1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

r""" 

A module for dealing with the polylines used throughout Matplotlib. 

 

The primary class for polyline handling in Matplotlib is `Path`. Almost all 

vector drawing makes use of `Path`\s somewhere in the drawing pipeline. 

 

Whilst a `Path` instance itself cannot be drawn, some `.Artist` subclasses, 

such as `.PathPatch` and `.PathCollection`, can be used for convenient `Path` 

visualisation. 

""" 

 

from functools import lru_cache 

from weakref import WeakValueDictionary 

 

import numpy as np 

 

from . import _path, rcParams 

from .cbook import _to_unmasked_float_array, simple_linear_interpolation 

 

 

class Path(object): 

""" 

:class:`Path` represents a series of possibly disconnected, 

possibly closed, line and curve segments. 

 

The underlying storage is made up of two parallel numpy arrays: 

- *vertices*: an Nx2 float array of vertices 

- *codes*: an N-length uint8 array of vertex types 

 

These two arrays always have the same length in the first 

dimension. For example, to represent a cubic curve, you must 

provide three vertices as well as three codes ``CURVE3``. 

 

The code types are: 

 

- ``STOP`` : 1 vertex (ignored) 

A marker for the end of the entire path (currently not 

required and ignored) 

 

- ``MOVETO`` : 1 vertex 

Pick up the pen and move to the given vertex. 

 

- ``LINETO`` : 1 vertex 

Draw a line from the current position to the given vertex. 

 

- ``CURVE3`` : 1 control point, 1 endpoint 

Draw a quadratic Bezier curve from the current position, 

with the given control point, to the given end point. 

 

- ``CURVE4`` : 2 control points, 1 endpoint 

Draw a cubic Bezier curve from the current position, with 

the given control points, to the given end point. 

 

- ``CLOSEPOLY`` : 1 vertex (ignored) 

Draw a line segment to the start point of the current 

polyline. 

 

Users of Path objects should not access the vertices and codes 

arrays directly. Instead, they should use :meth:`iter_segments` 

or :meth:`cleaned` to get the vertex/code pairs. This is important, 

since many :class:`Path` objects, as an optimization, do not store a 

*codes* at all, but have a default one provided for them by 

:meth:`iter_segments`. 

 

Some behavior of Path objects can be controlled by rcParams. See 

the rcParams whose keys contain 'path.'. 

 

.. note:: 

 

The vertices and codes arrays should be treated as 

immutable -- there are a number of optimizations and assumptions 

made up front in the constructor that will not change when the 

data changes. 

 

""" 

 

# Path codes 

STOP = 0 # 1 vertex 

MOVETO = 1 # 1 vertex 

LINETO = 2 # 1 vertex 

CURVE3 = 3 # 2 vertices 

CURVE4 = 4 # 3 vertices 

CLOSEPOLY = 79 # 1 vertex 

 

#: A dictionary mapping Path codes to the number of vertices that the 

#: code expects. 

NUM_VERTICES_FOR_CODE = {STOP: 1, 

MOVETO: 1, 

LINETO: 1, 

CURVE3: 2, 

CURVE4: 3, 

CLOSEPOLY: 1} 

 

code_type = np.uint8 

 

def __init__(self, vertices, codes=None, _interpolation_steps=1, 

closed=False, readonly=False): 

""" 

Create a new path with the given vertices and codes. 

 

Parameters 

---------- 

vertices : array_like 

The ``(n, 2)`` float array, masked array or sequence of pairs 

representing the vertices of the path. 

 

If *vertices* contains masked values, they will be converted 

to NaNs which are then handled correctly by the Agg 

PathIterator and other consumers of path data, such as 

:meth:`iter_segments`. 

codes : {None, array_like}, optional 

n-length array integers representing the codes of the path. 

If not None, codes must be the same length as vertices. 

If None, *vertices* will be treated as a series of line segments. 

_interpolation_steps : int, optional 

Used as a hint to certain projections, such as Polar, that this 

path should be linearly interpolated immediately before drawing. 

This attribute is primarily an implementation detail and is not 

intended for public use. 

closed : bool, optional 

If *codes* is None and closed is True, vertices will be treated as 

line segments of a closed polygon. 

readonly : bool, optional 

Makes the path behave in an immutable way and sets the vertices 

and codes as read-only arrays. 

""" 

vertices = _to_unmasked_float_array(vertices) 

if vertices.ndim != 2 or vertices.shape[1] != 2: 

raise ValueError( 

"'vertices' must be a 2D list or array with shape Nx2") 

 

if codes is not None: 

codes = np.asarray(codes, self.code_type) 

if codes.ndim != 1 or len(codes) != len(vertices): 

raise ValueError("'codes' must be a 1D list or array with the " 

"same length of 'vertices'") 

if len(codes) and codes[0] != self.MOVETO: 

raise ValueError("The first element of 'code' must be equal " 

"to 'MOVETO' ({})".format(self.MOVETO)) 

elif closed and len(vertices): 

codes = np.empty(len(vertices), dtype=self.code_type) 

codes[0] = self.MOVETO 

codes[1:-1] = self.LINETO 

codes[-1] = self.CLOSEPOLY 

 

self._vertices = vertices 

self._codes = codes 

self._interpolation_steps = _interpolation_steps 

self._update_values() 

 

if readonly: 

self._vertices.flags.writeable = False 

if self._codes is not None: 

self._codes.flags.writeable = False 

self._readonly = True 

else: 

self._readonly = False 

 

@classmethod 

def _fast_from_codes_and_verts(cls, verts, codes, internals=None): 

""" 

Creates a Path instance without the expense of calling the constructor 

 

Parameters 

---------- 

verts : numpy array 

codes : numpy array 

internals : dict or None 

The attributes that the resulting path should have. 

Allowed keys are ``readonly``, ``should_simplify``, 

``simplify_threshold``, ``has_nonfinite`` and 

``interpolation_steps``. 

 

""" 

internals = internals or {} 

pth = cls.__new__(cls) 

pth._vertices = _to_unmasked_float_array(verts) 

pth._codes = codes 

pth._readonly = internals.pop('readonly', False) 

pth.should_simplify = internals.pop('should_simplify', True) 

pth.simplify_threshold = ( 

internals.pop('simplify_threshold', 

rcParams['path.simplify_threshold']) 

) 

pth._has_nonfinite = internals.pop('has_nonfinite', False) 

pth._interpolation_steps = internals.pop('interpolation_steps', 1) 

if internals: 

raise ValueError('Unexpected internals provided to ' 

'_fast_from_codes_and_verts: ' 

'{0}'.format('\n *'.join(internals))) 

return pth 

 

def _update_values(self): 

self._simplify_threshold = rcParams['path.simplify_threshold'] 

self._should_simplify = ( 

self._simplify_threshold > 0 and 

rcParams['path.simplify'] and 

len(self._vertices) >= 128 and 

(self._codes is None or np.all(self._codes <= Path.LINETO)) 

) 

self._has_nonfinite = not np.isfinite(self._vertices).all() 

 

@property 

def vertices(self): 

""" 

The list of vertices in the `Path` as an Nx2 numpy array. 

""" 

return self._vertices 

 

@vertices.setter 

def vertices(self, vertices): 

if self._readonly: 

raise AttributeError("Can't set vertices on a readonly Path") 

self._vertices = vertices 

self._update_values() 

 

@property 

def codes(self): 

""" 

The list of codes in the `Path` as a 1-D numpy array. Each 

code is one of `STOP`, `MOVETO`, `LINETO`, `CURVE3`, `CURVE4` 

or `CLOSEPOLY`. For codes that correspond to more than one 

vertex (`CURVE3` and `CURVE4`), that code will be repeated so 

that the length of `self.vertices` and `self.codes` is always 

the same. 

""" 

return self._codes 

 

@codes.setter 

def codes(self, codes): 

if self._readonly: 

raise AttributeError("Can't set codes on a readonly Path") 

self._codes = codes 

self._update_values() 

 

@property 

def simplify_threshold(self): 

""" 

The fraction of a pixel difference below which vertices will 

be simplified out. 

""" 

return self._simplify_threshold 

 

@simplify_threshold.setter 

def simplify_threshold(self, threshold): 

self._simplify_threshold = threshold 

 

@property 

def has_nonfinite(self): 

""" 

`True` if the vertices array has nonfinite values. 

""" 

return self._has_nonfinite 

 

@property 

def should_simplify(self): 

""" 

`True` if the vertices array should be simplified. 

""" 

return self._should_simplify 

 

@should_simplify.setter 

def should_simplify(self, should_simplify): 

self._should_simplify = should_simplify 

 

@property 

def readonly(self): 

""" 

`True` if the `Path` is read-only. 

""" 

return self._readonly 

 

def __copy__(self): 

""" 

Returns a shallow copy of the `Path`, which will share the 

vertices and codes with the source `Path`. 

""" 

import copy 

return copy.copy(self) 

 

copy = __copy__ 

 

def __deepcopy__(self, memo=None): 

""" 

Returns a deepcopy of the `Path`. The `Path` will not be 

readonly, even if the source `Path` is. 

""" 

try: 

codes = self.codes.copy() 

except AttributeError: 

codes = None 

return self.__class__( 

self.vertices.copy(), codes, 

_interpolation_steps=self._interpolation_steps) 

 

deepcopy = __deepcopy__ 

 

@classmethod 

def make_compound_path_from_polys(cls, XY): 

""" 

Make a compound path object to draw a number 

of polygons with equal numbers of sides XY is a (numpolys x 

numsides x 2) numpy array of vertices. Return object is a 

:class:`Path` 

 

.. plot:: gallery/misc/histogram_path.py 

 

""" 

 

# for each poly: 1 for the MOVETO, (numsides-1) for the LINETO, 1 for 

# the CLOSEPOLY; the vert for the closepoly is ignored but we still 

# need it to keep the codes aligned with the vertices 

numpolys, numsides, two = XY.shape 

if two != 2: 

raise ValueError("The third dimension of 'XY' must be 2") 

stride = numsides + 1 

nverts = numpolys * stride 

verts = np.zeros((nverts, 2)) 

codes = np.ones(nverts, int) * cls.LINETO 

codes[0::stride] = cls.MOVETO 

codes[numsides::stride] = cls.CLOSEPOLY 

for i in range(numsides): 

verts[i::stride] = XY[:, i] 

 

return cls(verts, codes) 

 

@classmethod 

def make_compound_path(cls, *args): 

"""Make a compound path from a list of Path objects.""" 

# Handle an empty list in args (i.e. no args). 

if not args: 

return Path(np.empty([0, 2], dtype=np.float32)) 

 

lengths = [len(x) for x in args] 

total_length = sum(lengths) 

 

vertices = np.vstack([x.vertices for x in args]) 

vertices.reshape((total_length, 2)) 

 

codes = np.empty(total_length, dtype=cls.code_type) 

i = 0 

for path in args: 

if path.codes is None: 

codes[i] = cls.MOVETO 

codes[i + 1:i + len(path.vertices)] = cls.LINETO 

else: 

codes[i:i + len(path.codes)] = path.codes 

i += len(path.vertices) 

 

return cls(vertices, codes) 

 

def __repr__(self): 

return "Path(%r, %r)" % (self.vertices, self.codes) 

 

def __len__(self): 

return len(self.vertices) 

 

def iter_segments(self, transform=None, remove_nans=True, clip=None, 

snap=False, stroke_width=1.0, simplify=None, 

curves=True, sketch=None): 

""" 

Iterates over all of the curve segments in the path. Each 

iteration returns a 2-tuple (*vertices*, *code*), where 

*vertices* is a sequence of 1 - 3 coordinate pairs, and *code* is 

one of the :class:`Path` codes. 

 

Additionally, this method can provide a number of standard 

cleanups and conversions to the path. 

 

Parameters 

---------- 

transform : None or :class:`~matplotlib.transforms.Transform` instance 

If not None, the given affine transformation will 

be applied to the path. 

remove_nans : {False, True}, optional 

If True, will remove all NaNs from the path and 

insert MOVETO commands to skip over them. 

clip : None or sequence, optional 

If not None, must be a four-tuple (x1, y1, x2, y2) 

defining a rectangle in which to clip the path. 

snap : None or bool, optional 

If None, auto-snap to pixels, to reduce 

fuzziness of rectilinear lines. If True, force snapping, and 

if False, don't snap. 

stroke_width : float, optional 

The width of the stroke being drawn. Needed 

as a hint for the snapping algorithm. 

simplify : None or bool, optional 

If True, perform simplification, to remove 

vertices that do not affect the appearance of the path. If 

False, perform no simplification. If None, use the 

should_simplify member variable. See also the rcParams 

path.simplify and path.simplify_threshold. 

curves : {True, False}, optional 

If True, curve segments will be returned as curve 

segments. If False, all curves will be converted to line 

segments. 

sketch : None or sequence, optional 

If not None, must be a 3-tuple of the form 

(scale, length, randomness), representing the sketch 

parameters. 

""" 

if not len(self): 

return 

 

cleaned = self.cleaned(transform=transform, 

remove_nans=remove_nans, clip=clip, 

snap=snap, stroke_width=stroke_width, 

simplify=simplify, curves=curves, 

sketch=sketch) 

vertices = cleaned.vertices 

codes = cleaned.codes 

len_vertices = vertices.shape[0] 

 

# Cache these object lookups for performance in the loop. 

NUM_VERTICES_FOR_CODE = self.NUM_VERTICES_FOR_CODE 

STOP = self.STOP 

 

i = 0 

while i < len_vertices: 

code = codes[i] 

if code == STOP: 

return 

else: 

num_vertices = NUM_VERTICES_FOR_CODE[code] 

curr_vertices = vertices[i:i+num_vertices].flatten() 

yield curr_vertices, code 

i += num_vertices 

 

def cleaned(self, transform=None, remove_nans=False, clip=None, 

quantize=False, simplify=False, curves=False, 

stroke_width=1.0, snap=False, sketch=None): 

""" 

Cleans up the path according to the parameters returning a new 

Path instance. 

 

.. seealso:: 

 

See :meth:`iter_segments` for details of the keyword arguments. 

 

Returns 

------- 

Path instance with cleaned up vertices and codes. 

 

""" 

vertices, codes = _path.cleanup_path(self, transform, 

remove_nans, clip, 

snap, stroke_width, 

simplify, curves, sketch) 

internals = {'should_simplify': self.should_simplify and not simplify, 

'has_nonfinite': self.has_nonfinite and not remove_nans, 

'simplify_threshold': self.simplify_threshold, 

'interpolation_steps': self._interpolation_steps} 

return Path._fast_from_codes_and_verts(vertices, codes, internals) 

 

def transformed(self, transform): 

""" 

Return a transformed copy of the path. 

 

.. seealso:: 

 

:class:`matplotlib.transforms.TransformedPath` 

A specialized path class that will cache the 

transformed result and automatically update when the 

transform changes. 

""" 

return Path(transform.transform(self.vertices), self.codes, 

self._interpolation_steps) 

 

def contains_point(self, point, transform=None, radius=0.0): 

""" 

Returns whether the (closed) path contains the given point. 

 

If *transform* is not ``None``, the path will be transformed before 

performing the test. 

 

*radius* allows the path to be made slightly larger or smaller. 

""" 

if transform is not None: 

transform = transform.frozen() 

# `point_in_path` does not handle nonlinear transforms, so we 

# transform the path ourselves. If `transform` is affine, letting 

# `point_in_path` handle the transform avoids allocating an extra 

# buffer. 

if transform and not transform.is_affine: 

self = transform.transform_path(self) 

transform = None 

return _path.point_in_path(point[0], point[1], radius, self, transform) 

 

def contains_points(self, points, transform=None, radius=0.0): 

""" 

Returns a bool array which is ``True`` if the (closed) path contains 

the corresponding point. 

 

If *transform* is not ``None``, the path will be transformed before 

performing the test. 

 

*radius* allows the path to be made slightly larger or smaller. 

""" 

if transform is not None: 

transform = transform.frozen() 

result = _path.points_in_path(points, radius, self, transform) 

return result.astype('bool') 

 

def contains_path(self, path, transform=None): 

""" 

Returns whether this (closed) path completely contains the given path. 

 

If *transform* is not ``None``, the path will be transformed before 

performing the test. 

""" 

if transform is not None: 

transform = transform.frozen() 

return _path.path_in_path(self, None, path, transform) 

 

def get_extents(self, transform=None): 

""" 

Returns the extents (*xmin*, *ymin*, *xmax*, *ymax*) of the 

path. 

 

Unlike computing the extents on the *vertices* alone, this 

algorithm will take into account the curves and deal with 

control points appropriately. 

""" 

from .transforms import Bbox 

path = self 

if transform is not None: 

transform = transform.frozen() 

if not transform.is_affine: 

path = self.transformed(transform) 

transform = None 

return Bbox(_path.get_path_extents(path, transform)) 

 

def intersects_path(self, other, filled=True): 

""" 

Returns *True* if this path intersects another given path. 

 

*filled*, when True, treats the paths as if they were filled. 

That is, if one path completely encloses the other, 

:meth:`intersects_path` will return True. 

""" 

return _path.path_intersects_path(self, other, filled) 

 

def intersects_bbox(self, bbox, filled=True): 

""" 

Returns *True* if this path intersects a given 

:class:`~matplotlib.transforms.Bbox`. 

 

*filled*, when True, treats the path as if it was filled. 

That is, if the path completely encloses the bounding box, 

:meth:`intersects_bbox` will return True. 

 

The bounding box is always considered filled. 

""" 

return _path.path_intersects_rectangle(self, 

bbox.x0, bbox.y0, bbox.x1, bbox.y1, filled) 

 

def interpolated(self, steps): 

""" 

Returns a new path resampled to length N x steps. Does not 

currently handle interpolating curves. 

""" 

if steps == 1: 

return self 

 

vertices = simple_linear_interpolation(self.vertices, steps) 

codes = self.codes 

if codes is not None: 

new_codes = Path.LINETO * np.ones(((len(codes) - 1) * steps + 1, )) 

new_codes[0::steps] = codes 

else: 

new_codes = None 

return Path(vertices, new_codes) 

 

def to_polygons(self, transform=None, width=0, height=0, closed_only=True): 

""" 

Convert this path to a list of polygons or polylines. Each 

polygon/polyline is an Nx2 array of vertices. In other words, 

each polygon has no ``MOVETO`` instructions or curves. This 

is useful for displaying in backends that do not support 

compound paths or Bezier curves. 

 

If *width* and *height* are both non-zero then the lines will 

be simplified so that vertices outside of (0, 0), (width, 

height) will be clipped. 

 

If *closed_only* is `True` (default), only closed polygons, 

with the last point being the same as the first point, will be 

returned. Any unclosed polylines in the path will be 

explicitly closed. If *closed_only* is `False`, any unclosed 

polygons in the path will be returned as unclosed polygons, 

and the closed polygons will be returned explicitly closed by 

setting the last point to the same as the first point. 

""" 

if len(self.vertices) == 0: 

return [] 

 

if transform is not None: 

transform = transform.frozen() 

 

if self.codes is None and (width == 0 or height == 0): 

vertices = self.vertices 

if closed_only: 

if len(vertices) < 3: 

return [] 

elif np.any(vertices[0] != vertices[-1]): 

vertices = [*vertices, vertices[0]] 

 

if transform is None: 

return [vertices] 

else: 

return [transform.transform(vertices)] 

 

# Deal with the case where there are curves and/or multiple 

# subpaths (using extension code) 

return _path.convert_path_to_polygons( 

self, transform, width, height, closed_only) 

 

_unit_rectangle = None 

 

@classmethod 

def unit_rectangle(cls): 

""" 

Return a :class:`Path` instance of the unit rectangle 

from (0, 0) to (1, 1). 

""" 

if cls._unit_rectangle is None: 

cls._unit_rectangle = \ 

cls([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], 

[0.0, 0.0]], 

[cls.MOVETO, cls.LINETO, cls.LINETO, cls.LINETO, 

cls.CLOSEPOLY], 

readonly=True) 

return cls._unit_rectangle 

 

_unit_regular_polygons = WeakValueDictionary() 

 

@classmethod 

def unit_regular_polygon(cls, numVertices): 

""" 

Return a :class:`Path` instance for a unit regular polygon with the 

given *numVertices* and radius of 1.0, centered at (0, 0). 

""" 

if numVertices <= 16: 

path = cls._unit_regular_polygons.get(numVertices) 

else: 

path = None 

if path is None: 

theta = ((2 * np.pi / numVertices) * np.arange(numVertices + 1) 

# This initial rotation is to make sure the polygon always 

# "points-up". 

+ np.pi / 2) 

verts = np.column_stack((np.cos(theta), np.sin(theta))) 

codes = np.empty(numVertices + 1) 

codes[0] = cls.MOVETO 

codes[1:-1] = cls.LINETO 

codes[-1] = cls.CLOSEPOLY 

path = cls(verts, codes, readonly=True) 

if numVertices <= 16: 

cls._unit_regular_polygons[numVertices] = path 

return path 

 

_unit_regular_stars = WeakValueDictionary() 

 

@classmethod 

def unit_regular_star(cls, numVertices, innerCircle=0.5): 

""" 

Return a :class:`Path` for a unit regular star with the given 

numVertices and radius of 1.0, centered at (0, 0). 

""" 

if numVertices <= 16: 

path = cls._unit_regular_stars.get((numVertices, innerCircle)) 

else: 

path = None 

if path is None: 

ns2 = numVertices * 2 

theta = (2*np.pi/ns2 * np.arange(ns2 + 1)) 

# This initial rotation is to make sure the polygon always 

# "points-up" 

theta += np.pi / 2.0 

r = np.ones(ns2 + 1) 

r[1::2] = innerCircle 

verts = np.vstack((r*np.cos(theta), r*np.sin(theta))).transpose() 

codes = np.empty((ns2 + 1,)) 

codes[0] = cls.MOVETO 

codes[1:-1] = cls.LINETO 

codes[-1] = cls.CLOSEPOLY 

path = cls(verts, codes, readonly=True) 

if numVertices <= 16: 

cls._unit_regular_stars[(numVertices, innerCircle)] = path 

return path 

 

@classmethod 

def unit_regular_asterisk(cls, numVertices): 

""" 

Return a :class:`Path` for a unit regular asterisk with the given 

numVertices and radius of 1.0, centered at (0, 0). 

""" 

return cls.unit_regular_star(numVertices, 0.0) 

 

_unit_circle = None 

 

@classmethod 

def unit_circle(cls): 

""" 

Return the readonly :class:`Path` of the unit circle. 

 

For most cases, :func:`Path.circle` will be what you want. 

 

""" 

if cls._unit_circle is None: 

cls._unit_circle = cls.circle(center=(0, 0), radius=1, 

readonly=True) 

return cls._unit_circle 

 

@classmethod 

def circle(cls, center=(0., 0.), radius=1., readonly=False): 

""" 

Return a Path representing a circle of a given radius and center. 

 

Parameters 

---------- 

center : pair of floats 

The center of the circle. Default ``(0, 0)``. 

radius : float 

The radius of the circle. Default is 1. 

readonly : bool 

Whether the created path should have the "readonly" argument 

set when creating the Path instance. 

 

Notes 

----- 

The circle is approximated using cubic Bezier curves. This 

uses 8 splines around the circle using the approach presented 

here: 

 

Lancaster, Don. `Approximating a Circle or an Ellipse Using Four 

Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_. 

 

""" 

MAGIC = 0.2652031 

SQRTHALF = np.sqrt(0.5) 

MAGIC45 = SQRTHALF * MAGIC 

 

vertices = np.array([[0.0, -1.0], 

 

[MAGIC, -1.0], 

[SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45], 

[SQRTHALF, -SQRTHALF], 

 

[SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45], 

[1.0, -MAGIC], 

[1.0, 0.0], 

 

[1.0, MAGIC], 

[SQRTHALF+MAGIC45, SQRTHALF-MAGIC45], 

[SQRTHALF, SQRTHALF], 

 

[SQRTHALF-MAGIC45, SQRTHALF+MAGIC45], 

[MAGIC, 1.0], 

[0.0, 1.0], 

 

[-MAGIC, 1.0], 

[-SQRTHALF+MAGIC45, SQRTHALF+MAGIC45], 

[-SQRTHALF, SQRTHALF], 

 

[-SQRTHALF-MAGIC45, SQRTHALF-MAGIC45], 

[-1.0, MAGIC], 

[-1.0, 0.0], 

 

[-1.0, -MAGIC], 

[-SQRTHALF-MAGIC45, -SQRTHALF+MAGIC45], 

[-SQRTHALF, -SQRTHALF], 

 

[-SQRTHALF+MAGIC45, -SQRTHALF-MAGIC45], 

[-MAGIC, -1.0], 

[0.0, -1.0], 

 

[0.0, -1.0]], 

dtype=float) 

 

codes = [cls.CURVE4] * 26 

codes[0] = cls.MOVETO 

codes[-1] = cls.CLOSEPOLY 

return Path(vertices * radius + center, codes, readonly=readonly) 

 

_unit_circle_righthalf = None 

 

@classmethod 

def unit_circle_righthalf(cls): 

""" 

Return a :class:`Path` of the right half 

of a unit circle. The circle is approximated using cubic Bezier 

curves. This uses 4 splines around the circle using the approach 

presented here: 

 

Lancaster, Don. `Approximating a Circle or an Ellipse Using Four 

Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_. 

""" 

if cls._unit_circle_righthalf is None: 

MAGIC = 0.2652031 

SQRTHALF = np.sqrt(0.5) 

MAGIC45 = SQRTHALF * MAGIC 

 

vertices = np.array( 

[[0.0, -1.0], 

 

[MAGIC, -1.0], 

[SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45], 

[SQRTHALF, -SQRTHALF], 

 

[SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45], 

[1.0, -MAGIC], 

[1.0, 0.0], 

 

[1.0, MAGIC], 

[SQRTHALF+MAGIC45, SQRTHALF-MAGIC45], 

[SQRTHALF, SQRTHALF], 

 

[SQRTHALF-MAGIC45, SQRTHALF+MAGIC45], 

[MAGIC, 1.0], 

[0.0, 1.0], 

 

[0.0, -1.0]], 

 

float) 

 

codes = cls.CURVE4 * np.ones(14) 

codes[0] = cls.MOVETO 

codes[-1] = cls.CLOSEPOLY 

 

cls._unit_circle_righthalf = cls(vertices, codes, readonly=True) 

return cls._unit_circle_righthalf 

 

@classmethod 

def arc(cls, theta1, theta2, n=None, is_wedge=False): 

""" 

Return an arc on the unit circle from angle 

*theta1* to angle *theta2* (in degrees). 

 

*theta2* is unwrapped to produce the shortest arc within 360 degrees. 

That is, if *theta2* > *theta1* + 360, the arc will be from *theta1* to 

*theta2* - 360 and not a full circle plus some extra overlap. 

 

If *n* is provided, it is the number of spline segments to make. 

If *n* is not provided, the number of spline segments is 

determined based on the delta between *theta1* and *theta2*. 

 

Masionobe, L. 2003. `Drawing an elliptical arc using 

polylines, quadratic or cubic Bezier curves 

<http://www.spaceroots.org/documents/ellipse/index.html>`_. 

""" 

halfpi = np.pi * 0.5 

 

eta1 = theta1 

eta2 = theta2 - 360 * np.floor((theta2 - theta1) / 360) 

# Ensure 2pi range is not flattened to 0 due to floating-point errors, 

# but don't try to expand existing 0 range. 

if theta2 != theta1 and eta2 <= eta1: 

eta2 += 360 

eta1, eta2 = np.deg2rad([eta1, eta2]) 

 

# number of curve segments to make 

if n is None: 

n = int(2 ** np.ceil((eta2 - eta1) / halfpi)) 

if n < 1: 

raise ValueError("n must be >= 1 or None") 

 

deta = (eta2 - eta1) / n 

t = np.tan(0.5 * deta) 

alpha = np.sin(deta) * (np.sqrt(4.0 + 3.0 * t * t) - 1) / 3.0 

 

steps = np.linspace(eta1, eta2, n + 1, True) 

cos_eta = np.cos(steps) 

sin_eta = np.sin(steps) 

 

xA = cos_eta[:-1] 

yA = sin_eta[:-1] 

xA_dot = -yA 

yA_dot = xA 

 

xB = cos_eta[1:] 

yB = sin_eta[1:] 

xB_dot = -yB 

yB_dot = xB 

 

if is_wedge: 

length = n * 3 + 4 

vertices = np.zeros((length, 2), float) 

codes = cls.CURVE4 * np.ones((length, ), cls.code_type) 

vertices[1] = [xA[0], yA[0]] 

codes[0:2] = [cls.MOVETO, cls.LINETO] 

codes[-2:] = [cls.LINETO, cls.CLOSEPOLY] 

vertex_offset = 2 

end = length - 2 

else: 

length = n * 3 + 1 

vertices = np.empty((length, 2), float) 

codes = cls.CURVE4 * np.ones((length, ), cls.code_type) 

vertices[0] = [xA[0], yA[0]] 

codes[0] = cls.MOVETO 

vertex_offset = 1 

end = length 

 

vertices[vertex_offset:end:3, 0] = xA + alpha * xA_dot 

vertices[vertex_offset:end:3, 1] = yA + alpha * yA_dot 

vertices[vertex_offset+1:end:3, 0] = xB - alpha * xB_dot 

vertices[vertex_offset+1:end:3, 1] = yB - alpha * yB_dot 

vertices[vertex_offset+2:end:3, 0] = xB 

vertices[vertex_offset+2:end:3, 1] = yB 

 

return cls(vertices, codes, readonly=True) 

 

@classmethod 

def wedge(cls, theta1, theta2, n=None): 

""" 

Return a wedge of the unit circle from angle 

*theta1* to angle *theta2* (in degrees). 

 

*theta2* is unwrapped to produce the shortest wedge within 360 degrees. 

That is, if *theta2* > *theta1* + 360, the wedge will be from *theta1* 

to *theta2* - 360 and not a full circle plus some extra overlap. 

 

If *n* is provided, it is the number of spline segments to make. 

If *n* is not provided, the number of spline segments is 

determined based on the delta between *theta1* and *theta2*. 

""" 

return cls.arc(theta1, theta2, n, True) 

 

@staticmethod 

@lru_cache(8) 

def hatch(hatchpattern, density=6): 

""" 

Given a hatch specifier, *hatchpattern*, generates a Path that 

can be used in a repeated hatching pattern. *density* is the 

number of lines per unit square. 

""" 

from matplotlib.hatch import get_path 

return (get_path(hatchpattern, density) 

if hatchpattern is not None else None) 

 

def clip_to_bbox(self, bbox, inside=True): 

""" 

Clip the path to the given bounding box. 

 

The path must be made up of one or more closed polygons. This 

algorithm will not behave correctly for unclosed paths. 

 

If *inside* is `True`, clip to the inside of the box, otherwise 

to the outside of the box. 

""" 

# Use make_compound_path_from_polys 

verts = _path.clip_path_to_rect(self, bbox, inside) 

paths = [Path(poly) for poly in verts] 

return self.make_compound_path(*paths) 

 

 

def get_path_collection_extents( 

master_transform, paths, transforms, offsets, offset_transform): 

""" 

Given a sequence of :class:`Path` objects, 

:class:`~matplotlib.transforms.Transform` objects and offsets, as 

found in a :class:`~matplotlib.collections.PathCollection`, 

returns the bounding box that encapsulates all of them. 

 

*master_transform* is a global transformation to apply to all paths 

 

*paths* is a sequence of :class:`Path` instances. 

 

*transforms* is a sequence of 

:class:`~matplotlib.transforms.Affine2D` instances. 

 

*offsets* is a sequence of (x, y) offsets (or an Nx2 array) 

 

*offset_transform* is a :class:`~matplotlib.transforms.Affine2D` 

to apply to the offsets before applying the offset to the path. 

 

The way that *paths*, *transforms* and *offsets* are combined 

follows the same method as for collections. Each is iterated over 

independently, so if you have 3 paths, 2 transforms and 1 offset, 

their combinations are as follows: 

 

(A, A, A), (B, B, A), (C, A, A) 

""" 

from .transforms import Bbox 

if len(paths) == 0: 

raise ValueError("No paths provided") 

return Bbox.from_extents(*_path.get_path_collection_extents( 

master_transform, paths, np.atleast_3d(transforms), 

offsets, offset_transform)) 

 

 

def get_paths_extents(paths, transforms=[]): 

""" 

Given a sequence of :class:`Path` objects and optional 

:class:`~matplotlib.transforms.Transform` objects, returns the 

bounding box that encapsulates all of them. 

 

*paths* is a sequence of :class:`Path` instances. 

 

*transforms* is an optional sequence of 

:class:`~matplotlib.transforms.Affine2D` instances to apply to 

each path. 

""" 

from .transforms import Bbox, Affine2D 

if len(paths) == 0: 

raise ValueError("No paths provided") 

return Bbox.from_extents(*_path.get_path_collection_extents( 

Affine2D(), paths, transforms, [], Affine2D()))