1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

# Note: The first part of this file can be modified in place, but the latter 

# part is autogenerated by the boilerplate.py script. 

 

""" 

`matplotlib.pyplot` is a state-based interface to matplotlib. It provides 

a MATLAB-like way of plotting. 

 

pyplot is mainly intended for interactive plots and simple cases of programmatic 

plot generation:: 

 

import numpy as np 

import matplotlib.pyplot as plt 

 

x = np.arange(0, 5, 0.1) 

y = np.sin(x) 

plt.plot(x, y) 

 

The object-oriented API is recommended for more complex plots. 

""" 

 

import importlib 

import inspect 

import logging 

from numbers import Number 

import re 

import sys 

import time 

import warnings 

 

from cycler import cycler 

import matplotlib 

import matplotlib.colorbar 

import matplotlib.image 

from matplotlib import rcsetup, style 

from matplotlib import _pylab_helpers, interactive 

from matplotlib.cbook import ( 

dedent, deprecated, silent_list, warn_deprecated, _string_to_bool) 

from matplotlib import docstring 

from matplotlib.backend_bases import FigureCanvasBase 

from matplotlib.figure import Figure, figaspect 

from matplotlib.gridspec import GridSpec 

from matplotlib import rcParams, rcParamsDefault, get_backend, rcParamsOrig 

from matplotlib import rc_context 

from matplotlib.rcsetup import interactive_bk as _interactive_bk 

from matplotlib.artist import getp, get, Artist 

from matplotlib.artist import setp as _setp 

from matplotlib.axes import Axes, Subplot 

from matplotlib.projections import PolarAxes 

from matplotlib import mlab # for csv2rec, detrend_none, window_hanning 

from matplotlib.scale import get_scale_docs, get_scale_names 

 

from matplotlib import cm 

from matplotlib.cm import get_cmap, register_cmap 

 

import numpy as np 

 

# We may not need the following imports here: 

from matplotlib.colors import Normalize 

from matplotlib.lines import Line2D 

from matplotlib.text import Text, Annotation 

from matplotlib.patches import Polygon, Rectangle, Circle, Arrow 

from matplotlib.widgets import SubplotTool, Button, Slider, Widget 

 

from .ticker import TickHelper, Formatter, FixedFormatter, NullFormatter,\ 

FuncFormatter, FormatStrFormatter, ScalarFormatter,\ 

LogFormatter, LogFormatterExponent, LogFormatterMathtext,\ 

Locator, IndexLocator, FixedLocator, NullLocator,\ 

LinearLocator, LogLocator, AutoLocator, MultipleLocator,\ 

MaxNLocator 

from matplotlib.backends import pylab_setup, _get_running_interactive_framework 

 

_log = logging.getLogger(__name__) 

 

 

## Global ## 

 

 

_IP_REGISTERED = None 

_INSTALL_FIG_OBSERVER = False 

 

 

def install_repl_displayhook(): 

""" 

Install a repl display hook so that any stale figure are automatically 

redrawn when control is returned to the repl. 

 

This works both with IPython and with vanilla python shells. 

""" 

global _IP_REGISTERED 

global _INSTALL_FIG_OBSERVER 

 

class _NotIPython(Exception): 

pass 

 

# see if we have IPython hooks around, if use them 

 

try: 

if 'IPython' in sys.modules: 

from IPython import get_ipython 

ip = get_ipython() 

if ip is None: 

raise _NotIPython() 

 

if _IP_REGISTERED: 

return 

 

def post_execute(): 

if matplotlib.is_interactive(): 

draw_all() 

 

# IPython >= 2 

try: 

ip.events.register('post_execute', post_execute) 

except AttributeError: 

# IPython 1.x 

ip.register_post_execute(post_execute) 

 

_IP_REGISTERED = post_execute 

_INSTALL_FIG_OBSERVER = False 

 

# trigger IPython's eventloop integration, if available 

from IPython.core.pylabtools import backend2gui 

 

ipython_gui_name = backend2gui.get(get_backend()) 

if ipython_gui_name: 

ip.enable_gui(ipython_gui_name) 

else: 

_INSTALL_FIG_OBSERVER = True 

 

# import failed or ipython is not running 

except (ImportError, _NotIPython): 

_INSTALL_FIG_OBSERVER = True 

 

 

def uninstall_repl_displayhook(): 

""" 

Uninstall the matplotlib display hook. 

 

.. warning 

 

Need IPython >= 2 for this to work. For IPython < 2 will raise a 

``NotImplementedError`` 

 

.. warning 

 

If you are using vanilla python and have installed another 

display hook this will reset ``sys.displayhook`` to what ever 

function was there when matplotlib installed it's displayhook, 

possibly discarding your changes. 

""" 

global _IP_REGISTERED 

global _INSTALL_FIG_OBSERVER 

if _IP_REGISTERED: 

from IPython import get_ipython 

ip = get_ipython() 

try: 

ip.events.unregister('post_execute', _IP_REGISTERED) 

except AttributeError: 

raise NotImplementedError("Can not unregister events " 

"in IPython < 2.0") 

_IP_REGISTERED = None 

 

if _INSTALL_FIG_OBSERVER: 

_INSTALL_FIG_OBSERVER = False 

 

 

draw_all = _pylab_helpers.Gcf.draw_all 

 

 

@docstring.copy_dedent(Artist.findobj) 

def findobj(o=None, match=None, include_self=True): 

if o is None: 

o = gcf() 

return o.findobj(match, include_self=include_self) 

 

 

def switch_backend(newbackend): 

""" 

Close all open figures and set the Matplotlib backend. 

 

The argument is case-insensitive. Switching to an interactive backend is 

possible only if no event loop for another interactive backend has started. 

Switching to and from non-interactive backends is always possible. 

 

Parameters 

---------- 

newbackend : str 

The name of the backend to use. 

""" 

close("all") 

 

if newbackend is rcsetup._auto_backend_sentinel: 

for candidate in ["macosx", "qt5agg", "qt4agg", "gtk3agg", "gtk3cairo", 

"tkagg", "wxagg", "agg", "cairo"]: 

try: 

switch_backend(candidate) 

except ImportError: 

continue 

else: 

rcParamsOrig['backend'] = candidate 

return 

 

backend_name = ( 

newbackend[9:] if newbackend.startswith("module://") 

else "matplotlib.backends.backend_{}".format(newbackend.lower())) 

 

backend_mod = importlib.import_module(backend_name) 

Backend = type( 

"Backend", (matplotlib.backends._Backend,), vars(backend_mod)) 

_log.debug("Loaded backend %s version %s.", 

newbackend, Backend.backend_version) 

 

required_framework = Backend.required_interactive_framework 

if required_framework is not None: 

current_framework = \ 

matplotlib.backends._get_running_interactive_framework() 

if (current_framework and required_framework 

and current_framework != required_framework): 

raise ImportError( 

"Cannot load backend {!r} which requires the {!r} interactive " 

"framework, as {!r} is currently running".format( 

newbackend, required_framework, current_framework)) 

 

rcParams['backend'] = rcParamsDefault['backend'] = newbackend 

 

global _backend_mod, new_figure_manager, draw_if_interactive, _show 

_backend_mod = backend_mod 

new_figure_manager = Backend.new_figure_manager 

draw_if_interactive = Backend.draw_if_interactive 

_show = Backend.show 

 

# Need to keep a global reference to the backend for compatibility reasons. 

# See https://github.com/matplotlib/matplotlib/issues/6092 

matplotlib.backends.backend = newbackend 

 

 

def show(*args, **kw): 

""" 

Display a figure. 

When running in ipython with its pylab mode, display all 

figures and return to the ipython prompt. 

 

In non-interactive mode, display all figures and block until 

the figures have been closed; in interactive mode it has no 

effect unless figures were created prior to a change from 

non-interactive to interactive mode (not recommended). In 

that case it displays the figures but does not block. 

 

A single experimental keyword argument, *block*, may be 

set to True or False to override the blocking behavior 

described above. 

""" 

global _show 

return _show(*args, **kw) 

 

 

def isinteractive(): 

"""Return the status of interactive mode.""" 

return matplotlib.is_interactive() 

 

 

def ioff(): 

"""Turn the interactive mode off.""" 

matplotlib.interactive(False) 

uninstall_repl_displayhook() 

 

 

def ion(): 

"""Turn the interactive mode on.""" 

matplotlib.interactive(True) 

install_repl_displayhook() 

 

 

def pause(interval): 

""" 

Pause for *interval* seconds. 

 

If there is an active figure, it will be updated and displayed before the 

pause, and the GUI event loop (if any) will run during the pause. 

 

This can be used for crude animation. For more complex animation, see 

:mod:`matplotlib.animation`. 

 

Notes 

----- 

This function is experimental; its behavior may be changed or extended in a 

future release. 

""" 

manager = _pylab_helpers.Gcf.get_active() 

if manager is not None: 

canvas = manager.canvas 

if canvas.figure.stale: 

canvas.draw_idle() 

show(block=False) 

canvas.start_event_loop(interval) 

else: 

time.sleep(interval) 

 

 

@docstring.copy_dedent(matplotlib.rc) 

def rc(group, **kwargs): 

matplotlib.rc(group, **kwargs) 

 

 

@docstring.copy_dedent(matplotlib.rc_context) 

def rc_context(rc=None, fname=None): 

return matplotlib.rc_context(rc, fname) 

 

 

@docstring.copy_dedent(matplotlib.rcdefaults) 

def rcdefaults(): 

matplotlib.rcdefaults() 

if matplotlib.is_interactive(): 

draw_all() 

 

 

## Current image ## 

 

 

def gci(): 

""" 

Get the current colorable artist. Specifically, returns the 

current :class:`~matplotlib.cm.ScalarMappable` instance (image or 

patch collection), or *None* if no images or patch collections 

have been defined. The commands :func:`~matplotlib.pyplot.imshow` 

and :func:`~matplotlib.pyplot.figimage` create 

:class:`~matplotlib.image.Image` instances, and the commands 

:func:`~matplotlib.pyplot.pcolor` and 

:func:`~matplotlib.pyplot.scatter` create 

:class:`~matplotlib.collections.Collection` instances. The 

current image is an attribute of the current axes, or the nearest 

earlier axes in the current figure that contains an image. 

""" 

return gcf()._gci() 

 

 

## Any Artist ## 

 

 

# (getp is simply imported) 

@docstring.copy(_setp) 

def setp(obj, *args, **kwargs): 

return _setp(obj, *args, **kwargs) 

 

 

def xkcd(scale=1, length=100, randomness=2): 

""" 

Turn on `xkcd <https://xkcd.com/>`_ sketch-style drawing mode. 

This will only have effect on things drawn after this function is 

called. 

 

For best results, the "Humor Sans" font should be installed: it is 

not included with matplotlib. 

 

Parameters 

---------- 

scale : float, optional 

The amplitude of the wiggle perpendicular to the source line. 

length : float, optional 

The length of the wiggle along the line. 

randomness : float, optional 

The scale factor by which the length is shrunken or expanded. 

 

Notes 

----- 

This function works by a number of rcParams, so it will probably 

override others you have set before. 

 

If you want the effects of this function to be temporary, it can 

be used as a context manager, for example:: 

 

with plt.xkcd(): 

# This figure will be in XKCD-style 

fig1 = plt.figure() 

# ... 

 

# This figure will be in regular style 

fig2 = plt.figure() 

""" 

if rcParams['text.usetex']: 

raise RuntimeError( 

"xkcd mode is not compatible with text.usetex = True") 

 

from matplotlib import patheffects 

return rc_context({ 

'font.family': ['xkcd', 'Humor Sans', 'Comic Sans MS', 'StayPuft'], 

'font.size': 14.0, 

'path.sketch': (scale, length, randomness), 

'path.effects': [patheffects.withStroke(linewidth=4, foreground="w")], 

'axes.linewidth': 1.5, 

'lines.linewidth': 2.0, 

'figure.facecolor': 'white', 

'grid.linewidth': 0.0, 

'axes.grid': False, 

'axes.unicode_minus': False, 

'axes.edgecolor': 'black', 

'xtick.major.size': 8, 

'xtick.major.width': 3, 

'ytick.major.size': 8, 

'ytick.major.width': 3, 

}) 

 

 

## Figures ## 

 

def figure(num=None, # autoincrement if None, else integer from 1-N 

figsize=None, # defaults to rc figure.figsize 

dpi=None, # defaults to rc figure.dpi 

facecolor=None, # defaults to rc figure.facecolor 

edgecolor=None, # defaults to rc figure.edgecolor 

frameon=True, 

FigureClass=Figure, 

clear=False, 

**kwargs 

): 

""" 

Create a new figure. 

 

Parameters 

---------- 

 

num : integer or string, optional, default: None 

If not provided, a new figure will be created, and the figure number 

will be incremented. The figure objects holds this number in a `number` 

attribute. 

If num is provided, and a figure with this id already exists, make 

it active, and returns a reference to it. If this figure does not 

exists, create it and returns it. 

If num is a string, the window title will be set to this figure's 

`num`. 

 

figsize : tuple of integers, optional, default: None 

width, height in inches. If not provided, defaults to 

:rc:`figure.figsize` = ``[6.4, 4.8]``. 

 

dpi : integer, optional, default: None 

resolution of the figure. If not provided, defaults to 

:rc:`figure.dpi` = ``100``. 

 

facecolor : 

the background color. If not provided, defaults to 

:rc:`figure.facecolor` = ``'w'``. 

 

edgecolor : 

the border color. If not provided, defaults to 

:rc:`figure.edgecolor` = ``'w'``. 

 

frameon : bool, optional, default: True 

If False, suppress drawing the figure frame. 

 

FigureClass : subclass of `~matplotlib.figure.Figure` 

Optionally use a custom `.Figure` instance. 

 

clear : bool, optional, default: False 

If True and the figure already exists, then it is cleared. 

 

Returns 

------- 

figure : `~matplotlib.figure.Figure` 

The `.Figure` instance returned will also be passed to new_figure_manager 

in the backends, which allows to hook custom `.Figure` classes into the 

pyplot interface. Additional kwargs will be passed to the `.Figure` 

init function. 

 

Notes 

----- 

If you are creating many figures, make sure you explicitly call 

:func:`.pyplot.close` on the figures you are not using, because this will 

enable pyplot to properly clean up the memory. 

 

`~matplotlib.rcParams` defines the default values, which can be modified 

in the matplotlibrc file. 

""" 

 

if figsize is None: 

figsize = rcParams['figure.figsize'] 

if dpi is None: 

dpi = rcParams['figure.dpi'] 

if facecolor is None: 

facecolor = rcParams['figure.facecolor'] 

if edgecolor is None: 

edgecolor = rcParams['figure.edgecolor'] 

 

allnums = get_fignums() 

next_num = max(allnums) + 1 if allnums else 1 

figLabel = '' 

if num is None: 

num = next_num 

elif isinstance(num, str): 

figLabel = num 

allLabels = get_figlabels() 

if figLabel not in allLabels: 

if figLabel == 'all': 

warnings.warn("close('all') closes all existing figures") 

num = next_num 

else: 

inum = allLabels.index(figLabel) 

num = allnums[inum] 

else: 

num = int(num) # crude validation of num argument 

 

figManager = _pylab_helpers.Gcf.get_fig_manager(num) 

if figManager is None: 

max_open_warning = rcParams['figure.max_open_warning'] 

 

if len(allnums) >= max_open_warning >= 1: 

warnings.warn( 

"More than %d figures have been opened. Figures " 

"created through the pyplot interface " 

"(`matplotlib.pyplot.figure`) are retained until " 

"explicitly closed and may consume too much memory. " 

"(To control this warning, see the rcParam " 

"`figure.max_open_warning`)." % 

max_open_warning, RuntimeWarning) 

 

if get_backend().lower() == 'ps': 

dpi = 72 

 

figManager = new_figure_manager(num, figsize=figsize, 

dpi=dpi, 

facecolor=facecolor, 

edgecolor=edgecolor, 

frameon=frameon, 

FigureClass=FigureClass, 

**kwargs) 

 

if figLabel: 

figManager.set_window_title(figLabel) 

figManager.canvas.figure.set_label(figLabel) 

 

# make this figure current on button press event 

def make_active(event): 

_pylab_helpers.Gcf.set_active(figManager) 

 

cid = figManager.canvas.mpl_connect('button_press_event', make_active) 

figManager._cidgcf = cid 

 

_pylab_helpers.Gcf.set_active(figManager) 

fig = figManager.canvas.figure 

fig.number = num 

 

# make sure backends (inline) that we don't ship that expect this 

# to be called in plotting commands to make the figure call show 

# still work. There is probably a better way to do this in the 

# FigureManager base class. 

if matplotlib.is_interactive(): 

draw_if_interactive() 

 

if _INSTALL_FIG_OBSERVER: 

fig.stale_callback = _auto_draw_if_interactive 

 

if clear: 

figManager.canvas.figure.clear() 

 

return figManager.canvas.figure 

 

 

def _auto_draw_if_interactive(fig, val): 

""" 

This is an internal helper function for making sure that auto-redrawing 

works as intended in the plain python repl. 

 

Parameters 

---------- 

fig : Figure 

A figure object which is assumed to be associated with a canvas 

""" 

if val and matplotlib.is_interactive() and not fig.canvas.is_saving(): 

fig.canvas.draw_idle() 

 

 

def gcf(): 

"""Get a reference to the current figure.""" 

figManager = _pylab_helpers.Gcf.get_active() 

if figManager is not None: 

return figManager.canvas.figure 

else: 

return figure() 

 

 

def fignum_exists(num): 

"""Return whether the figure with the given id exists.""" 

return _pylab_helpers.Gcf.has_fignum(num) or num in get_figlabels() 

 

 

def get_fignums(): 

"""Return a list of existing figure numbers.""" 

return sorted(_pylab_helpers.Gcf.figs) 

 

 

def get_figlabels(): 

"""Return a list of existing figure labels.""" 

figManagers = _pylab_helpers.Gcf.get_all_fig_managers() 

figManagers.sort(key=lambda m: m.num) 

return [m.canvas.figure.get_label() for m in figManagers] 

 

 

def get_current_fig_manager(): 

""" 

Return the figure manager of the active figure. 

 

If there is currently no active figure, a new one is created. 

""" 

figManager = _pylab_helpers.Gcf.get_active() 

if figManager is None: 

gcf() # creates an active figure as a side effect 

figManager = _pylab_helpers.Gcf.get_active() 

return figManager 

 

 

@docstring.copy_dedent(FigureCanvasBase.mpl_connect) 

def connect(s, func): 

return get_current_fig_manager().canvas.mpl_connect(s, func) 

 

 

@docstring.copy_dedent(FigureCanvasBase.mpl_disconnect) 

def disconnect(cid): 

return get_current_fig_manager().canvas.mpl_disconnect(cid) 

 

 

def close(fig=None): 

""" 

Close a figure window. 

 

Parameters 

---------- 

fig : None or int or str or `.Figure` 

The figure to close. There are a number of ways to specify this: 

 

- *None*: the current figure 

- `.Figure`: the given `.Figure` instance 

- ``int``: a figure number 

- ``str``: a figure name 

- 'all': all figures 

 

""" 

if fig is None: 

figManager = _pylab_helpers.Gcf.get_active() 

if figManager is None: 

return 

else: 

_pylab_helpers.Gcf.destroy(figManager.num) 

elif fig == 'all': 

_pylab_helpers.Gcf.destroy_all() 

elif isinstance(fig, int): 

_pylab_helpers.Gcf.destroy(fig) 

elif hasattr(fig, 'int'): 

# if we are dealing with a type UUID, we 

# can use its integer representation 

_pylab_helpers.Gcf.destroy(fig.int) 

elif isinstance(fig, str): 

allLabels = get_figlabels() 

if fig in allLabels: 

num = get_fignums()[allLabels.index(fig)] 

_pylab_helpers.Gcf.destroy(num) 

elif isinstance(fig, Figure): 

_pylab_helpers.Gcf.destroy_fig(fig) 

else: 

raise TypeError("close() argument must be a Figure, an int, a string, " 

"or None, not '%s'") 

 

 

def clf(): 

"""Clear the current figure.""" 

gcf().clf() 

 

 

def draw(): 

"""Redraw the current figure. 

 

This is used to update a figure that has been altered, but not 

automatically re-drawn. If interactive mode is on (:func:`.ion()`), this 

should be only rarely needed, but there may be ways to modify the state of 

a figure without marking it as `stale`. Please report these cases as 

bugs. 

 

A more object-oriented alternative, given any 

:class:`~matplotlib.figure.Figure` instance, :attr:`fig`, that 

was created using a :mod:`~matplotlib.pyplot` function, is:: 

 

fig.canvas.draw_idle() 

""" 

get_current_fig_manager().canvas.draw_idle() 

 

 

@docstring.copy_dedent(Figure.savefig) 

def savefig(*args, **kwargs): 

fig = gcf() 

res = fig.savefig(*args, **kwargs) 

fig.canvas.draw_idle() # need this if 'transparent=True' to reset colors 

return res 

 

 

@docstring.copy_dedent(Figure.ginput) 

def ginput(*args, **kwargs): 

""" 

Blocking call to interact with the figure. 

 

This will wait for *n* clicks from the user and return a list of the 

coordinates of each click. 

 

If *timeout* is negative, does not timeout. 

""" 

return gcf().ginput(*args, **kwargs) 

 

 

@docstring.copy_dedent(Figure.waitforbuttonpress) 

def waitforbuttonpress(*args, **kwargs): 

""" 

Blocking call to interact with the figure. 

 

This will wait for *n* key or mouse clicks from the user and 

return a list containing True's for keyboard clicks and False's 

for mouse clicks. 

 

If *timeout* is negative, does not timeout. 

""" 

return gcf().waitforbuttonpress(*args, **kwargs) 

 

 

## Putting things in figures ## 

 

 

@docstring.copy_dedent(Figure.text) 

def figtext(x, y, s, *args, **kwargs): 

return gcf().text(x, y, s, *args, **kwargs) 

 

 

@docstring.copy_dedent(Figure.suptitle) 

def suptitle(t, **kwargs): 

return gcf().suptitle(t, **kwargs) 

 

 

@docstring.copy_dedent(Figure.figimage) 

def figimage(*args, **kwargs): 

return gcf().figimage(*args, **kwargs) 

 

 

def figlegend(*args, **kwargs): 

""" 

Place a legend in the figure. 

 

*labels* 

a sequence of strings 

 

*handles* 

a sequence of :class:`~matplotlib.lines.Line2D` or 

:class:`~matplotlib.patches.Patch` instances 

 

*loc* 

can be a string or an integer specifying the legend 

location 

 

A :class:`matplotlib.legend.Legend` instance is returned. 

 

Examples 

-------- 

 

To make a legend from existing artists on every axes:: 

 

figlegend() 

 

To make a legend for a list of lines and labels:: 

 

figlegend( (line1, line2, line3), 

('label1', 'label2', 'label3'), 

'upper right' ) 

 

.. seealso:: 

 

:func:`~matplotlib.pyplot.legend` 

 

""" 

return gcf().legend(*args, **kwargs) 

 

 

## Axes ## 

 

@docstring.dedent_interpd 

def axes(arg=None, **kwargs): 

""" 

Add an axes to the current figure and make it the current axes. 

 

Call signatures:: 

 

plt.axes() 

plt.axes(rect, projection=None, polar=False, **kwargs) 

plt.axes(ax) 

 

Parameters 

---------- 

arg : { None, 4-tuple, Axes } 

The exact behavior of this function depends on the type: 

 

- *None*: A new full window axes is added using 

``subplot(111, **kwargs)`` 

- 4-tuple of floats *rect* = ``[left, bottom, width, height]``. 

A new axes is added with dimensions *rect* in normalized 

(0, 1) units using `~.Figure.add_axes` on the current figure. 

- `~.axes.Axes`: This is equivalent to `.pyplot.sca`. 

It sets the current axes to *arg*. Note: This implicitly 

changes the current figure to the parent of *arg*. 

 

.. note:: The use of an `.axes.Axes` as an argument is deprecated 

and will be removed in v3.0. Please use `.pyplot.sca` 

instead. 

 

projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', \ 

'polar', 'rectilinear', str}, optional 

The projection type of the `~.axes.Axes`. *str* is the name of 

a costum projection, see `~matplotlib.projections`. The default 

None results in a 'rectilinear' projection. 

 

polar : boolean, optional 

If True, equivalent to projection='polar'. 

 

sharex, sharey : `~.axes.Axes`, optional 

Share the x or y `~matplotlib.axis` with sharex and/or sharey. 

The axis will have the same limits, ticks, and scale as the axis 

of the shared axes. 

 

 

label : str 

A label for the returned axes. 

 

Other Parameters 

---------------- 

**kwargs 

This method also takes the keyword arguments for 

the returned axes class. The keyword arguments for the 

rectilinear axes class `~.axes.Axes` can be found in 

the following table but there might also be other keyword 

arguments if another projection is used, see the actual axes 

class. 

%(Axes)s 

 

Returns 

------- 

axes : `~.axes.Axes` (or a subclass of `~.axes.Axes`) 

The returned axes class depends on the projection used. It is 

`~.axes.Axes` if rectilinear projection are used and 

`.projections.polar.PolarAxes` if polar projection 

are used. 

 

Notes 

----- 

If the figure already has a axes with key (*args*, 

*kwargs*) then it will simply make that axes current and 

return it. This behavior is deprecated. Meanwhile, if you do 

not want this behavior (i.e., you want to force the creation of a 

new axes), you must use a unique set of args and kwargs. The axes 

*label* attribute has been exposed for this purpose: if you want 

two axes that are otherwise identical to be added to the figure, 

make sure you give them unique labels. 

 

See Also 

-------- 

.Figure.add_axes 

.pyplot.subplot 

.Figure.add_subplot 

.Figure.subplots 

.pyplot.subplots 

 

Examples 

-------- 

:: 

 

#Creating a new full window axes 

plt.axes() 

 

#Creating a new axes with specified dimensions and some kwargs 

plt.axes((left, bottom, width, height), facecolor='w') 

""" 

 

if arg is None: 

return subplot(111, **kwargs) 

 

if isinstance(arg, Axes): 

warn_deprecated("2.2", 

message="Using pyplot.axes(ax) with ax an Axes " 

"argument is deprecated. Please use " 

"pyplot.sca(ax) instead.") 

ax = arg 

sca(ax) 

return ax 

else: 

rect = arg 

return gcf().add_axes(rect, **kwargs) 

 

 

def delaxes(ax=None): 

""" 

Remove the `Axes` *ax* (defaulting to the current axes) from its figure. 

 

A KeyError is raised if the axes doesn't exist. 

""" 

if ax is None: 

ax = gca() 

ax.figure.delaxes(ax) 

 

 

def sca(ax): 

""" 

Set the current Axes instance to *ax*. 

 

The current Figure is updated to the parent of *ax*. 

""" 

managers = _pylab_helpers.Gcf.get_all_fig_managers() 

for m in managers: 

if ax in m.canvas.figure.axes: 

_pylab_helpers.Gcf.set_active(m) 

m.canvas.figure.sca(ax) 

return 

raise ValueError("Axes instance argument was not found in a figure") 

 

 

def gca(**kwargs): 

""" 

Get the current :class:`~matplotlib.axes.Axes` instance on the 

current figure matching the given keyword args, or create one. 

 

Examples 

-------- 

To get the current polar axes on the current figure:: 

 

plt.gca(projection='polar') 

 

If the current axes doesn't exist, or isn't a polar one, the appropriate 

axes will be created and then returned. 

 

See Also 

-------- 

matplotlib.figure.Figure.gca : The figure's gca method. 

""" 

return gcf().gca(**kwargs) 

 

 

## More ways of creating axes ## 

 

@docstring.dedent_interpd 

def subplot(*args, **kwargs): 

""" 

Add a subplot to the current figure. 

 

Wrapper of `.Figure.add_subplot` with a difference in behavior 

explained in the notes section. 

 

Call signatures:: 

 

subplot(nrows, ncols, index, **kwargs) 

subplot(pos, **kwargs) 

subplot(ax) 

 

Parameters 

---------- 

*args 

Either a 3-digit integer or three separate integers 

describing the position of the subplot. If the three 

integers are *nrows*, *ncols*, and *index* in order, the 

subplot will take the *index* position on a grid with *nrows* 

rows and *ncols* columns. *index* starts at 1 in the upper left 

corner and increases to the right. 

 

*pos* is a three digit integer, where the first digit is the 

number of rows, the second the number of columns, and the third 

the index of the subplot. i.e. fig.add_subplot(235) is the same as 

fig.add_subplot(2, 3, 5). Note that all integers must be less than 

10 for this form to work. 

 

projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', \ 

'polar', 'rectilinear', str}, optional 

The projection type of the subplot (`~.axes.Axes`). *str* is the name 

of a costum projection, see `~matplotlib.projections`. The default 

None results in a 'rectilinear' projection. 

 

polar : boolean, optional 

If True, equivalent to projection='polar'. 

 

sharex, sharey : `~.axes.Axes`, optional 

Share the x or y `~matplotlib.axis` with sharex and/or sharey. The 

axis will have the same limits, ticks, and scale as the axis of the 

shared axes. 

 

label : str 

A label for the returned axes. 

 

Other Parameters 

---------------- 

**kwargs 

This method also takes the keyword arguments for 

the returned axes base class. The keyword arguments for the 

rectilinear base class `~.axes.Axes` can be found in 

the following table but there might also be other keyword 

arguments if another projection is used. 

%(Axes)s 

 

Returns 

------- 

axes : an `.axes.SubplotBase` subclass of `~.axes.Axes` (or a subclass \ 

of `~.axes.Axes`) 

 

The axes of the subplot. The returned axes base class depends on 

the projection used. It is `~.axes.Axes` if rectilinear projection 

are used and `.projections.polar.PolarAxes` if polar projection 

are used. The returned axes is then a subplot subclass of the 

base class. 

 

Notes 

----- 

Creating a subplot will delete any pre-existing subplot that overlaps 

with it beyond sharing a boundary:: 

 

import matplotlib.pyplot as plt 

# plot a line, implicitly creating a subplot(111) 

plt.plot([1,2,3]) 

# now create a subplot which represents the top plot of a grid 

# with 2 rows and 1 column. Since this subplot will overlap the 

# first, the plot (and its axes) previously created, will be removed 

plt.subplot(211) 

 

If you do not want this behavior, use the `.Figure.add_subplot` method 

or the `.pyplot.axes` function instead. 

 

If the figure already has a subplot with key (*args*, 

*kwargs*) then it will simply make that subplot current and 

return it. This behavior is deprecated. Meanwhile, if you do 

not want this behavior (i.e., you want to force the creation of a 

new suplot), you must use a unique set of args and kwargs. The axes 

*label* attribute has been exposed for this purpose: if you want 

two subplots that are otherwise identical to be added to the figure, 

make sure you give them unique labels. 

 

In rare circumstances, `.add_subplot` may be called with a single 

argument, a subplot axes instance already created in the 

present figure but not in the figure's list of axes. 

 

See Also 

-------- 

.Figure.add_subplot 

.pyplot.subplots 

.pyplot.axes 

.Figure.subplots 

 

Examples 

-------- 

:: 

 

plt.subplot(221) 

 

# equivalent but more general 

ax1=plt.subplot(2, 2, 1) 

 

# add a subplot with no frame 

ax2=plt.subplot(222, frameon=False) 

 

# add a polar subplot 

plt.subplot(223, projection='polar') 

 

# add a red subplot that shares the x-axis with ax1 

plt.subplot(224, sharex=ax1, facecolor='red') 

 

#delete ax2 from the figure 

plt.delaxes(ax2) 

 

#add ax2 to the figure again 

plt.subplot(ax2) 

""" 

 

# if subplot called without arguments, create subplot(1,1,1) 

if len(args) == 0: 

args = (1, 1, 1) 

 

# This check was added because it is very easy to type 

# subplot(1, 2, False) when subplots(1, 2, False) was intended 

# (sharex=False, that is). In most cases, no error will 

# ever occur, but mysterious behavior can result because what was 

# intended to be the sharex argument is instead treated as a 

# subplot index for subplot() 

if len(args) >= 3 and isinstance(args[2], bool): 

warnings.warn("The subplot index argument to subplot() appears " 

"to be a boolean. Did you intend to use subplots()?") 

 

fig = gcf() 

a = fig.add_subplot(*args, **kwargs) 

bbox = a.bbox 

byebye = [] 

for other in fig.axes: 

if other == a: 

continue 

if bbox.fully_overlaps(other.bbox): 

byebye.append(other) 

for ax in byebye: 

delaxes(ax) 

 

return a 

 

 

def subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, 

subplot_kw=None, gridspec_kw=None, **fig_kw): 

""" 

Create a figure and a set of subplots. 

 

This utility wrapper makes it convenient to create common layouts of 

subplots, including the enclosing figure object, in a single call. 

 

Parameters 

---------- 

nrows, ncols : int, optional, default: 1 

Number of rows/columns of the subplot grid. 

 

sharex, sharey : bool or {'none', 'all', 'row', 'col'}, default: False 

Controls sharing of properties among x (`sharex`) or y (`sharey`) 

axes: 

 

- True or 'all': x- or y-axis will be shared among all 

subplots. 

- False or 'none': each subplot x- or y-axis will be 

independent. 

- 'row': each subplot row will share an x- or y-axis. 

- 'col': each subplot column will share an x- or y-axis. 

 

When subplots have a shared x-axis along a column, only the x tick 

labels of the bottom subplot are created. Similarly, when subplots 

have a shared y-axis along a row, only the y tick labels of the first 

column subplot are created. To later turn other subplots' ticklabels 

on, use `~matplotlib.axes.Axes.tick_params`. 

 

squeeze : bool, optional, default: True 

- If True, extra dimensions are squeezed out from the returned 

array of `~matplotlib.axes.Axes`: 

 

- if only one subplot is constructed (nrows=ncols=1), the 

resulting single Axes object is returned as a scalar. 

- for Nx1 or 1xM subplots, the returned object is a 1D numpy 

object array of Axes objects. 

- for NxM, subplots with N>1 and M>1 are returned as a 2D array. 

 

- If False, no squeezing at all is done: the returned Axes object is 

always a 2D array containing Axes instances, even if it ends up 

being 1x1. 

 

num : integer or string, optional, default: None 

A `.pyplot.figure` keyword that sets the figure number or label. 

 

subplot_kw : dict, optional 

Dict with keywords passed to the 

`~matplotlib.figure.Figure.add_subplot` call used to create each 

subplot. 

 

gridspec_kw : dict, optional 

Dict with keywords passed to the `~matplotlib.gridspec.GridSpec` 

constructor used to create the grid the subplots are placed on. 

 

**fig_kw : 

All additional keyword arguments are passed to the 

`.pyplot.figure` call. 

 

Returns 

------- 

fig : `~.figure.Figure` 

 

ax : `.axes.Axes` object or array of Axes objects. 

*ax* can be either a single `~matplotlib.axes.Axes` object or an 

array of Axes objects if more than one subplot was created. The 

dimensions of the resulting array can be controlled with the squeeze 

keyword, see above. 

 

Examples 

-------- 

:: 

 

#First create some toy data: 

x = np.linspace(0, 2*np.pi, 400) 

y = np.sin(x**2) 

 

#Creates just a figure and only one subplot 

fig, ax = plt.subplots() 

ax.plot(x, y) 

ax.set_title('Simple plot') 

 

#Creates two subplots and unpacks the output array immediately 

f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) 

ax1.plot(x, y) 

ax1.set_title('Sharing Y axis') 

ax2.scatter(x, y) 

 

#Creates four polar axes, and accesses them through the returned array 

fig, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True)) 

axes[0, 0].plot(x, y) 

axes[1, 1].scatter(x, y) 

 

#Share a X axis with each column of subplots 

plt.subplots(2, 2, sharex='col') 

 

#Share a Y axis with each row of subplots 

plt.subplots(2, 2, sharey='row') 

 

#Share both X and Y axes with all subplots 

plt.subplots(2, 2, sharex='all', sharey='all') 

 

#Note that this is the same as 

plt.subplots(2, 2, sharex=True, sharey=True) 

 

#Creates figure number 10 with a single subplot 

#and clears it if it already exists. 

fig, ax=plt.subplots(num=10, clear=True) 

 

See Also 

-------- 

.pyplot.figure 

.pyplot.subplot 

.pyplot.axes 

.Figure.subplots 

.Figure.add_subplot 

 

""" 

fig = figure(**fig_kw) 

axs = fig.subplots(nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey, 

squeeze=squeeze, subplot_kw=subplot_kw, 

gridspec_kw=gridspec_kw) 

return fig, axs 

 

 

def subplot2grid(shape, loc, rowspan=1, colspan=1, fig=None, **kwargs): 

""" 

Create an axis at specific location inside a regular grid. 

 

Parameters 

---------- 

shape : sequence of 2 ints 

Shape of grid in which to place axis. 

First entry is number of rows, second entry is number of columns. 

 

loc : sequence of 2 ints 

Location to place axis within grid. 

First entry is row number, second entry is column number. 

 

rowspan : int 

Number of rows for the axis to span to the right. 

 

colspan : int 

Number of columns for the axis to span downwards. 

 

fig : `Figure`, optional 

Figure to place axis in. Defaults to current figure. 

 

**kwargs 

Additional keyword arguments are handed to `add_subplot`. 

 

 

Notes 

----- 

The following call :: 

 

subplot2grid(shape, loc, rowspan=1, colspan=1) 

 

is identical to :: 

 

gridspec=GridSpec(shape[0], shape[1]) 

subplotspec=gridspec.new_subplotspec(loc, rowspan, colspan) 

subplot(subplotspec) 

""" 

 

if fig is None: 

fig = gcf() 

 

s1, s2 = shape 

subplotspec = GridSpec(s1, s2).new_subplotspec(loc, 

rowspan=rowspan, 

colspan=colspan) 

a = fig.add_subplot(subplotspec, **kwargs) 

bbox = a.bbox 

byebye = [] 

for other in fig.axes: 

if other == a: 

continue 

if bbox.fully_overlaps(other.bbox): 

byebye.append(other) 

for ax in byebye: 

delaxes(ax) 

 

return a 

 

 

def twinx(ax=None): 

""" 

Make a second axes that shares the *x*-axis. The new axes will 

overlay *ax* (or the current axes if *ax* is *None*). The ticks 

for *ax2* will be placed on the right, and the *ax2* instance is 

returned. 

 

.. seealso:: 

 

:doc:`/gallery/subplots_axes_and_figures/two_scales` 

 

""" 

if ax is None: 

ax = gca() 

ax1 = ax.twinx() 

return ax1 

 

 

def twiny(ax=None): 

""" 

Make a second axes that shares the *y*-axis. The new axis will 

overlay *ax* (or the current axes if *ax* is *None*). The ticks 

for *ax2* will be placed on the top, and the *ax2* instance is 

returned. 

""" 

if ax is None: 

ax = gca() 

ax1 = ax.twiny() 

return ax1 

 

 

def subplots_adjust(left=None, bottom=None, right=None, top=None, 

wspace=None, hspace=None): 

""" 

Tune the subplot layout. 

 

The parameter meanings (and suggested defaults) are:: 

 

left = 0.125 # the left side of the subplots of the figure 

right = 0.9 # the right side of the subplots of the figure 

bottom = 0.1 # the bottom of the subplots of the figure 

top = 0.9 # the top of the subplots of the figure 

wspace = 0.2 # the amount of width reserved for space between subplots, 

# expressed as a fraction of the average axis width 

hspace = 0.2 # the amount of height reserved for space between subplots, 

# expressed as a fraction of the average axis height 

 

The actual defaults are controlled by the rc file 

""" 

fig = gcf() 

fig.subplots_adjust(left, bottom, right, top, wspace, hspace) 

 

 

def subplot_tool(targetfig=None): 

""" 

Launch a subplot tool window for a figure. 

 

A :class:`matplotlib.widgets.SubplotTool` instance is returned. 

""" 

tbar = rcParams['toolbar'] # turn off the navigation toolbar for the toolfig 

rcParams['toolbar'] = 'None' 

if targetfig is None: 

manager = get_current_fig_manager() 

targetfig = manager.canvas.figure 

else: 

# find the manager for this figure 

for manager in _pylab_helpers.Gcf._activeQue: 

if manager.canvas.figure == targetfig: 

break 

else: 

raise RuntimeError('Could not find manager for targetfig') 

 

toolfig = figure(figsize=(6,3)) 

toolfig.subplots_adjust(top=0.9) 

ret = SubplotTool(targetfig, toolfig) 

rcParams['toolbar'] = tbar 

_pylab_helpers.Gcf.set_active(manager) # restore the current figure 

return ret 

 

 

def tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None): 

""" 

Automatically adjust subplot parameters to give specified padding. 

 

Parameters 

---------- 

pad : float 

Padding between the figure edge and the edges of subplots, 

as a fraction of the font size. 

h_pad, w_pad : float, optional 

Padding (height/width) between edges of adjacent subplots, 

as a fraction of the font size. Defaults to *pad*. 

rect : tuple (left, bottom, right, top), optional 

A rectangle (left, bottom, right, top) in the normalized 

figure coordinate that the whole subplots area (including 

labels) will fit into. Default is (0, 0, 1, 1). 

""" 

gcf().tight_layout(pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect) 

 

 

def box(on=None): 

""" 

Turn the axes box on or off on the current axes. 

 

Parameters 

---------- 

on : bool or None 

The new `~matplotlib.axes.Axes` box state. If ``None``, toggle 

the state. 

 

See Also 

-------- 

:meth:`matplotlib.axes.Axes.set_frame_on` 

:meth:`matplotlib.axes.Axes.get_frame_on` 

""" 

ax = gca() 

if on is None: 

on = not ax.get_frame_on() 

on = _string_to_bool(on) 

ax.set_frame_on(on) 

 

## Axis ## 

 

 

def xlim(*args, **kwargs): 

""" 

Get or set the x limits of the current axes. 

 

Call signatures:: 

 

left, right = xlim() # return the current xlim 

xlim((left, right)) # set the xlim to left, right 

xlim(left, right) # set the xlim to left, right 

 

If you do not specify args, you can pass *left* or *right* as kwargs, 

i.e.:: 

 

xlim(right=3) # adjust the right leaving left unchanged 

xlim(left=1) # adjust the left leaving right unchanged 

 

Setting limits turns autoscaling off for the x-axis. 

 

Returns 

------- 

left, right 

A tuple of the new x-axis limits. 

 

Notes 

----- 

Calling this function with no arguments (e.g. ``xlim()``) is the pyplot 

equivalent of calling `~.Axes.get_xlim` on the current axes. 

Calling this function with arguments is the pyplot equivalent of calling 

`~.Axes.set_xlim` on the current axes. All arguments are passed though. 

""" 

ax = gca() 

if not args and not kwargs: 

return ax.get_xlim() 

ret = ax.set_xlim(*args, **kwargs) 

return ret 

 

 

def ylim(*args, **kwargs): 

""" 

Get or set the y-limits of the current axes. 

 

Call signatures:: 

 

bottom, top = ylim() # return the current ylim 

ylim((bottom, top)) # set the ylim to bottom, top 

ylim(bottom, top) # set the ylim to bottom, top 

 

If you do not specify args, you can alternatively pass *bottom* or 

*top* as kwargs, i.e.:: 

 

ylim(top=3) # adjust the top leaving bottom unchanged 

ylim(bottom=1) # adjust the bottom leaving top unchanged 

 

Setting limits turns autoscaling off for the y-axis. 

 

Returns 

------- 

bottom, top 

A tuple of the new y-axis limits. 

 

Notes 

----- 

Calling this function with no arguments (e.g. ``ylim()``) is the pyplot 

equivalent of calling `~.Axes.get_ylim` on the current axes. 

Calling this function with arguments is the pyplot equivalent of calling 

`~.Axes.set_ylim` on the current axes. All arguments are passed though. 

""" 

ax = gca() 

if not args and not kwargs: 

return ax.get_ylim() 

ret = ax.set_ylim(*args, **kwargs) 

return ret 

 

 

def xticks(ticks=None, labels=None, **kwargs): 

""" 

Get or set the current tick locations and labels of the x-axis. 

 

Call signatures:: 

 

locs, labels = xticks() # Get locations and labels 

 

xticks(ticks, [labels], **kwargs) # Set locations and labels 

 

Parameters 

---------- 

ticks : array_like 

A list of positions at which ticks should be placed. You can pass an 

empty list to disable xticks. 

 

labels : array_like, optional 

A list of explicit labels to place at the given *locs*. 

 

**kwargs 

:class:`.Text` properties can be used to control the appearance of 

the labels. 

 

Returns 

------- 

locs 

An array of label locations. 

labels 

A list of `.Text` objects. 

 

Notes 

----- 

Calling this function with no arguments (e.g. ``xticks()``) is the pyplot 

equivalent of calling `~.Axes.get_xticks` and `~.Axes.get_xticklabels` on 

the current axes. 

Calling this function with arguments is the pyplot equivalent of calling 

`~.Axes.set_xticks` and `~.Axes.set_xticklabels` on the current axes. 

 

Examples 

-------- 

Get the current locations and labels: 

 

>>> locs, labels = xticks() 

 

Set label locations: 

 

>>> xticks(np.arange(0, 1, step=0.2)) 

 

Set text labels: 

 

>>> xticks(np.arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue')) 

 

Set text labels and properties: 

 

>>> xticks(np.arange(12), calendar.month_name[1:13], rotation=20) 

 

Disable xticks: 

 

>>> xticks([]) 

""" 

ax = gca() 

 

if ticks is None and labels is None: 

locs = ax.get_xticks() 

labels = ax.get_xticklabels() 

elif labels is None: 

locs = ax.set_xticks(ticks) 

labels = ax.get_xticklabels() 

else: 

locs = ax.set_xticks(ticks) 

labels = ax.set_xticklabels(labels, **kwargs) 

for l in labels: 

l.update(kwargs) 

 

return locs, silent_list('Text xticklabel', labels) 

 

 

def yticks(ticks=None, labels=None, **kwargs): 

""" 

Get or set the current tick locations and labels of the y-axis. 

 

Call signatures:: 

 

locs, labels = yticks() # Get locations and labels 

 

yticks(ticks, [labels], **kwargs) # Set locations and labels 

 

Parameters 

---------- 

ticks : array_like 

A list of positions at which ticks should be placed. You can pass an 

empty list to disable yticks. 

 

labels : array_like, optional 

A list of explicit labels to place at the given *locs*. 

 

**kwargs 

:class:`.Text` properties can be used to control the appearance of 

the labels. 

 

Returns 

------- 

locs 

An array of label locations. 

labels 

A list of `.Text` objects. 

 

Notes 

----- 

Calling this function with no arguments (e.g. ``yticks()``) is the pyplot 

equivalent of calling `~.Axes.get_yticks` and `~.Axes.get_yticklabels` on 

the current axes. 

Calling this function with arguments is the pyplot equivalent of calling 

`~.Axes.set_yticks` and `~.Axes.set_yticklabels` on the current axes. 

 

Examples 

-------- 

Get the current locations and labels: 

 

>>> locs, labels = yticks() 

 

Set label locations: 

 

>>> yticks(np.arange(0, 1, step=0.2)) 

 

Set text labels: 

 

>>> yticks(np.arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue')) 

 

Set text labels and properties: 

 

>>> yticks(np.arange(12), calendar.month_name[1:13], rotation=45) 

 

Disable yticks: 

 

>>> yticks([]) 

""" 

ax = gca() 

 

if ticks is None and labels is None: 

locs = ax.get_yticks() 

labels = ax.get_yticklabels() 

elif labels is None: 

locs = ax.set_yticks(ticks) 

labels = ax.get_yticklabels() 

else: 

locs = ax.set_yticks(ticks) 

labels = ax.set_yticklabels(labels, **kwargs) 

for l in labels: 

l.update(kwargs) 

 

return locs, silent_list('Text yticklabel', labels) 

 

 

def rgrids(*args, **kwargs): 

""" 

Get or set the radial gridlines on the current polar plot. 

 

Call signatures:: 

 

lines, labels = rgrids() 

lines, labels = rgrids(radii, labels=None, angle=22.5, fmt=None, **kwargs) 

 

When called with no arguments, `.rgrids` simply returns the tuple 

(*lines*, *labels*). When called with arguments, the labels will 

appear at the specified radial distances and angle. 

 

Parameters 

---------- 

radii : tuple with floats 

The radii for the radial gridlines 

 

labels : tuple with strings or None 

The labels to use at each radial gridline. The 

`matplotlib.ticker.ScalarFormatter` will be used if None. 

 

angle : float 

The angular position of the radius labels in degrees. 

 

fmt : str or None 

Format string used in `matplotlib.ticker.FormatStrFormatter`. 

For example '%f'. 

 

Returns 

------- 

lines, labels : list of `.lines.Line2D`, list of `.text.Text` 

*lines* are the radial gridlines and *labels* are the tick labels. 

 

Other Parameters 

---------------- 

**kwargs 

*kwargs* are optional `~.Text` properties for the labels. 

 

Examples 

-------- 

:: 

 

# set the locations of the radial gridlines 

lines, labels = rgrids( (0.25, 0.5, 1.0) ) 

 

# set the locations and labels of the radial gridlines 

lines, labels = rgrids( (0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry' )) 

 

See Also 

-------- 

.pyplot.thetagrids 

.projections.polar.PolarAxes.set_rgrids 

.Axis.get_gridlines 

.Axis.get_ticklabels 

 

 

""" 

ax = gca() 

if not isinstance(ax, PolarAxes): 

raise RuntimeError('rgrids only defined for polar axes') 

if len(args)==0: 

lines = ax.yaxis.get_gridlines() 

labels = ax.yaxis.get_ticklabels() 

else: 

lines, labels = ax.set_rgrids(*args, **kwargs) 

 

return ( silent_list('Line2D rgridline', lines), 

silent_list('Text rgridlabel', labels) ) 

 

 

def thetagrids(*args, **kwargs): 

""" 

Get or set the theta gridlines on the current polar plot. 

 

Call signatures:: 

 

lines, labels = thetagrids() 

lines, labels = thetagrids(angles, labels=None, fmt=None, **kwargs) 

 

When called with no arguments, `.thetagrids` simply returns the tuple 

(*lines*, *labels*). When called with arguments, the labels will 

appear at the specified angles. 

 

Parameters 

---------- 

angles : tuple with floats, degrees 

The angles of the theta gridlines. 

 

labels : tuple with strings or None 

The labels to use at each radial gridline. The 

`.projections.polar.ThetaFormatter` will be used if None. 

 

fmt : str or None 

Format string used in `matplotlib.ticker.FormatStrFormatter`. 

For example '%f'. Note that the angle in radians will be used. 

 

Returns 

------- 

lines, labels : list of `.lines.Line2D`, list of `.text.Text` 

*lines* are the theta gridlines and *labels* are the tick labels. 

 

Other Parameters 

---------------- 

**kwargs 

*kwargs* are optional `~.Text` properties for the labels. 

 

Examples 

-------- 

:: 

 

# set the locations of the angular gridlines 

lines, labels = thetagrids( range(45,360,90) ) 

 

# set the locations and labels of the angular gridlines 

lines, labels = thetagrids( range(45,360,90), ('NE', 'NW', 'SW','SE') ) 

 

See Also 

-------- 

.pyplot.rgrids 

.projections.polar.PolarAxes.set_thetagrids 

.Axis.get_gridlines 

.Axis.get_ticklabels 

""" 

ax = gca() 

if not isinstance(ax, PolarAxes): 

raise RuntimeError('thetagrids only defined for polar axes') 

if len(args)==0: 

lines = ax.xaxis.get_ticklines() 

labels = ax.xaxis.get_ticklabels() 

else: 

lines, labels = ax.set_thetagrids(*args, **kwargs) 

 

return (silent_list('Line2D thetagridline', lines), 

silent_list('Text thetagridlabel', labels) 

) 

 

 

## Plotting Info ## 

 

 

def plotting(): 

pass 

 

 

def get_plot_commands(): 

""" 

Get a sorted list of all of the plotting commands. 

""" 

# This works by searching for all functions in this module and removing 

# a few hard-coded exclusions, as well as all of the colormap-setting 

# functions, and anything marked as private with a preceding underscore. 

exclude = {'colormaps', 'colors', 'connect', 'disconnect', 

'get_plot_commands', 'get_current_fig_manager', 'ginput', 

'plotting', 'waitforbuttonpress'} 

exclude |= set(colormaps()) 

this_module = inspect.getmodule(get_plot_commands) 

return sorted( 

name for name, obj in globals().items() 

if not name.startswith('_') and name not in exclude 

and inspect.isfunction(obj) 

and inspect.getmodule(obj) is this_module) 

 

 

def colormaps(): 

""" 

Matplotlib provides a number of colormaps, and others can be added using 

:func:`~matplotlib.cm.register_cmap`. This function documents the built-in 

colormaps, and will also return a list of all registered colormaps if called. 

 

You can set the colormap for an image, pcolor, scatter, etc, 

using a keyword argument:: 

 

imshow(X, cmap=cm.hot) 

 

or using the :func:`set_cmap` function:: 

 

imshow(X) 

pyplot.set_cmap('hot') 

pyplot.set_cmap('jet') 

 

In interactive mode, :func:`set_cmap` will update the colormap post-hoc, 

allowing you to see which one works best for your data. 

 

All built-in colormaps can be reversed by appending ``_r``: For instance, 

``gray_r`` is the reverse of ``gray``. 

 

There are several common color schemes used in visualization: 

 

Sequential schemes 

for unipolar data that progresses from low to high 

Diverging schemes 

for bipolar data that emphasizes positive or negative deviations from a 

central value 

Cyclic schemes 

for plotting values that wrap around at the endpoints, such as phase 

angle, wind direction, or time of day 

Qualitative schemes 

for nominal data that has no inherent ordering, where color is used 

only to distinguish categories 

 

Matplotlib ships with 4 perceptually uniform color maps which are 

the recommended color maps for sequential data: 

 

========= =================================================== 

Colormap Description 

========= =================================================== 

inferno perceptually uniform shades of black-red-yellow 

magma perceptually uniform shades of black-red-white 

plasma perceptually uniform shades of blue-red-yellow 

viridis perceptually uniform shades of blue-green-yellow 

========= =================================================== 

 

The following colormaps are based on the `ColorBrewer 

<http://colorbrewer2.org>`_ color specifications and designs developed by 

Cynthia Brewer: 

 

ColorBrewer Diverging (luminance is highest at the midpoint, and 

decreases towards differently-colored endpoints): 

 

======== =================================== 

Colormap Description 

======== =================================== 

BrBG brown, white, blue-green 

PiYG pink, white, yellow-green 

PRGn purple, white, green 

PuOr orange, white, purple 

RdBu red, white, blue 

RdGy red, white, gray 

RdYlBu red, yellow, blue 

RdYlGn red, yellow, green 

Spectral red, orange, yellow, green, blue 

======== =================================== 

 

ColorBrewer Sequential (luminance decreases monotonically): 

 

======== ==================================== 

Colormap Description 

======== ==================================== 

Blues white to dark blue 

BuGn white, light blue, dark green 

BuPu white, light blue, dark purple 

GnBu white, light green, dark blue 

Greens white to dark green 

Greys white to black (not linear) 

Oranges white, orange, dark brown 

OrRd white, orange, dark red 

PuBu white, light purple, dark blue 

PuBuGn white, light purple, dark green 

PuRd white, light purple, dark red 

Purples white to dark purple 

RdPu white, pink, dark purple 

Reds white to dark red 

YlGn light yellow, dark green 

YlGnBu light yellow, light green, dark blue 

YlOrBr light yellow, orange, dark brown 

YlOrRd light yellow, orange, dark red 

======== ==================================== 

 

ColorBrewer Qualitative: 

 

(For plotting nominal data, :class:`ListedColormap` is used, 

not :class:`LinearSegmentedColormap`. Different sets of colors are 

recommended for different numbers of categories.) 

 

* Accent 

* Dark2 

* Paired 

* Pastel1 

* Pastel2 

* Set1 

* Set2 

* Set3 

 

A set of colormaps derived from those of the same name provided 

with Matlab are also included: 

 

========= ======================================================= 

Colormap Description 

========= ======================================================= 

autumn sequential linearly-increasing shades of red-orange-yellow 

bone sequential increasing black-white color map with 

a tinge of blue, to emulate X-ray film 

cool linearly-decreasing shades of cyan-magenta 

copper sequential increasing shades of black-copper 

flag repetitive red-white-blue-black pattern (not cyclic at 

endpoints) 

gray sequential linearly-increasing black-to-white 

grayscale 

hot sequential black-red-yellow-white, to emulate blackbody 

radiation from an object at increasing temperatures 

jet a spectral map with dark endpoints, blue-cyan-yellow-red; 

based on a fluid-jet simulation by NCSA [#]_ 

pink sequential increasing pastel black-pink-white, meant 

for sepia tone colorization of photographs 

prism repetitive red-yellow-green-blue-purple-...-green pattern 

(not cyclic at endpoints) 

spring linearly-increasing shades of magenta-yellow 

summer sequential linearly-increasing shades of green-yellow 

winter linearly-increasing shades of blue-green 

========= ======================================================= 

 

A set of palettes from the `Yorick scientific visualisation 

package <https://dhmunro.github.io/yorick-doc/>`_, an evolution of 

the GIST package, both by David H. Munro are included: 

 

============ ======================================================= 

Colormap Description 

============ ======================================================= 

gist_earth mapmaker's colors from dark blue deep ocean to green 

lowlands to brown highlands to white mountains 

gist_heat sequential increasing black-red-orange-white, to emulate 

blackbody radiation from an iron bar as it grows hotter 

gist_ncar pseudo-spectral black-blue-green-yellow-red-purple-white 

colormap from National Center for Atmospheric 

Research [#]_ 

gist_rainbow runs through the colors in spectral order from red to 

violet at full saturation (like *hsv* but not cyclic) 

gist_stern "Stern special" color table from Interactive Data 

Language software 

============ ======================================================= 

 

A set of cyclic color maps: 

 

================ ========================================================= 

Colormap Description 

================ ========================================================= 

hsv red-yellow-green-cyan-blue-magenta-red, formed by changing 

the hue component in the HSV color space 

twilight perceptually uniform shades of white-blue-black-red-white 

twilight_shifted perceptually uniform shades of black-blue-white-red-black 

================ ========================================================= 

 

 

Other miscellaneous schemes: 

 

============= ======================================================= 

Colormap Description 

============= ======================================================= 

afmhot sequential black-orange-yellow-white blackbody 

spectrum, commonly used in atomic force microscopy 

brg blue-red-green 

bwr diverging blue-white-red 

coolwarm diverging blue-gray-red, meant to avoid issues with 3D 

shading, color blindness, and ordering of colors [#]_ 

CMRmap "Default colormaps on color images often reproduce to 

confusing grayscale images. The proposed colormap 

maintains an aesthetically pleasing color image that 

automatically reproduces to a monotonic grayscale with 

discrete, quantifiable saturation levels." [#]_ 

cubehelix Unlike most other color schemes cubehelix was designed 

by D.A. Green to be monotonically increasing in terms 

of perceived brightness. Also, when printed on a black 

and white postscript printer, the scheme results in a 

greyscale with monotonically increasing brightness. 

This color scheme is named cubehelix because the r,g,b 

values produced can be visualised as a squashed helix 

around the diagonal in the r,g,b color cube. 

gnuplot gnuplot's traditional pm3d scheme 

(black-blue-red-yellow) 

gnuplot2 sequential color printable as gray 

(black-blue-violet-yellow-white) 

ocean green-blue-white 

rainbow spectral purple-blue-green-yellow-orange-red colormap 

with diverging luminance 

seismic diverging blue-white-red 

nipy_spectral black-purple-blue-green-yellow-red-white spectrum, 

originally from the Neuroimaging in Python project 

terrain mapmaker's colors, blue-green-yellow-brown-white, 

originally from IGOR Pro 

============= ======================================================= 

 

The following colormaps are redundant and may be removed in future 

versions. It's recommended to use the names in the descriptions 

instead, which produce identical output: 

 

========= ======================================================= 

Colormap Description 

========= ======================================================= 

gist_gray identical to *gray* 

gist_yarg identical to *gray_r* 

binary identical to *gray_r* 

========= ======================================================= 

 

.. rubric:: Footnotes 

 

.. [#] Rainbow colormaps, ``jet`` in particular, are considered a poor 

choice for scientific visualization by many researchers: `Rainbow Color 

Map (Still) Considered Harmful 

<http://ieeexplore.ieee.org/document/4118486/?arnumber=4118486>`_ 

 

.. [#] Resembles "BkBlAqGrYeOrReViWh200" from NCAR Command 

Language. See `Color Table Gallery 

<https://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml>`_ 

 

.. [#] See `Diverging Color Maps for Scientific Visualization 

<http://www.kennethmoreland.com/color-maps/>`_ by Kenneth Moreland. 

 

.. [#] See `A Color Map for Effective Black-and-White Rendering of 

Color-Scale Images 

<https://www.mathworks.com/matlabcentral/fileexchange/2662-cmrmap-m>`_ 

by Carey Rappaport 

""" 

return sorted(cm.cmap_d) 

 

 

def _setup_pyplot_info_docstrings(): 

""" 

Generates the plotting docstring. 

 

These must be done after the entire module is imported, so it is 

called from the end of this module, which is generated by 

boilerplate.py. 

""" 

commands = get_plot_commands() 

 

first_sentence = re.compile(r"(?:\s*).+?\.(?:\s+|$)", flags=re.DOTALL) 

 

# Collect the first sentence of the docstring for all of the 

# plotting commands. 

rows = [] 

max_name = len("Function") 

max_summary = len("Description") 

for name in commands: 

doc = globals()[name].__doc__ 

summary = '' 

if doc is not None: 

match = first_sentence.match(doc) 

if match is not None: 

summary = inspect.cleandoc(match.group(0)).replace('\n', ' ') 

name = '`%s`' % name 

rows.append([name, summary]) 

max_name = max(max_name, len(name)) 

max_summary = max(max_summary, len(summary)) 

 

separator = '=' * max_name + ' ' + '=' * max_summary 

lines = [ 

separator, 

'{:{}} {:{}}'.format('Function', max_name, 'Description', max_summary), 

separator, 

] + [ 

'{:{}} {:{}}'.format(name, max_name, summary, max_summary) 

for name, summary in rows 

] + [ 

separator, 

] 

plotting.__doc__ = '\n'.join(lines) 

 

 

## Plotting part 1: manually generated functions and wrappers ## 

 

 

def colorbar(mappable=None, cax=None, ax=None, **kw): 

if mappable is None: 

mappable = gci() 

if mappable is None: 

raise RuntimeError('No mappable was found to use for colorbar ' 

'creation. First define a mappable such as ' 

'an image (with imshow) or a contour set (' 

'with contourf).') 

if ax is None: 

ax = gca() 

 

ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw) 

return ret 

colorbar.__doc__ = matplotlib.colorbar.colorbar_doc 

 

 

def clim(vmin=None, vmax=None): 

""" 

Set the color limits of the current image. 

 

To apply clim to all axes images do:: 

 

clim(0, 0.5) 

 

If either *vmin* or *vmax* is None, the image min/max respectively 

will be used for color scaling. 

 

If you want to set the clim of multiple images, 

use, for example:: 

 

for im in gca().get_images(): 

im.set_clim(0, 0.05) 

 

""" 

im = gci() 

if im is None: 

raise RuntimeError('You must first define an image, e.g., with imshow') 

 

im.set_clim(vmin, vmax) 

 

 

def set_cmap(cmap): 

""" 

Set the default colormap. Applies to the current image if any. 

See help(colormaps) for more information. 

 

*cmap* must be a :class:`~matplotlib.colors.Colormap` instance, or 

the name of a registered colormap. 

 

See :func:`matplotlib.cm.register_cmap` and 

:func:`matplotlib.cm.get_cmap`. 

""" 

cmap = cm.get_cmap(cmap) 

 

rc('image', cmap=cmap.name) 

im = gci() 

 

if im is not None: 

im.set_cmap(cmap) 

 

 

@docstring.copy_dedent(matplotlib.image.imread) 

def imread(fname, format=None): 

return matplotlib.image.imread(fname, format) 

 

 

@docstring.copy_dedent(matplotlib.image.imsave) 

def imsave(fname, arr, **kwargs): 

return matplotlib.image.imsave(fname, arr, **kwargs) 

 

 

def matshow(A, fignum=None, **kwargs): 

""" 

Display an array as a matrix in a new figure window. 

 

The origin is set at the upper left hand corner and rows (first 

dimension of the array) are displayed horizontally. The aspect 

ratio of the figure window is that of the array, unless this would 

make an excessively short or narrow figure. 

 

Tick labels for the xaxis are placed on top. 

 

Parameters 

---------- 

A : array-like(M, N) 

The matrix to be displayed. 

 

fignum : None or int or False 

If *None*, create a new figure window with automatic numbering. 

 

If *fignum* is an integer, draw into the figure with the given number 

(create it if it does not exist). 

 

If 0 or *False*, use the current axes if it exists instead of creating 

a new figure. 

 

.. note:: 

 

Because of how `.Axes.matshow` tries to set the figure aspect 

ratio to be the one of the array, strange things may happen if you 

reuse an existing figure. 

 

Returns 

------- 

image : `~matplotlib.image.AxesImage` 

 

Other Parameters 

---------------- 

**kwargs : `~matplotlib.axes.Axes.imshow` arguments 

 

""" 

A = np.asanyarray(A) 

if fignum is False or fignum is 0: 

ax = gca() 

else: 

# Extract actual aspect ratio of array and make appropriately sized figure 

fig = figure(fignum, figsize=figaspect(A)) 

ax = fig.add_axes([0.15, 0.09, 0.775, 0.775]) 

 

im = ax.matshow(A, **kwargs) 

sci(im) 

 

return im 

 

 

def polar(*args, **kwargs): 

""" 

Make a polar plot. 

 

call signature:: 

 

polar(theta, r, **kwargs) 

 

Multiple *theta*, *r* arguments are supported, with format 

strings, as in :func:`~matplotlib.pyplot.plot`. 

 

""" 

# If an axis already exists, check if it has a polar projection 

if gcf().get_axes(): 

if not isinstance(gca(), PolarAxes): 

warnings.warn('Trying to create polar plot on an axis that does ' 

'not have a polar projection.') 

ax = gca(polar=True) 

ret = ax.plot(*args, **kwargs) 

return ret 

 

 

def plotfile(fname, cols=(0,), plotfuncs=None, 

comments='#', skiprows=0, checkrows=5, delimiter=',', 

names=None, subplots=True, newfig=True, **kwargs): 

""" 

Plot the data in a file. 

 

*cols* is a sequence of column identifiers to plot. An identifier 

is either an int or a string. If it is an int, it indicates the 

column number. If it is a string, it indicates the column header. 

matplotlib will make column headers lower case, replace spaces with 

underscores, and remove all illegal characters; so ``'Adj Close*'`` 

will have name ``'adj_close'``. 

 

- If len(*cols*) == 1, only that column will be plotted on the *y* axis. 

 

- If len(*cols*) > 1, the first element will be an identifier for 

data for the *x* axis and the remaining elements will be the 

column indexes for multiple subplots if *subplots* is *True* 

(the default), or for lines in a single subplot if *subplots* 

is *False*. 

 

*plotfuncs*, if not *None*, is a dictionary mapping identifier to 

an :class:`~matplotlib.axes.Axes` plotting function as a string. 

Default is 'plot', other choices are 'semilogy', 'fill', 'bar', 

etc. You must use the same type of identifier in the *cols* 

vector as you use in the *plotfuncs* dictionary, e.g., integer 

column numbers in both or column names in both. If *subplots* 

is *False*, then including any function such as 'semilogy' 

that changes the axis scaling will set the scaling for all 

columns. 

 

*comments*, *skiprows*, *checkrows*, *delimiter*, and *names* 

are all passed on to :func:`matplotlib.mlab.csv2rec` to 

load the data into a record array. 

 

If *newfig* is *True*, the plot always will be made in a new figure; 

if *False*, it will be made in the current figure if one exists, 

else in a new figure. 

 

kwargs are passed on to plotting functions. 

 

Example usage:: 

 

# plot the 2nd and 4th column against the 1st in two subplots 

plotfile(fname, (0,1,3)) 

 

# plot using column names; specify an alternate plot type for volume 

plotfile(fname, ('date', 'volume', 'adj_close'), 

plotfuncs={'volume': 'semilogy'}) 

 

Note: plotfile is intended as a convenience for quickly plotting 

data from flat files; it is not intended as an alternative 

interface to general plotting with pyplot or matplotlib. 

""" 

 

if newfig: 

fig = figure() 

else: 

fig = gcf() 

 

if len(cols)<1: 

raise ValueError('must have at least one column of data') 

 

if plotfuncs is None: 

plotfuncs = dict() 

from matplotlib.cbook import MatplotlibDeprecationWarning 

with warnings.catch_warnings(): 

warnings.simplefilter('ignore', MatplotlibDeprecationWarning) 

r = mlab.csv2rec(fname, comments=comments, skiprows=skiprows, 

checkrows=checkrows, delimiter=delimiter, names=names) 

 

def getname_val(identifier): 

'return the name and column data for identifier' 

if isinstance(identifier, str): 

return identifier, r[identifier] 

elif isinstance(identifier, Number): 

name = r.dtype.names[int(identifier)] 

return name, r[name] 

else: 

raise TypeError('identifier must be a string or integer') 

 

xname, x = getname_val(cols[0]) 

ynamelist = [] 

 

if len(cols)==1: 

ax1 = fig.add_subplot(1,1,1) 

funcname = plotfuncs.get(cols[0], 'plot') 

func = getattr(ax1, funcname) 

func(x, **kwargs) 

ax1.set_ylabel(xname) 

else: 

N = len(cols) 

for i in range(1,N): 

if subplots: 

if i==1: 

ax = ax1 = fig.add_subplot(N-1,1,i) 

else: 

ax = fig.add_subplot(N-1,1,i, sharex=ax1) 

elif i==1: 

ax = fig.add_subplot(1,1,1) 

 

yname, y = getname_val(cols[i]) 

ynamelist.append(yname) 

 

funcname = plotfuncs.get(cols[i], 'plot') 

func = getattr(ax, funcname) 

 

func(x, y, **kwargs) 

if subplots: 

ax.set_ylabel(yname) 

if ax.is_last_row(): 

ax.set_xlabel(xname) 

else: 

ax.set_xlabel('') 

 

if not subplots: 

ax.legend(ynamelist) 

 

if xname=='date': 

fig.autofmt_xdate() 

 

 

def _autogen_docstring(base): 

"""Autogenerated wrappers will get their docstring from a base function 

with an addendum.""" 

msg = '' 

addendum = docstring.Appender(msg, '\n\n') 

return lambda func: addendum(docstring.copy_dedent(base)(func)) 

 

 

# If rcParams['backend_fallback'] is true, and an interactive backend is 

# requested, ignore rcParams['backend'] and force selection of a backend that 

# is compatible with the current running interactive framework. 

if (rcParams["backend_fallback"] 

and dict.__getitem__(rcParams, "backend") in _interactive_bk 

and _get_running_interactive_framework()): 

dict.__setitem__(rcParams, "backend", rcsetup._auto_backend_sentinel) 

# Set up the backend. 

switch_backend(rcParams["backend"]) 

 

# Just to be safe. Interactive mode can be turned on without 

# calling `plt.ion()` so register it again here. 

# This is safe because multiple calls to `install_repl_displayhook` 

# are no-ops and the registered function respect `mpl.is_interactive()` 

# to determine if they should trigger a draw. 

install_repl_displayhook() 

 

 

################# REMAINING CONTENT GENERATED BY boilerplate.py ############## 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.acorr) 

def acorr(x, *, data=None, **kwargs): 

return gca().acorr( 

x, **({"data": data} if data is not None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.angle_spectrum) 

def angle_spectrum( 

x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, *, 

data=None, **kwargs): 

return gca().angle_spectrum( 

x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides, 

**({"data": data} if data is not None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.annotate) 

def annotate(s, xy, *args, **kwargs): 

return gca().annotate(s, xy, *args, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.arrow) 

def arrow(x, y, dx, dy, **kwargs): 

return gca().arrow(x, y, dx, dy, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.autoscale) 

def autoscale(enable=True, axis='both', tight=None): 

return gca().autoscale(enable=enable, axis=axis, tight=tight) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.axhline) 

def axhline(y=0, xmin=0, xmax=1, **kwargs): 

return gca().axhline(y=y, xmin=xmin, xmax=xmax, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.axhspan) 

def axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs): 

return gca().axhspan(ymin, ymax, xmin=xmin, xmax=xmax, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.axis) 

def axis(*v, **kwargs): 

return gca().axis(*v, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.axvline) 

def axvline(x=0, ymin=0, ymax=1, **kwargs): 

return gca().axvline(x=x, ymin=ymin, ymax=ymax, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.axvspan) 

def axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs): 

return gca().axvspan(xmin, xmax, ymin=ymin, ymax=ymax, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.bar) 

def bar( 

x, height, width=0.8, bottom=None, *, align='center', 

data=None, **kwargs): 

return gca().bar( 

x, height, width=width, bottom=bottom, align=align, 

**({"data": data} if data is not None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.barbs) 

def barbs(*args, data=None, **kw): 

return gca().barbs( 

*args, **({"data": data} if data is not None else {}), **kw) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.barh) 

def barh(y, width, height=0.8, left=None, *, align='center', **kwargs): 

return gca().barh( 

y, width, height=height, left=left, align=align, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.boxplot) 

def boxplot( 

x, notch=None, sym=None, vert=None, whis=None, 

positions=None, widths=None, patch_artist=None, 

bootstrap=None, usermedians=None, conf_intervals=None, 

meanline=None, showmeans=None, showcaps=None, showbox=None, 

showfliers=None, boxprops=None, labels=None, flierprops=None, 

medianprops=None, meanprops=None, capprops=None, 

whiskerprops=None, manage_xticks=True, autorange=False, 

zorder=None, *, data=None): 

return gca().boxplot( 

x, notch=notch, sym=sym, vert=vert, whis=whis, 

positions=positions, widths=widths, patch_artist=patch_artist, 

bootstrap=bootstrap, usermedians=usermedians, 

conf_intervals=conf_intervals, meanline=meanline, 

showmeans=showmeans, showcaps=showcaps, showbox=showbox, 

showfliers=showfliers, boxprops=boxprops, labels=labels, 

flierprops=flierprops, medianprops=medianprops, 

meanprops=meanprops, capprops=capprops, 

whiskerprops=whiskerprops, manage_xticks=manage_xticks, 

autorange=autorange, zorder=zorder, **({"data": data} if data 

is not None else {})) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.broken_barh) 

def broken_barh(xranges, yrange, *, data=None, **kwargs): 

return gca().broken_barh( 

xranges, yrange, **({"data": data} if data is not None else 

{}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.cla) 

def cla(): 

return gca().cla() 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.clabel) 

def clabel(CS, *args, **kwargs): 

return gca().clabel(CS, *args, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.cohere) 

def cohere( 

x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, 

window=mlab.window_hanning, noverlap=0, pad_to=None, 

sides='default', scale_by_freq=None, *, data=None, **kwargs): 

return gca().cohere( 

x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, 

noverlap=noverlap, pad_to=pad_to, sides=sides, 

scale_by_freq=scale_by_freq, **({"data": data} if data is not 

None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.contour) 

def contour(*args, data=None, **kwargs): 

__ret = gca().contour( 

*args, **({"data": data} if data is not None else {}), 

**kwargs) 

if __ret._A is not None: sci(__ret) # noqa 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.contourf) 

def contourf(*args, data=None, **kwargs): 

__ret = gca().contourf( 

*args, **({"data": data} if data is not None else {}), 

**kwargs) 

if __ret._A is not None: sci(__ret) # noqa 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.csd) 

def csd( 

x, y, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, 

noverlap=None, pad_to=None, sides=None, scale_by_freq=None, 

return_line=None, *, data=None, **kwargs): 

return gca().csd( 

x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, 

noverlap=noverlap, pad_to=pad_to, sides=sides, 

scale_by_freq=scale_by_freq, return_line=return_line, 

**({"data": data} if data is not None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.errorbar) 

def errorbar( 

x, y, yerr=None, xerr=None, fmt='', ecolor=None, 

elinewidth=None, capsize=None, barsabove=False, lolims=False, 

uplims=False, xlolims=False, xuplims=False, errorevery=1, 

capthick=None, *, data=None, **kwargs): 

return gca().errorbar( 

x, y, yerr=yerr, xerr=xerr, fmt=fmt, ecolor=ecolor, 

elinewidth=elinewidth, capsize=capsize, barsabove=barsabove, 

lolims=lolims, uplims=uplims, xlolims=xlolims, 

xuplims=xuplims, errorevery=errorevery, capthick=capthick, 

**({"data": data} if data is not None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.eventplot) 

def eventplot( 

positions, orientation='horizontal', lineoffsets=1, 

linelengths=1, linewidths=None, colors=None, 

linestyles='solid', *, data=None, **kwargs): 

return gca().eventplot( 

positions, orientation=orientation, lineoffsets=lineoffsets, 

linelengths=linelengths, linewidths=linewidths, colors=colors, 

linestyles=linestyles, **({"data": data} if data is not None 

else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.fill) 

def fill(*args, data=None, **kwargs): 

return gca().fill( 

*args, **({"data": data} if data is not None else {}), 

**kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.fill_between) 

def fill_between( 

x, y1, y2=0, where=None, interpolate=False, step=None, *, 

data=None, **kwargs): 

return gca().fill_between( 

x, y1, y2=y2, where=where, interpolate=interpolate, step=step, 

**({"data": data} if data is not None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.fill_betweenx) 

def fill_betweenx( 

y, x1, x2=0, where=None, step=None, interpolate=False, *, 

data=None, **kwargs): 

return gca().fill_betweenx( 

y, x1, x2=x2, where=where, step=step, interpolate=interpolate, 

**({"data": data} if data is not None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.grid) 

def grid(b=None, which='major', axis='both', **kwargs): 

return gca().grid(b=b, which=which, axis=axis, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.hexbin) 

def hexbin( 

x, y, C=None, gridsize=100, bins=None, xscale='linear', 

yscale='linear', extent=None, cmap=None, norm=None, vmin=None, 

vmax=None, alpha=None, linewidths=None, edgecolors='face', 

reduce_C_function=np.mean, mincnt=None, marginals=False, *, 

data=None, **kwargs): 

__ret = gca().hexbin( 

x, y, C=C, gridsize=gridsize, bins=bins, xscale=xscale, 

yscale=yscale, extent=extent, cmap=cmap, norm=norm, vmin=vmin, 

vmax=vmax, alpha=alpha, linewidths=linewidths, 

edgecolors=edgecolors, reduce_C_function=reduce_C_function, 

mincnt=mincnt, marginals=marginals, **({"data": data} if data 

is not None else {}), **kwargs) 

sci(__ret) 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.hist) 

def hist( 

x, bins=None, range=None, density=None, weights=None, 

cumulative=False, bottom=None, histtype='bar', align='mid', 

orientation='vertical', rwidth=None, log=False, color=None, 

label=None, stacked=False, normed=None, *, data=None, 

**kwargs): 

return gca().hist( 

x, bins=bins, range=range, density=density, weights=weights, 

cumulative=cumulative, bottom=bottom, histtype=histtype, 

align=align, orientation=orientation, rwidth=rwidth, log=log, 

color=color, label=label, stacked=stacked, normed=normed, 

**({"data": data} if data is not None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.hist2d) 

def hist2d( 

x, y, bins=10, range=None, normed=False, weights=None, 

cmin=None, cmax=None, *, data=None, **kwargs): 

__ret = gca().hist2d( 

x, y, bins=bins, range=range, normed=normed, weights=weights, 

cmin=cmin, cmax=cmax, **({"data": data} if data is not None 

else {}), **kwargs) 

sci(__ret[-1]) 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.hlines) 

def hlines( 

y, xmin, xmax, colors='k', linestyles='solid', label='', *, 

data=None, **kwargs): 

return gca().hlines( 

y, xmin, xmax, colors=colors, linestyles=linestyles, 

label=label, **({"data": data} if data is not None else {}), 

**kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.imshow) 

def imshow( 

X, cmap=None, norm=None, aspect=None, interpolation=None, 

alpha=None, vmin=None, vmax=None, origin=None, extent=None, 

shape=None, filternorm=1, filterrad=4.0, imlim=None, 

resample=None, url=None, *, data=None, **kwargs): 

__ret = gca().imshow( 

X, cmap=cmap, norm=norm, aspect=aspect, 

interpolation=interpolation, alpha=alpha, vmin=vmin, 

vmax=vmax, origin=origin, extent=extent, shape=shape, 

filternorm=filternorm, filterrad=filterrad, imlim=imlim, 

resample=resample, url=url, **({"data": data} if data is not 

None else {}), **kwargs) 

sci(__ret) 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.legend) 

def legend(*args, **kwargs): 

return gca().legend(*args, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.locator_params) 

def locator_params(axis='both', tight=None, **kwargs): 

return gca().locator_params(axis=axis, tight=tight, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.loglog) 

def loglog(*args, **kwargs): 

return gca().loglog(*args, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.magnitude_spectrum) 

def magnitude_spectrum( 

x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, 

scale=None, *, data=None, **kwargs): 

return gca().magnitude_spectrum( 

x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides, 

scale=scale, **({"data": data} if data is not None else {}), 

**kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.margins) 

def margins(*margins, x=None, y=None, tight=True): 

return gca().margins(*margins, x=x, y=y, tight=tight) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.minorticks_off) 

def minorticks_off(): 

return gca().minorticks_off() 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.minorticks_on) 

def minorticks_on(): 

return gca().minorticks_on() 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.pcolor) 

def pcolor( 

*args, alpha=None, norm=None, cmap=None, vmin=None, 

vmax=None, data=None, **kwargs): 

__ret = gca().pcolor( 

*args, alpha=alpha, norm=norm, cmap=cmap, vmin=vmin, 

vmax=vmax, **({"data": data} if data is not None else {}), 

**kwargs) 

sci(__ret) 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.pcolormesh) 

def pcolormesh( 

*args, alpha=None, norm=None, cmap=None, vmin=None, 

vmax=None, shading='flat', antialiased=False, data=None, 

**kwargs): 

__ret = gca().pcolormesh( 

*args, alpha=alpha, norm=norm, cmap=cmap, vmin=vmin, 

vmax=vmax, shading=shading, antialiased=antialiased, 

**({"data": data} if data is not None else {}), **kwargs) 

sci(__ret) 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.phase_spectrum) 

def phase_spectrum( 

x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, *, 

data=None, **kwargs): 

return gca().phase_spectrum( 

x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides, 

**({"data": data} if data is not None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.pie) 

def pie( 

x, explode=None, labels=None, colors=None, autopct=None, 

pctdistance=0.6, shadow=False, labeldistance=1.1, 

startangle=None, radius=None, counterclock=True, 

wedgeprops=None, textprops=None, center=(0, 0), frame=False, 

rotatelabels=False, *, data=None): 

return gca().pie( 

x, explode=explode, labels=labels, colors=colors, 

autopct=autopct, pctdistance=pctdistance, shadow=shadow, 

labeldistance=labeldistance, startangle=startangle, 

radius=radius, counterclock=counterclock, 

wedgeprops=wedgeprops, textprops=textprops, center=center, 

frame=frame, rotatelabels=rotatelabels, **({"data": data} if 

data is not None else {})) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.plot) 

def plot(*args, scalex=True, scaley=True, data=None, **kwargs): 

return gca().plot( 

*args, scalex=scalex, scaley=scaley, **({"data": data} if data 

is not None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.plot_date) 

def plot_date( 

x, y, fmt='o', tz=None, xdate=True, ydate=False, *, 

data=None, **kwargs): 

return gca().plot_date( 

x, y, fmt=fmt, tz=tz, xdate=xdate, ydate=ydate, **({"data": 

data} if data is not None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.psd) 

def psd( 

x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, 

noverlap=None, pad_to=None, sides=None, scale_by_freq=None, 

return_line=None, *, data=None, **kwargs): 

return gca().psd( 

x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, 

noverlap=noverlap, pad_to=pad_to, sides=sides, 

scale_by_freq=scale_by_freq, return_line=return_line, 

**({"data": data} if data is not None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.quiver) 

def quiver(*args, data=None, **kw): 

__ret = gca().quiver( 

*args, **({"data": data} if data is not None else {}), **kw) 

sci(__ret) 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.quiverkey) 

def quiverkey(Q, X, Y, U, label, **kw): 

return gca().quiverkey(Q, X, Y, U, label, **kw) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.scatter) 

def scatter( 

x, y, s=None, c=None, marker=None, cmap=None, norm=None, 

vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, 

edgecolors=None, *, data=None, **kwargs): 

__ret = gca().scatter( 

x, y, s=s, c=c, marker=marker, cmap=cmap, norm=norm, 

vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths, 

verts=verts, edgecolors=edgecolors, **({"data": data} if data 

is not None else {}), **kwargs) 

sci(__ret) 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.semilogx) 

def semilogx(*args, **kwargs): 

return gca().semilogx(*args, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.semilogy) 

def semilogy(*args, **kwargs): 

return gca().semilogy(*args, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.specgram) 

def specgram( 

x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, 

noverlap=None, cmap=None, xextent=None, pad_to=None, 

sides=None, scale_by_freq=None, mode=None, scale=None, 

vmin=None, vmax=None, *, data=None, **kwargs): 

__ret = gca().specgram( 

x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, 

noverlap=noverlap, cmap=cmap, xextent=xextent, pad_to=pad_to, 

sides=sides, scale_by_freq=scale_by_freq, mode=mode, 

scale=scale, vmin=vmin, vmax=vmax, **({"data": data} if data 

is not None else {}), **kwargs) 

sci(__ret[-1]) 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.spy) 

def spy( 

Z, precision=0, marker=None, markersize=None, aspect='equal', 

origin='upper', **kwargs): 

__ret = gca().spy( 

Z, precision=precision, marker=marker, markersize=markersize, 

aspect=aspect, origin=origin, **kwargs) 

if isinstance(__ret, cm.ScalarMappable): sci(__ret) # noqa 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.stackplot) 

def stackplot(x, *args, data=None, **kwargs): 

return gca().stackplot( 

x, *args, **({"data": data} if data is not None else {}), 

**kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.stem) 

def stem( 

*args, linefmt=None, markerfmt=None, basefmt=None, bottom=0, 

label=None, data=None): 

return gca().stem( 

*args, linefmt=linefmt, markerfmt=markerfmt, basefmt=basefmt, 

bottom=bottom, label=label, **({"data": data} if data is not 

None else {})) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.step) 

def step(x, y, *args, where='pre', data=None, **kwargs): 

return gca().step( 

x, y, *args, where=where, **({"data": data} if data is not 

None else {}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.streamplot) 

def streamplot( 

x, y, u, v, density=1, linewidth=None, color=None, cmap=None, 

norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1, 

transform=None, zorder=None, start_points=None, maxlength=4.0, 

integration_direction='both', *, data=None): 

__ret = gca().streamplot( 

x, y, u, v, density=density, linewidth=linewidth, color=color, 

cmap=cmap, norm=norm, arrowsize=arrowsize, 

arrowstyle=arrowstyle, minlength=minlength, 

transform=transform, zorder=zorder, start_points=start_points, 

maxlength=maxlength, 

integration_direction=integration_direction, **({"data": data} 

if data is not None else {})) 

sci(__ret.lines) 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.table) 

def table(**kwargs): 

return gca().table(**kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.text) 

def text(x, y, s, fontdict=None, withdash=False, **kwargs): 

return gca().text(x, y, s, fontdict=fontdict, withdash=withdash, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.tick_params) 

def tick_params(axis='both', **kwargs): 

return gca().tick_params(axis=axis, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.ticklabel_format) 

def ticklabel_format( 

*, axis='both', style='', scilimits=None, useOffset=None, 

useLocale=None, useMathText=None): 

return gca().ticklabel_format( 

axis=axis, style=style, scilimits=scilimits, 

useOffset=useOffset, useLocale=useLocale, 

useMathText=useMathText) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.tricontour) 

def tricontour(*args, **kwargs): 

__ret = gca().tricontour(*args, **kwargs) 

if __ret._A is not None: sci(__ret) # noqa 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.tricontourf) 

def tricontourf(*args, **kwargs): 

__ret = gca().tricontourf(*args, **kwargs) 

if __ret._A is not None: sci(__ret) # noqa 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@_autogen_docstring(Axes.tripcolor) 

def tripcolor(*args, **kwargs): 

__ret = gca().tripcolor(*args, **kwargs) 

sci(__ret) 

return __ret 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.triplot) 

def triplot(*args, **kwargs): 

return gca().triplot(*args, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.violinplot) 

def violinplot( 

dataset, positions=None, vert=True, widths=0.5, 

showmeans=False, showextrema=True, showmedians=False, 

points=100, bw_method=None, *, data=None): 

return gca().violinplot( 

dataset, positions=positions, vert=vert, widths=widths, 

showmeans=showmeans, showextrema=showextrema, 

showmedians=showmedians, points=points, bw_method=bw_method, 

**({"data": data} if data is not None else {})) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.vlines) 

def vlines( 

x, ymin, ymax, colors='k', linestyles='solid', label='', *, 

data=None, **kwargs): 

return gca().vlines( 

x, ymin, ymax, colors=colors, linestyles=linestyles, 

label=label, **({"data": data} if data is not None else {}), 

**kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.xcorr) 

def xcorr( 

x, y, normed=True, detrend=mlab.detrend_none, usevlines=True, 

maxlags=10, *, data=None, **kwargs): 

return gca().xcorr( 

x, y, normed=normed, detrend=detrend, usevlines=usevlines, 

maxlags=maxlags, **({"data": data} if data is not None else 

{}), **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes._sci) 

def sci(im): 

return gca()._sci(im) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.set_title) 

def title(label, fontdict=None, loc='center', pad=None, **kwargs): 

return gca().set_title( 

label, fontdict=fontdict, loc=loc, pad=pad, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.set_xlabel) 

def xlabel(xlabel, fontdict=None, labelpad=None, **kwargs): 

return gca().set_xlabel( 

xlabel, fontdict=fontdict, labelpad=labelpad, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.set_ylabel) 

def ylabel(ylabel, fontdict=None, labelpad=None, **kwargs): 

return gca().set_ylabel( 

ylabel, fontdict=fontdict, labelpad=labelpad, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.set_xscale) 

def xscale(value, **kwargs): 

return gca().set_xscale(value, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

@docstring.copy_dedent(Axes.set_yscale) 

def yscale(value, **kwargs): 

return gca().set_yscale(value, **kwargs) 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def autumn(): 

""" 

Set the colormap to "autumn". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("autumn") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def bone(): 

""" 

Set the colormap to "bone". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("bone") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def cool(): 

""" 

Set the colormap to "cool". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("cool") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def copper(): 

""" 

Set the colormap to "copper". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("copper") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def flag(): 

""" 

Set the colormap to "flag". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("flag") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def gray(): 

""" 

Set the colormap to "gray". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("gray") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def hot(): 

""" 

Set the colormap to "hot". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("hot") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def hsv(): 

""" 

Set the colormap to "hsv". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("hsv") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def jet(): 

""" 

Set the colormap to "jet". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("jet") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def pink(): 

""" 

Set the colormap to "pink". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("pink") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def prism(): 

""" 

Set the colormap to "prism". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("prism") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def spring(): 

""" 

Set the colormap to "spring". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("spring") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def summer(): 

""" 

Set the colormap to "summer". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("summer") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def winter(): 

""" 

Set the colormap to "winter". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("winter") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def magma(): 

""" 

Set the colormap to "magma". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("magma") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def inferno(): 

""" 

Set the colormap to "inferno". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("inferno") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def plasma(): 

""" 

Set the colormap to "plasma". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("plasma") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def viridis(): 

""" 

Set the colormap to "viridis". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("viridis") 

 

 

# Autogenerated by boilerplate.py. Do not edit as changes will be lost. 

def nipy_spectral(): 

""" 

Set the colormap to "nipy_spectral". 

 

This changes the default colormap as well as the colormap of the current 

image if there is one. See ``help(colormaps)`` for more information. 

""" 

set_cmap("nipy_spectral") 

_setup_pyplot_info_docstrings()