

Retained for backwards compatibility - use set_data instead. 

 

Parameters 

---------- 

A : array-like 

""" 

# This also needs to be here to override the inherited 

# cm.ScalarMappable.set_array method so it is not invoked by mistake. 

 

self.set_data(A) 

 

def get_interpolation(self): 

""" 

Return the interpolation method the image uses when resizing. 

 

One of 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 

'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 

'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos', or 'none'. 

 

""" 

return self._interpolation 

 

def set_interpolation(self, s): 

""" 

Set the interpolation method the image uses when resizing. 

 

if None, use a value from rc setting. If 'none', the image is 

shown as is without interpolating. 'none' is only supported in 

agg, ps and pdf backends and will fall back to 'nearest' mode 

for other backends. 

 

Parameters 

---------- 

s : {'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', \ 

'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', \ 

'bessel', 'mitchell', 'sinc', 'lanczos', 'none'} 

 

""" 

if s is None: 

s = rcParams['image.interpolation'] 

s = s.lower() 

if s not in _interpd_: 

raise ValueError('Illegal interpolation string') 

self._interpolation = s 

self.stale = True 

 

def can_composite(self): 

""" 

Returns `True` if the image can be composited with its neighbors. 

""" 

trans = self.get_transform() 

return ( 

self._interpolation != 'none' and 

trans.is_affine and 

trans.is_separable) 

 

def set_resample(self, v): 

""" 

Set whether or not image resampling is used. 

 

Parameters 

---------- 

v : bool 

""" 

if v is None: 

v = rcParams['image.resample'] 

self._resample = v 

self.stale = True 

 

def get_resample(self): 

"""Return the image resample boolean.""" 

return self._resample 

 

def set_filternorm(self, filternorm): 

""" 

Set whether the resize filter normalizes the weights. 

 

See help for `~.Axes.imshow`. 

 

Parameters 

---------- 

filternorm : bool 

""" 

self._filternorm = bool(filternorm) 

self.stale = True 

 

def get_filternorm(self): 

"""Return whether the resize filter normalizes the weights.""" 

return self._filternorm 

 

def set_filterrad(self, filterrad): 

""" 

Set the resize filter radius only applicable to some 

interpolation schemes -- see help for imshow 

 

Parameters 

---------- 

filterrad : positive float 

""" 

r = float(filterrad) 

if r <= 0: 

raise ValueError("The filter radius must be a positive number") 

self._filterrad = r 

self.stale = True 

 

def get_filterrad(self): 

"""Return the filterrad setting.""" 

return self._filterrad 

 

 

class AxesImage(_ImageBase): 

def __str__(self): 

return "AxesImage(%g,%g;%gx%g)" % tuple(self.axes.bbox.bounds) 

 

def __init__(self, ax, 

cmap=None, 

norm=None, 

interpolation=None, 

origin=None, 

extent=None, 

filternorm=1, 

filterrad=4.0, 

resample=False, 

**kwargs 

): 

 

""" 

interpolation and cmap default to their rc settings 

 

cmap is a colors.Colormap instance 

norm is a colors.Normalize instance to map luminance to 0-1 

 

extent is data axes (left, right, bottom, top) for making image plots 

registered with data plots. Default is to label the pixel 

centers with the zero-based row and column indices. 

 

Additional kwargs are matplotlib.artist properties 

 

""" 

 

self._extent = extent 

 

super().__init__( 

ax, 

cmap=cmap, 

norm=norm, 

interpolation=interpolation, 

origin=origin, 

filternorm=filternorm, 

filterrad=filterrad, 

resample=resample, 

**kwargs 

) 

 

def get_window_extent(self, renderer=None): 

x0, x1, y0, y1 = self._extent 

bbox = Bbox.from_extents([x0, y0, x1, y1]) 

return bbox.transformed(self.axes.transData) 

 

def make_image(self, renderer, magnification=1.0, unsampled=False): 

trans = self.get_transform() 

# image is created in the canvas coordinate. 

x1, x2, y1, y2 = self.get_extent() 

bbox = Bbox(np.array([[x1, y1], [x2, y2]])) 

transformed_bbox = TransformedBbox(bbox, trans) 

 

return self._make_image( 

self._A, bbox, transformed_bbox, self.axes.bbox, magnification, 

unsampled=unsampled) 

 

def _check_unsampled_image(self, renderer): 

""" 

Return whether the image would be better drawn unsampled. 

""" 

return (self.get_interpolation() == "none" 

and renderer.option_scale_image()) 

 

def set_extent(self, extent): 

""" 

extent is data axes (left, right, bottom, top) for making image plots 

 

This updates ax.dataLim, and, if autoscaling, sets viewLim 

to tightly fit the image, regardless of dataLim. Autoscaling 

state is not changed, so following this with ax.autoscale_view 

will redo the autoscaling in accord with dataLim. 

""" 

self._extent = xmin, xmax, ymin, ymax = extent 

corners = (xmin, ymin), (xmax, ymax) 

self.axes.update_datalim(corners) 

self.sticky_edges.x[:] = [xmin, xmax] 

self.sticky_edges.y[:] = [ymin, ymax] 

if self.axes._autoscaleXon: 

self.axes.set_xlim((xmin, xmax), auto=None) 

if self.axes._autoscaleYon: 

self.axes.set_ylim((ymin, ymax), auto=None) 

self.stale = True 

 

def get_extent(self): 

"""Get the image extent: left, right, bottom, top""" 

if self._extent is not None: 

return self._extent 

else: 

sz = self.get_size() 

numrows, numcols = sz 

if self.origin == 'upper': 

return (-0.5, numcols-0.5, numrows-0.5, -0.5) 

else: 

return (-0.5, numcols-0.5, -0.5, numrows-0.5) 

 

def get_cursor_data(self, event): 

"""Get the cursor data for a given event""" 

xmin, xmax, ymin, ymax = self.get_extent() 

if self.origin == 'upper': 

ymin, ymax = ymax, ymin 

arr = self.get_array() 

data_extent = Bbox([[ymin, xmin], [ymax, xmax]]) 

array_extent = Bbox([[0, 0], arr.shape[:2]]) 

trans = BboxTransform(boxin=data_extent, boxout=array_extent) 

y, x = event.ydata, event.xdata 

point = trans.transform_point([y, x]) 

if any(np.isnan(point)): 

return None 

i, j = point.astype(int) 

# Clip the coordinates at array bounds 

if not (0 <= i < arr.shape[0]) or not (0 <= j < arr.shape[1]): 

return None 

else: 

return arr[i, j] 

 

 

class NonUniformImage(AxesImage): 

def __init__(self, ax, *, interpolation='nearest', **kwargs): 

""" 

kwargs are identical to those for AxesImage, except 

that 'nearest' and 'bilinear' are the only supported 'interpolation' 

options. 

""" 

super().__init__(ax, **kwargs) 

self.set_interpolation(interpolation) 

 

def _check_unsampled_image(self, renderer): 

""" 

return False. Do not use unsampled image. 

""" 

return False 

 

def make_image(self, renderer, magnification=1.0, unsampled=False): 

if self._A is None: 

raise RuntimeError('You must first set the image array') 

 

if unsampled: 

raise ValueError('unsampled not supported on NonUniformImage') 

 

A = self._A 

if A.ndim == 2: 

if A.dtype != np.uint8: 

A = self.to_rgba(A, bytes=True) 

self.is_grayscale = self.cmap.is_gray() 

else: 

A = np.repeat(A[:, :, np.newaxis], 4, 2) 

A[:, :, 3] = 255 

self.is_grayscale = True 

else: 

if A.dtype != np.uint8: 

A = (255*A).astype(np.uint8) 

if A.shape[2] == 3: 

B = np.zeros(tuple([*A.shape[0:2], 4]), np.uint8) 

B[:, :, 0:3] = A 

B[:, :, 3] = 255 

A = B 

self.is_grayscale = False 

 

x0, y0, v_width, v_height = self.axes.viewLim.bounds 

l, b, r, t = self.axes.bbox.extents 

width = (np.round(r) + 0.5) - (np.round(l) - 0.5) 

height = (np.round(t) + 0.5) - (np.round(b) - 0.5) 

width *= magnification 

height *= magnification 

im = _image.pcolor(self._Ax, self._Ay, A, 

int(height), int(width), 

(x0, x0+v_width, y0, y0+v_height), 

_interpd_[self._interpolation]) 

 

return im, l, b, IdentityTransform() 

 

def set_data(self, x, y, A): 

""" 

Set the grid for the pixel centers, and the pixel values. 

 

*x* and *y* are monotonic 1-D ndarrays of lengths N and M, 

respectively, specifying pixel centers 

 

*A* is an (M,N) ndarray or masked array of values to be 

colormapped, or a (M,N,3) RGB array, or a (M,N,4) RGBA 

array. 

""" 

x = np.array(x, np.float32) 

y = np.array(y, np.float32) 

A = cbook.safe_masked_invalid(A, copy=True) 

if not (x.ndim == y.ndim == 1 and A.shape[0:2] == y.shape + x.shape): 

raise TypeError("Axes don't match array shape") 

if A.ndim not in [2, 3]: 

raise TypeError("Can only plot 2D or 3D data") 

if A.ndim == 3 and A.shape[2] not in [1, 3, 4]: 

raise TypeError("3D arrays must have three (RGB) " 

"or four (RGBA) color components") 

if A.ndim == 3 and A.shape[2] == 1: 

A.shape = A.shape[0:2] 

self._A = A 

self._Ax = x 

self._Ay = y 

self._imcache = None 

 

self.stale = True 

 

def set_array(self, *args): 

raise NotImplementedError('Method not supported') 

 

def set_interpolation(self, s): 

""" 

Parameters 

---------- 

s : str, None 

Either 'nearest', 'bilinear', or ``None``. 

""" 

if s is not None and s not in ('nearest', 'bilinear'): 

raise NotImplementedError('Only nearest neighbor and ' 

'bilinear interpolations are supported') 

AxesImage.set_interpolation(self, s) 

 

def get_extent(self): 

if self._A is None: 

raise RuntimeError('Must set data first') 

return self._Ax[0], self._Ax[-1], self._Ay[0], self._Ay[-1] 

 

def set_filternorm(self, s): 

pass 

 

def set_filterrad(self, s): 

pass 

 

def set_norm(self, norm): 

if self._A is not None: 

raise RuntimeError('Cannot change colors after loading data') 

super().set_norm(norm) 

 

def set_cmap(self, cmap): 

if self._A is not None: 

raise RuntimeError('Cannot change colors after loading data') 

super().set_cmap(cmap) 

 

 

class PcolorImage(AxesImage): 

""" 

Make a pcolor-style plot with an irregular rectangular grid. 

 

This uses a variation of the original irregular image code, 

and it is used by pcolorfast for the corresponding grid type. 

""" 

def __init__(self, ax, 

x=None, 

y=None, 

A=None, 

cmap=None, 

norm=None, 

**kwargs 

): 

""" 

cmap defaults to its rc setting 

 

cmap is a colors.Colormap instance 

norm is a colors.Normalize instance to map luminance to 0-1 

 

Additional kwargs are matplotlib.artist properties 

""" 

super().__init__(ax, norm=norm, cmap=cmap) 

self.update(kwargs) 

if A is not None: 

self.set_data(x, y, A) 

 

def make_image(self, renderer, magnification=1.0, unsampled=False): 

if self._A is None: 

raise RuntimeError('You must first set the image array') 

if unsampled: 

raise ValueError('unsampled not supported on PColorImage') 

fc = self.axes.patch.get_facecolor() 

bg = mcolors.to_rgba(fc, 0) 

bg = (np.array(bg)*255).astype(np.uint8) 

l, b, r, t = self.axes.bbox.extents 

width = (np.round(r) + 0.5) - (np.round(l) - 0.5) 

height = (np.round(t) + 0.5) - (np.round(b) - 0.5) 

# The extra cast-to-int is only needed for python2 

width = int(np.round(width * magnification)) 

height = int(np.round(height * magnification)) 

if self._rgbacache is None: 

A = self.to_rgba(self._A, bytes=True) 

self._rgbacache = A 

if self._A.ndim == 2: 

self.is_grayscale = self.cmap.is_gray() 

else: 

A = self._rgbacache 

vl = self.axes.viewLim 

im = _image.pcolor2(self._Ax, self._Ay, A, 

height, 

width, 

(vl.x0, vl.x1, vl.y0, vl.y1), 

bg) 

return im, l, b, IdentityTransform() 

 

def _check_unsampled_image(self, renderer): 

return False 

 

def set_data(self, x, y, A): 

""" 

Set the grid for the rectangle boundaries, and the data values. 

 

*x* and *y* are monotonic 1-D ndarrays of lengths N+1 and M+1, 

respectively, specifying rectangle boundaries. If None, 

they will be created as uniform arrays from 0 through N 

and 0 through M, respectively. 

 

*A* is an (M,N) ndarray or masked array of values to be 

colormapped, or a (M,N,3) RGB array, or a (M,N,4) RGBA 

array. 

 

""" 

A = cbook.safe_masked_invalid(A, copy=True) 

if x is None: 

x = np.arange(0, A.shape[1]+1, dtype=np.float64) 

else: 

x = np.array(x, np.float64).ravel() 

if y is None: 

y = np.arange(0, A.shape[0]+1, dtype=np.float64) 

else: 

y = np.array(y, np.float64).ravel() 

 

if A.shape[:2] != (y.size-1, x.size-1): 

raise ValueError( 

"Axes don't match array shape. Got %s, expected %s." % 

(A.shape[:2], (y.size - 1, x.size - 1))) 

if A.ndim not in [2, 3]: 

raise ValueError("A must be 2D or 3D") 

if A.ndim == 3 and A.shape[2] == 1: 

A.shape = A.shape[:2] 

self.is_grayscale = False 

if A.ndim == 3: 

if A.shape[2] in [3, 4]: 

if ((A[:, :, 0] == A[:, :, 1]).all() and 

(A[:, :, 0] == A[:, :, 2]).all()): 

self.is_grayscale = True 

else: 

raise ValueError("3D arrays must have RGB or RGBA as last dim") 

 

# For efficient cursor readout, ensure x and y are increasing. 

if x[-1] < x[0]: 

x = x[::-1] 

A = A[:, ::-1] 

if y[-1] < y[0]: 

y = y[::-1] 

A = A[::-1] 

 

self._A = A 

self._Ax = x 

self._Ay = y 

self._rgbacache = None 

self.stale = True 

 

def set_array(self, *args): 

raise NotImplementedError('Method not supported') 

 

def get_cursor_data(self, event): 

"""Get the cursor data for a given event""" 

x, y = event.xdata, event.ydata 

if (x < self._Ax[0] or x > self._Ax[-1] or 

y < self._Ay[0] or y > self._Ay[-1]): 

return None 

j = np.searchsorted(self._Ax, x) - 1 

i = np.searchsorted(self._Ay, y) - 1 

try: 

return self._A[i, j] 

except IndexError: 

return None 

 

 

class FigureImage(_ImageBase): 

zorder = 0 

 

_interpolation = 'nearest' 

 

def __init__(self, fig, 

cmap=None, 

norm=None, 

offsetx=0, 

offsety=0, 

origin=None, 

**kwargs 

): 

""" 

cmap is a colors.Colormap instance 

norm is a colors.Normalize instance to map luminance to 0-1 

 

kwargs are an optional list of Artist keyword args 

""" 

super().__init__( 

None, 

norm=norm, 

cmap=cmap, 

origin=origin 

) 

self.figure = fig 

self.ox = offsetx 

self.oy = offsety 

self.update(kwargs) 

self.magnification = 1.0 

 

def get_extent(self): 

"""Get the image extent: left, right, bottom, top""" 

numrows, numcols = self.get_size() 

return (-0.5 + self.ox, numcols-0.5 + self.ox, 

-0.5 + self.oy, numrows-0.5 + self.oy) 

 

def make_image(self, renderer, magnification=1.0, unsampled=False): 

fac = renderer.dpi/self.figure.dpi 

# fac here is to account for pdf, eps, svg backends where 

# figure.dpi is set to 72. This means we need to scale the 

# image (using magification) and offset it appropriately. 

bbox = Bbox([[self.ox/fac, self.oy/fac], 

[(self.ox/fac + self._A.shape[1]), 

(self.oy/fac + self._A.shape[0])]]) 

width, height = self.figure.get_size_inches() 

width *= renderer.dpi 

height *= renderer.dpi 

clip = Bbox([[0, 0], [width, height]]) 

 

return self._make_image( 

self._A, bbox, bbox, clip, magnification=magnification / fac, 

unsampled=unsampled, round_to_pixel_border=False) 

 

def set_data(self, A): 

"""Set the image array.""" 

cm.ScalarMappable.set_array(self, 

cbook.safe_masked_invalid(A, copy=True)) 

self.stale = True 

 

 

class BboxImage(_ImageBase): 

"""The Image class whose size is determined by the given bbox.""" 

def __init__(self, bbox, 

cmap=None, 

norm=None, 

interpolation=None, 

origin=None, 

filternorm=1, 

filterrad=4.0, 

resample=False, 

interp_at_native=True, 

**kwargs 

): 

""" 

cmap is a colors.Colormap instance 

norm is a colors.Normalize instance to map luminance to 0-1 

 

interp_at_native is a flag that determines whether or not 

interpolation should still be applied when the image is 

displayed at its native resolution. A common use case for this 

is when displaying an image for annotational purposes; it is 

treated similarly to Photoshop (interpolation is only used when 

displaying the image at non-native resolutions). 

 

 

kwargs are an optional list of Artist keyword args 

 

""" 

super().__init__( 

None, 

cmap=cmap, 

norm=norm, 

interpolation=interpolation, 

origin=origin, 

filternorm=filternorm, 

filterrad=filterrad, 

resample=resample, 

**kwargs 

) 

 

self.bbox = bbox 

self.interp_at_native = interp_at_native 

self._transform = IdentityTransform() 

 

def get_transform(self): 

return self._transform 

 

def get_window_extent(self, renderer=None): 

if renderer is None: 

renderer = self.get_figure()._cachedRenderer 

 

if isinstance(self.bbox, BboxBase): 

return self.bbox 

elif callable(self.bbox): 

return self.bbox(renderer) 

else: 

raise ValueError("unknown type of bbox") 

 

def contains(self, mouseevent): 

"""Test whether the mouse event occurred within the image.""" 

if callable(self._contains): 

return self._contains(self, mouseevent) 

 

if not self.get_visible(): # or self.get_figure()._renderer is None: 

return False, {} 

 

x, y = mouseevent.x, mouseevent.y 

inside = self.get_window_extent().contains(x, y) 

 

return inside, {} 

 

def make_image(self, renderer, magnification=1.0, unsampled=False): 

width, height = renderer.get_canvas_width_height() 

 

bbox_in = self.get_window_extent(renderer).frozen() 

bbox_in._points /= [width, height] 

bbox_out = self.get_window_extent(renderer) 

clip = Bbox([[0, 0], [width, height]]) 

self._transform = BboxTransform(Bbox([[0, 0], [1, 1]]), clip) 

 

return self._make_image( 

self._A, 

bbox_in, bbox_out, clip, magnification, unsampled=unsampled) 

 

 

def imread(fname, format=None): 

""" 

Read an image from a file into an array. 

 

Parameters 

---------- 

fname : str or file-like 

The image file to read. This can be a filename, a URL or a Python 

file-like object opened in read-binary mode. 

format : str, optional 

The image file format assumed for reading the data. If not 

given, the format is deduced from the filename. If nothing can 

be deduced, PNG is tried. 

 

Returns 

------- 

imagedata : :class:`numpy.array` 

The image data. The returned array has shape 

 

- (M, N) for grayscale images. 

- (M, N, 3) for RGB images. 

- (M, N, 4) for RGBA images. 

 

Notes 

----- 

Matplotlib can only read PNGs natively. Further image formats are 

supported via the optional dependency on Pillow. Note, URL strings 

are not compatible with Pillow. Check the `Pillow documentation`_ 

for more information. 

 

.. _Pillow documentation: http://pillow.readthedocs.io/en/latest/ 

""" 

 

handlers = {'png': _png.read_png, } 

if format is None: 

if isinstance(fname, str): 

parsed = urllib.parse.urlparse(fname) 

# If the string is a URL, assume png 

if len(parsed.scheme) > 1: 

ext = 'png' 

else: 

basename, ext = os.path.splitext(fname) 

ext = ext.lower()[1:] 

elif hasattr(fname, 'name'): 

basename, ext = os.path.splitext(fname.name) 

ext = ext.lower()[1:] 

else: 

ext = 'png' 

else: 

ext = format 

 

if ext not in handlers: # Try to load the image with PIL. 

try: 

from PIL import Image 

except ImportError: 

raise ValueError('Only know how to handle extensions: %s; ' 

'with Pillow installed matplotlib can handle ' 

'more images' % list(handlers)) 

with Image.open(fname) as image: 

return pil_to_array(image) 

 

handler = handlers[ext] 

 

# To handle Unicode filenames, we pass a file object to the PNG 

# reader extension, since Python handles them quite well, but it's 

# tricky in C. 

if isinstance(fname, str): 

parsed = urllib.parse.urlparse(fname) 

# If fname is a URL, download the data 

if len(parsed.scheme) > 1: 

fd = BytesIO(urllib.request.urlopen(fname).read()) 

return handler(fd) 

else: 

with open(fname, 'rb') as fd: 

return handler(fd) 

else: 

return handler(fname) 

 

 

def imsave(fname, arr, vmin=None, vmax=None, cmap=None, format=None, 

origin=None, dpi=100): 

""" 

Save an array as in image file. 

 

The output formats available depend on the backend being used. 

 

Parameters 

---------- 

fname : str or file-like 

The filename or a Python file-like object to store the image in. 

The necessary output format is inferred from the filename extension 

but may be explicitly overwritten using *format*. 

arr : array-like 

The image data. The shape can be one of 

MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA). 

vmin, vmax : scalar, optional 

*vmin* and *vmax* set the color scaling for the image by fixing the 

values that map to the colormap color limits. If either *vmin* 

or *vmax* is None, that limit is determined from the *arr* 

min/max value. 

cmap : str or `~matplotlib.colors.Colormap`, optional 

A Colormap instance or registered colormap name. The colormap 

maps scalar data to colors. It is ignored for RGB(A) data. 

Defaults to :rc:`image.cmap` ('viridis'). 

format : str, optional 

The file format, e.g. 'png', 'pdf', 'svg', ... . If not given, the 

format is deduced form the filename extension in *fname*. 

See `.Figure.savefig` for details. 

origin : {'upper', 'lower'}, optional 

Indicates whether the ``(0, 0)`` index of the array is in the upper 

left or lower left corner of the axes. Defaults to :rc:`image.origin` 

('upper'). 

dpi : int 

The DPI to store in the metadata of the file. This does not affect the 

resolution of the output image. 

""" 

from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas 

from matplotlib.figure import Figure 

if isinstance(fname, getattr(os, "PathLike", ())): 

fname = os.fspath(fname) 

if (format == 'png' 

or (format is None 

and isinstance(fname, str) 

and fname.lower().endswith('.png'))): 

image = AxesImage(None, cmap=cmap, origin=origin) 

image.set_data(arr) 

image.set_clim(vmin, vmax) 

image.write_png(fname) 

else: 

fig = Figure(dpi=dpi, frameon=False) 

FigureCanvas(fig) 

fig.figimage(arr, cmap=cmap, vmin=vmin, vmax=vmax, origin=origin, 

resize=True) 

fig.savefig(fname, dpi=dpi, format=format, transparent=True) 

 

 

def pil_to_array(pilImage): 

"""Load a `PIL image`_ and return it as a numpy array. 

 

.. _PIL image: https://pillow.readthedocs.io/en/latest/reference/Image.html 

 

Returns 

------- 

numpy.array 

 

The array shape depends on the image type: 

 

- (M, N) for grayscale images. 

- (M, N, 3) for RGB images. 

- (M, N, 4) for RGBA images. 

 

""" 

if pilImage.mode in ['RGBA', 'RGBX', 'RGB', 'L']: 

# return MxNx4 RGBA, MxNx3 RBA, or MxN luminance array 

return np.asarray(pilImage) 

elif pilImage.mode.startswith('I;16'): 

# return MxN luminance array of uint16 

raw = pilImage.tobytes('raw', pilImage.mode) 

if pilImage.mode.endswith('B'): 

x = np.fromstring(raw, '>u2') 

else: 

x = np.fromstring(raw, '<u2') 

return x.reshape(pilImage.size[::-1]).astype('=u2') 

else: # try to convert to an rgba image 

try: 

pilImage = pilImage.convert('RGBA') 

except ValueError: 

raise RuntimeError('Unknown image mode') 

return np.asarray(pilImage) # return MxNx4 RGBA array 

 

 

def thumbnail(infile, thumbfile, scale=0.1, interpolation='bilinear', 

preview=False): 

""" 

Make a thumbnail of image in *infile* with output filename *thumbfile*. 

 

See :doc:`/gallery/misc/image_thumbnail_sgskip`. 

 

Parameters 

---------- 

infile : str or file-like 

The image file -- must be PNG, Pillow-readable if you have `Pillow 

<http://python-pillow.org/>`_ installed. 

 

thumbfile : str or file-like 

The thumbnail filename. 

 

scale : float, optional 

The scale factor for the thumbnail. 

 

interpolation : str, optional 

The interpolation scheme used in the resampling. See the 

*interpolation* parameter of `~.Axes.imshow` for possible values. 

 

preview : bool, optional 

If True, the default backend (presumably a user interface 

backend) will be used which will cause a figure to be raised if 

`~matplotlib.pyplot.show` is called. If it is False, the figure is 

created using `FigureCanvasBase` and the drawing backend is selected 

as `~matplotlib.figure.savefig` would normally do. 

 

Returns 

------- 

figure : `~.figure.Figure` 

The figure instance containing the thumbnail. 

""" 

 

im = imread(infile) 

rows, cols, depth = im.shape 

 

# This doesn't really matter (it cancels in the end) but the API needs it. 

dpi = 100 

 

height = rows / dpi * scale 

width = cols / dpi * scale 

 

if preview: 

# Let the UI backend do everything. 

import matplotlib.pyplot as plt 

fig = plt.figure(figsize=(width, height), dpi=dpi) 

else: 

from matplotlib.figure import Figure 

fig = Figure(figsize=(width, height), dpi=dpi) 

FigureCanvasBase(fig) 

 

ax = fig.add_axes([0, 0, 1, 1], aspect='auto', 

frameon=False, xticks=[], yticks=[]) 

ax.imshow(im, aspect='auto', resample=True, interpolation=interpolation) 

fig.savefig(thumbfile, dpi=dpi) 

return fig