1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

import numpy as np 

 

import matplotlib 

from matplotlib import rcParams 

from matplotlib.axes import Axes 

import matplotlib.axis as maxis 

from matplotlib.patches import Circle 

from matplotlib.path import Path 

import matplotlib.spines as mspines 

from matplotlib.ticker import ( 

Formatter, NullLocator, FixedLocator, NullFormatter) 

from matplotlib.transforms import Affine2D, BboxTransformTo, Transform 

 

 

class GeoAxes(Axes): 

"""An abstract base class for geographic projections.""" 

class ThetaFormatter(Formatter): 

""" 

Used to format the theta tick labels. Converts the native 

unit of radians into degrees and adds a degree symbol. 

""" 

def __init__(self, round_to=1.0): 

self._round_to = round_to 

 

def __call__(self, x, pos=None): 

degrees = (x / np.pi) * 180.0 

degrees = np.round(degrees / self._round_to) * self._round_to 

if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: 

return r"$%0.0f^\circ$" % degrees 

else: 

return "%0.0f\N{DEGREE SIGN}" % degrees 

 

RESOLUTION = 75 

 

def _init_axis(self): 

self.xaxis = maxis.XAxis(self) 

self.yaxis = maxis.YAxis(self) 

# Do not register xaxis or yaxis with spines -- as done in 

# Axes._init_axis() -- until GeoAxes.xaxis.cla() works. 

# self.spines['geo'].register_axis(self.yaxis) 

self._update_transScale() 

 

def cla(self): 

Axes.cla(self) 

 

self.set_longitude_grid(30) 

self.set_latitude_grid(15) 

self.set_longitude_grid_ends(75) 

self.xaxis.set_minor_locator(NullLocator()) 

self.yaxis.set_minor_locator(NullLocator()) 

self.xaxis.set_ticks_position('none') 

self.yaxis.set_ticks_position('none') 

self.yaxis.set_tick_params(label1On=True) 

# Why do we need to turn on yaxis tick labels, but 

# xaxis tick labels are already on? 

 

self.grid(rcParams['axes.grid']) 

 

Axes.set_xlim(self, -np.pi, np.pi) 

Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0) 

 

def _set_lim_and_transforms(self): 

# A (possibly non-linear) projection on the (already scaled) data 

self.transProjection = self._get_core_transform(self.RESOLUTION) 

 

self.transAffine = self._get_affine_transform() 

 

self.transAxes = BboxTransformTo(self.bbox) 

 

# The complete data transformation stack -- from data all the 

# way to display coordinates 

self.transData = \ 

self.transProjection + \ 

self.transAffine + \ 

self.transAxes 

 

# This is the transform for longitude ticks. 

self._xaxis_pretransform = \ 

Affine2D() \ 

.scale(1, self._longitude_cap * 2) \ 

.translate(0, -self._longitude_cap) 

self._xaxis_transform = \ 

self._xaxis_pretransform + \ 

self.transData 

self._xaxis_text1_transform = \ 

Affine2D().scale(1, 0) + \ 

self.transData + \ 

Affine2D().translate(0, 4) 

self._xaxis_text2_transform = \ 

Affine2D().scale(1, 0) + \ 

self.transData + \ 

Affine2D().translate(0, -4) 

 

# This is the transform for latitude ticks. 

yaxis_stretch = Affine2D().scale(np.pi * 2, 1).translate(-np.pi, 0) 

yaxis_space = Affine2D().scale(1, 1.1) 

self._yaxis_transform = \ 

yaxis_stretch + \ 

self.transData 

yaxis_text_base = \ 

yaxis_stretch + \ 

self.transProjection + \ 

(yaxis_space + \ 

self.transAffine + \ 

self.transAxes) 

self._yaxis_text1_transform = \ 

yaxis_text_base + \ 

Affine2D().translate(-8, 0) 

self._yaxis_text2_transform = \ 

yaxis_text_base + \ 

Affine2D().translate(8, 0) 

 

def _get_affine_transform(self): 

transform = self._get_core_transform(1) 

xscale, _ = transform.transform_point((np.pi, 0)) 

_, yscale = transform.transform_point((0, np.pi / 2)) 

return Affine2D() \ 

.scale(0.5 / xscale, 0.5 / yscale) \ 

.translate(0.5, 0.5) 

 

def get_xaxis_transform(self,which='grid'): 

if which not in ['tick1', 'tick2', 'grid']: 

raise ValueError( 

"'which' must be one of 'tick1', 'tick2', or 'grid'") 

return self._xaxis_transform 

 

def get_xaxis_text1_transform(self, pad): 

return self._xaxis_text1_transform, 'bottom', 'center' 

 

def get_xaxis_text2_transform(self, pad): 

return self._xaxis_text2_transform, 'top', 'center' 

 

def get_yaxis_transform(self,which='grid'): 

if which not in ['tick1', 'tick2', 'grid']: 

raise ValueError( 

"'which' must be one of 'tick1', 'tick2', or 'grid'") 

return self._yaxis_transform 

 

def get_yaxis_text1_transform(self, pad): 

return self._yaxis_text1_transform, 'center', 'right' 

 

def get_yaxis_text2_transform(self, pad): 

return self._yaxis_text2_transform, 'center', 'left' 

 

def _gen_axes_patch(self): 

return Circle((0.5, 0.5), 0.5) 

 

def _gen_axes_spines(self): 

return {'geo':mspines.Spine.circular_spine(self, 

(0.5, 0.5), 0.5)} 

 

def set_yscale(self, *args, **kwargs): 

if args[0] != 'linear': 

raise NotImplementedError 

 

set_xscale = set_yscale 

 

def set_xlim(self, *args, **kwargs): 

raise TypeError("It is not possible to change axes limits " 

"for geographic projections. Please consider " 

"using Basemap or Cartopy.") 

 

set_ylim = set_xlim 

 

def format_coord(self, lon, lat): 

'return a format string formatting the coordinate' 

lon, lat = np.rad2deg([lon, lat]) 

if lat >= 0.0: 

ns = 'N' 

else: 

ns = 'S' 

if lon >= 0.0: 

ew = 'E' 

else: 

ew = 'W' 

return ('%f\N{DEGREE SIGN}%s, %f\N{DEGREE SIGN}%s' 

% (abs(lat), ns, abs(lon), ew)) 

 

def set_longitude_grid(self, degrees): 

""" 

Set the number of degrees between each longitude grid. 

""" 

# Skip -180 and 180, which are the fixed limits. 

grid = np.arange(-180 + degrees, 180, degrees) 

self.xaxis.set_major_locator(FixedLocator(np.deg2rad(grid))) 

self.xaxis.set_major_formatter(self.ThetaFormatter(degrees)) 

 

def set_latitude_grid(self, degrees): 

""" 

Set the number of degrees between each latitude grid. 

""" 

# Skip -90 and 90, which are the fixed limits. 

grid = np.arange(-90 + degrees, 90, degrees) 

self.yaxis.set_major_locator(FixedLocator(np.deg2rad(grid))) 

self.yaxis.set_major_formatter(self.ThetaFormatter(degrees)) 

 

def set_longitude_grid_ends(self, degrees): 

""" 

Set the latitude(s) at which to stop drawing the longitude grids. 

""" 

self._longitude_cap = np.deg2rad(degrees) 

self._xaxis_pretransform \ 

.clear() \ 

.scale(1.0, self._longitude_cap * 2.0) \ 

.translate(0.0, -self._longitude_cap) 

 

def get_data_ratio(self): 

''' 

Return the aspect ratio of the data itself. 

''' 

return 1.0 

 

### Interactive panning 

 

def can_zoom(self): 

""" 

Return *True* if this axes supports the zoom box button functionality. 

 

This axes object does not support interactive zoom box. 

""" 

return False 

 

def can_pan(self) : 

""" 

Return *True* if this axes supports the pan/zoom button functionality. 

 

This axes object does not support interactive pan/zoom. 

""" 

return False 

 

def start_pan(self, x, y, button): 

pass 

 

def end_pan(self): 

pass 

 

def drag_pan(self, button, key, x, y): 

pass 

 

 

class _GeoTransform(Transform): 

# Factoring out some common functionality. 

input_dims = 2 

output_dims = 2 

is_separable = False 

 

def __init__(self, resolution): 

""" 

Create a new geographical transform. 

 

Resolution is the number of steps to interpolate between each input 

line segment to approximate its path in curved space. 

""" 

Transform.__init__(self) 

self._resolution = resolution 

 

def __str__(self): 

return "{}({})".format(type(self).__name__, self._resolution) 

 

def transform_path_non_affine(self, path): 

vertices = path.vertices 

ipath = path.interpolated(self._resolution) 

return Path(self.transform(ipath.vertices), ipath.codes) 

transform_path_non_affine.__doc__ = \ 

Transform.transform_path_non_affine.__doc__ 

 

 

class AitoffAxes(GeoAxes): 

name = 'aitoff' 

 

class AitoffTransform(_GeoTransform): 

"""The base Aitoff transform.""" 

 

def transform_non_affine(self, ll): 

longitude = ll[:, 0] 

latitude = ll[:, 1] 

 

# Pre-compute some values 

half_long = longitude / 2.0 

cos_latitude = np.cos(latitude) 

 

alpha = np.arccos(cos_latitude * np.cos(half_long)) 

# Avoid divide-by-zero errors using same method as NumPy. 

alpha[alpha == 0.0] = 1e-20 

# We want unnormalized sinc. numpy.sinc gives us normalized 

sinc_alpha = np.sin(alpha) / alpha 

 

xy = np.empty_like(ll, float) 

xy[:, 0] = (cos_latitude * np.sin(half_long)) / sinc_alpha 

xy[:, 1] = np.sin(latitude) / sinc_alpha 

return xy 

transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ 

 

def inverted(self): 

return AitoffAxes.InvertedAitoffTransform(self._resolution) 

inverted.__doc__ = Transform.inverted.__doc__ 

 

class InvertedAitoffTransform(_GeoTransform): 

 

def transform_non_affine(self, xy): 

# MGDTODO: Math is hard ;( 

return xy 

transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ 

 

def inverted(self): 

return AitoffAxes.AitoffTransform(self._resolution) 

inverted.__doc__ = Transform.inverted.__doc__ 

 

def __init__(self, *args, **kwargs): 

self._longitude_cap = np.pi / 2.0 

GeoAxes.__init__(self, *args, **kwargs) 

self.set_aspect(0.5, adjustable='box', anchor='C') 

self.cla() 

 

def _get_core_transform(self, resolution): 

return self.AitoffTransform(resolution) 

 

 

class HammerAxes(GeoAxes): 

name = 'hammer' 

 

class HammerTransform(_GeoTransform): 

"""The base Hammer transform.""" 

 

def transform_non_affine(self, ll): 

longitude = ll[:, 0:1] 

latitude = ll[:, 1:2] 

 

# Pre-compute some values 

half_long = longitude / 2.0 

cos_latitude = np.cos(latitude) 

sqrt2 = np.sqrt(2.0) 

 

alpha = np.sqrt(1.0 + cos_latitude * np.cos(half_long)) 

x = (2.0 * sqrt2) * (cos_latitude * np.sin(half_long)) / alpha 

y = (sqrt2 * np.sin(latitude)) / alpha 

return np.concatenate((x, y), 1) 

transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ 

 

def inverted(self): 

return HammerAxes.InvertedHammerTransform(self._resolution) 

inverted.__doc__ = Transform.inverted.__doc__ 

 

class InvertedHammerTransform(_GeoTransform): 

 

def transform_non_affine(self, xy): 

x, y = xy.T 

z = np.sqrt(1 - (x / 4) ** 2 - (y / 2) ** 2) 

longitude = 2 * np.arctan((z * x) / (2 * (2 * z ** 2 - 1))) 

latitude = np.arcsin(y*z) 

return np.column_stack([longitude, latitude]) 

transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ 

 

def inverted(self): 

return HammerAxes.HammerTransform(self._resolution) 

inverted.__doc__ = Transform.inverted.__doc__ 

 

def __init__(self, *args, **kwargs): 

self._longitude_cap = np.pi / 2.0 

GeoAxes.__init__(self, *args, **kwargs) 

self.set_aspect(0.5, adjustable='box', anchor='C') 

self.cla() 

 

def _get_core_transform(self, resolution): 

return self.HammerTransform(resolution) 

 

 

class MollweideAxes(GeoAxes): 

name = 'mollweide' 

 

class MollweideTransform(_GeoTransform): 

"""The base Mollweide transform.""" 

 

def transform_non_affine(self, ll): 

def d(theta): 

delta = (-(theta + np.sin(theta) - pi_sin_l) 

/ (1 + np.cos(theta))) 

return delta, np.abs(delta) > 0.001 

 

longitude = ll[:, 0] 

latitude = ll[:, 1] 

 

clat = np.pi/2 - np.abs(latitude) 

ihigh = clat < 0.087 # within 5 degrees of the poles 

ilow = ~ihigh 

aux = np.empty(latitude.shape, dtype=float) 

 

if ilow.any(): # Newton-Raphson iteration 

pi_sin_l = np.pi * np.sin(latitude[ilow]) 

theta = 2.0 * latitude[ilow] 

delta, large_delta = d(theta) 

while np.any(large_delta): 

theta[large_delta] += delta[large_delta] 

delta, large_delta = d(theta) 

aux[ilow] = theta / 2 

 

if ihigh.any(): # Taylor series-based approx. solution 

e = clat[ihigh] 

d = 0.5 * (3 * np.pi * e**2) ** (1.0/3) 

aux[ihigh] = (np.pi/2 - d) * np.sign(latitude[ihigh]) 

 

xy = np.empty(ll.shape, dtype=float) 

xy[:,0] = (2.0 * np.sqrt(2.0) / np.pi) * longitude * np.cos(aux) 

xy[:,1] = np.sqrt(2.0) * np.sin(aux) 

 

return xy 

transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ 

 

def inverted(self): 

return MollweideAxes.InvertedMollweideTransform(self._resolution) 

inverted.__doc__ = Transform.inverted.__doc__ 

 

class InvertedMollweideTransform(_GeoTransform): 

 

def transform_non_affine(self, xy): 

x = xy[:, 0:1] 

y = xy[:, 1:2] 

 

# from Equations (7, 8) of 

# http://mathworld.wolfram.com/MollweideProjection.html 

theta = np.arcsin(y / np.sqrt(2)) 

lon = (np.pi / (2 * np.sqrt(2))) * x / np.cos(theta) 

lat = np.arcsin((2 * theta + np.sin(2 * theta)) / np.pi) 

 

return np.concatenate((lon, lat), 1) 

transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ 

 

def inverted(self): 

return MollweideAxes.MollweideTransform(self._resolution) 

inverted.__doc__ = Transform.inverted.__doc__ 

 

def __init__(self, *args, **kwargs): 

self._longitude_cap = np.pi / 2.0 

GeoAxes.__init__(self, *args, **kwargs) 

self.set_aspect(0.5, adjustable='box', anchor='C') 

self.cla() 

 

def _get_core_transform(self, resolution): 

return self.MollweideTransform(resolution) 

 

 

class LambertAxes(GeoAxes): 

name = 'lambert' 

 

class LambertTransform(_GeoTransform): 

"""The base Lambert transform.""" 

 

def __init__(self, center_longitude, center_latitude, resolution): 

""" 

Create a new Lambert transform. Resolution is the number of steps 

to interpolate between each input line segment to approximate its 

path in curved Lambert space. 

""" 

_GeoTransform.__init__(self, resolution) 

self._center_longitude = center_longitude 

self._center_latitude = center_latitude 

 

def transform_non_affine(self, ll): 

longitude = ll[:, 0:1] 

latitude = ll[:, 1:2] 

clong = self._center_longitude 

clat = self._center_latitude 

cos_lat = np.cos(latitude) 

sin_lat = np.sin(latitude) 

diff_long = longitude - clong 

cos_diff_long = np.cos(diff_long) 

 

inner_k = (1.0 + 

np.sin(clat)*sin_lat + 

np.cos(clat)*cos_lat*cos_diff_long) 

# Prevent divide-by-zero problems 

inner_k = np.where(inner_k == 0.0, 1e-15, inner_k) 

k = np.sqrt(2.0 / inner_k) 

x = k*cos_lat*np.sin(diff_long) 

y = k*(np.cos(clat)*sin_lat - 

np.sin(clat)*cos_lat*cos_diff_long) 

 

return np.concatenate((x, y), 1) 

transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ 

 

def inverted(self): 

return LambertAxes.InvertedLambertTransform( 

self._center_longitude, 

self._center_latitude, 

self._resolution) 

inverted.__doc__ = Transform.inverted.__doc__ 

 

class InvertedLambertTransform(_GeoTransform): 

 

def __init__(self, center_longitude, center_latitude, resolution): 

_GeoTransform.__init__(self, resolution) 

self._center_longitude = center_longitude 

self._center_latitude = center_latitude 

 

def transform_non_affine(self, xy): 

x = xy[:, 0:1] 

y = xy[:, 1:2] 

clong = self._center_longitude 

clat = self._center_latitude 

p = np.sqrt(x*x + y*y) 

p = np.where(p == 0.0, 1e-9, p) 

c = 2.0 * np.arcsin(0.5 * p) 

sin_c = np.sin(c) 

cos_c = np.cos(c) 

 

lat = np.arcsin(cos_c*np.sin(clat) + 

((y*sin_c*np.cos(clat)) / p)) 

lon = clong + np.arctan( 

(x*sin_c) / (p*np.cos(clat)*cos_c - y*np.sin(clat)*sin_c)) 

 

return np.concatenate((lon, lat), 1) 

transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ 

 

def inverted(self): 

return LambertAxes.LambertTransform( 

self._center_longitude, 

self._center_latitude, 

self._resolution) 

inverted.__doc__ = Transform.inverted.__doc__ 

 

def __init__(self, *args, center_longitude=0, center_latitude=0, **kwargs): 

self._longitude_cap = np.pi / 2 

self._center_longitude = center_longitude 

self._center_latitude = center_latitude 

GeoAxes.__init__(self, *args, **kwargs) 

self.set_aspect('equal', adjustable='box', anchor='C') 

self.cla() 

 

def cla(self): 

GeoAxes.cla(self) 

self.yaxis.set_major_formatter(NullFormatter()) 

 

def _get_core_transform(self, resolution): 

return self.LambertTransform( 

self._center_longitude, 

self._center_latitude, 

resolution) 

 

def _get_affine_transform(self): 

return Affine2D() \ 

.scale(0.25) \ 

.translate(0.5, 0.5)