1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

""" 

Support for plotting vector fields. 

 

Presently this contains Quiver and Barb. Quiver plots an arrow in the 

direction of the vector, with the size of the arrow related to the 

magnitude of the vector. 

 

Barbs are like quiver in that they point along a vector, but 

the magnitude of the vector is given schematically by the presence of barbs 

or flags on the barb. 

 

This will also become a home for things such as standard 

deviation ellipses, which can and will be derived very easily from 

the Quiver code. 

""" 

 

import math 

import weakref 

 

import numpy as np 

 

from numpy import ma 

import matplotlib.collections as mcollections 

import matplotlib.transforms as transforms 

import matplotlib.text as mtext 

import matplotlib.artist as martist 

from matplotlib.artist import allow_rasterization 

from matplotlib import docstring 

import matplotlib.font_manager as font_manager 

from matplotlib.cbook import delete_masked_points 

from matplotlib.patches import CirclePolygon 

 

 

_quiver_doc = """ 

Plot a 2-D field of arrows. 

 

Call signatures:: 

 

quiver(U, V, **kw) 

quiver(U, V, C, **kw) 

quiver(X, Y, U, V, **kw) 

quiver(X, Y, U, V, C, **kw) 

 

*U* and *V* are the arrow data, *X* and *Y* set the location of the 

arrows, and *C* sets the color of the arrows. These arguments may be 1-D or 

2-D arrays or sequences. 

 

If *X* and *Y* are absent, they will be generated as a uniform grid. 

If *U* and *V* are 2-D arrays and *X* and *Y* are 1-D, and if ``len(X)`` and 

``len(Y)`` match the column and row dimensions of *U*, then *X* and *Y* will be 

expanded with :func:`numpy.meshgrid`. 

 

The default settings auto-scales the length of the arrows to a reasonable size. 

To change this behavior see the *scale* and *scale_units* kwargs. 

 

The defaults give a slightly swept-back arrow; to make the head a 

triangle, make *headaxislength* the same as *headlength*. To make the 

arrow more pointed, reduce *headwidth* or increase *headlength* and 

*headaxislength*. To make the head smaller relative to the shaft, 

scale down all the head parameters. You will probably do best to leave 

minshaft alone. 

 

*linewidths* and *edgecolors* can be used to customize the arrow 

outlines. 

 

Parameters 

---------- 

X : 1D or 2D array, sequence, optional 

The x coordinates of the arrow locations 

Y : 1D or 2D array, sequence, optional 

The y coordinates of the arrow locations 

U : 1D or 2D array or masked array, sequence 

The x components of the arrow vectors 

V : 1D or 2D array or masked array, sequence 

The y components of the arrow vectors 

C : 1D or 2D array, sequence, optional 

The arrow colors 

units : [ 'width' | 'height' | 'dots' | 'inches' | 'x' | 'y' | 'xy' ] 

The arrow dimensions (except for *length*) are measured in multiples of 

this unit. 

 

'width' or 'height': the width or height of the axis 

 

'dots' or 'inches': pixels or inches, based on the figure dpi 

 

'x', 'y', or 'xy': respectively *X*, *Y*, or :math:`\\sqrt{X^2 + Y^2}` 

in data units 

 

The arrows scale differently depending on the units. For 

'x' or 'y', the arrows get larger as one zooms in; for other 

units, the arrow size is independent of the zoom state. For 

'width or 'height', the arrow size increases with the width and 

height of the axes, respectively, when the window is resized; 

for 'dots' or 'inches', resizing does not change the arrows. 

angles : [ 'uv' | 'xy' ], array, optional 

Method for determining the angle of the arrows. Default is 'uv'. 

 

'uv': the arrow axis aspect ratio is 1 so that 

if *U*==*V* the orientation of the arrow on the plot is 45 degrees 

counter-clockwise from the horizontal axis (positive to the right). 

 

'xy': arrows point from (x,y) to (x+u, y+v). 

Use this for plotting a gradient field, for example. 

 

Alternatively, arbitrary angles may be specified as an array 

of values in degrees, counter-clockwise from the horizontal axis. 

 

Note: inverting a data axis will correspondingly invert the 

arrows only with ``angles='xy'``. 

scale : None, float, optional 

Number of data units per arrow length unit, e.g., m/s per plot width; a 

smaller scale parameter makes the arrow longer. Default is *None*. 

 

If *None*, a simple autoscaling algorithm is used, based on the average 

vector length and the number of vectors. The arrow length unit is given by 

the *scale_units* parameter 

scale_units : [ 'width' | 'height' | 'dots' | 'inches' | 'x' | 'y' | 'xy' ], \ 

None, optional 

If the *scale* kwarg is *None*, the arrow length unit. Default is *None*. 

 

e.g. *scale_units* is 'inches', *scale* is 2.0, and 

``(u,v) = (1,0)``, then the vector will be 0.5 inches long. 

 

If *scale_units* is 'width'/'height', then the vector will be half the 

width/height of the axes. 

 

If *scale_units* is 'x' then the vector will be 0.5 x-axis 

units. To plot vectors in the x-y plane, with u and v having 

the same units as x and y, use 

``angles='xy', scale_units='xy', scale=1``. 

width : scalar, optional 

Shaft width in arrow units; default depends on choice of units, 

above, and number of vectors; a typical starting value is about 

0.005 times the width of the plot. 

headwidth : scalar, optional 

Head width as multiple of shaft width, default is 3 

headlength : scalar, optional 

Head length as multiple of shaft width, default is 5 

headaxislength : scalar, optional 

Head length at shaft intersection, default is 4.5 

minshaft : scalar, optional 

Length below which arrow scales, in units of head length. Do not 

set this to less than 1, or small arrows will look terrible! 

Default is 1 

minlength : scalar, optional 

Minimum length as a multiple of shaft width; if an arrow length 

is less than this, plot a dot (hexagon) of this diameter instead. 

Default is 1. 

pivot : [ 'tail' | 'mid' | 'middle' | 'tip' ], optional 

The part of the arrow that is at the grid point; the arrow rotates 

about this point, hence the name *pivot*. 

color : [ color | color sequence ], optional 

This is a synonym for the 

:class:`~matplotlib.collections.PolyCollection` facecolor kwarg. 

If *C* has been set, *color* has no effect. 

 

Notes 

----- 

Additional :class:`~matplotlib.collections.PolyCollection` 

keyword arguments: 

 

%(PolyCollection)s 

 

See Also 

-------- 

quiverkey : Add a key to a quiver plot 

""" % docstring.interpd.params 

 

_quiverkey_doc = """ 

Add a key to a quiver plot. 

 

Call signature:: 

 

quiverkey(Q, X, Y, U, label, **kw) 

 

Arguments: 

 

*Q*: 

The Quiver instance returned by a call to quiver. 

 

*X*, *Y*: 

The location of the key; additional explanation follows. 

 

*U*: 

The length of the key 

 

*label*: 

A string with the length and units of the key 

 

Keyword arguments: 

 

*angle* = 0 

The angle of the key arrow. Measured in degrees anti-clockwise from the 

x-axis. 

 

*coordinates* = [ 'axes' | 'figure' | 'data' | 'inches' ] 

Coordinate system and units for *X*, *Y*: 'axes' and 'figure' are 

normalized coordinate systems with 0,0 in the lower left and 1,1 

in the upper right; 'data' are the axes data coordinates (used for 

the locations of the vectors in the quiver plot itself); 'inches' 

is position in the figure in inches, with 0,0 at the lower left 

corner. 

 

*color*: 

overrides face and edge colors from *Q*. 

 

*labelpos* = [ 'N' | 'S' | 'E' | 'W' ] 

Position the label above, below, to the right, to the left of the 

arrow, respectively. 

 

*labelsep*: 

Distance in inches between the arrow and the label. Default is 

0.1 

 

*labelcolor*: 

defaults to default :class:`~matplotlib.text.Text` color. 

 

*fontproperties*: 

A dictionary with keyword arguments accepted by the 

:class:`~matplotlib.font_manager.FontProperties` initializer: 

*family*, *style*, *variant*, *size*, *weight* 

 

Any additional keyword arguments are used to override vector 

properties taken from *Q*. 

 

The positioning of the key depends on *X*, *Y*, *coordinates*, and 

*labelpos*. If *labelpos* is 'N' or 'S', *X*, *Y* give the position 

of the middle of the key arrow. If *labelpos* is 'E', *X*, *Y* 

positions the head, and if *labelpos* is 'W', *X*, *Y* positions the 

tail; in either of these two cases, *X*, *Y* is somewhere in the 

middle of the arrow+label key object. 

""" 

 

 

class QuiverKey(martist.Artist): 

""" Labelled arrow for use as a quiver plot scale key.""" 

halign = {'N': 'center', 'S': 'center', 'E': 'left', 'W': 'right'} 

valign = {'N': 'bottom', 'S': 'top', 'E': 'center', 'W': 'center'} 

pivot = {'N': 'middle', 'S': 'middle', 'E': 'tip', 'W': 'tail'} 

 

def __init__(self, Q, X, Y, U, label, 

*, angle=0, coordinates='axes', color=None, labelsep=0.1, 

labelpos='N', labelcolor=None, fontproperties=None, 

**kw): 

martist.Artist.__init__(self) 

self.Q = Q 

self.X = X 

self.Y = Y 

self.U = U 

self.angle = angle 

self.coord = coordinates 

self.color = color 

self.label = label 

self._labelsep_inches = labelsep 

self.labelsep = (self._labelsep_inches * Q.ax.figure.dpi) 

 

# try to prevent closure over the real self 

weak_self = weakref.ref(self) 

 

def on_dpi_change(fig): 

self_weakref = weak_self() 

if self_weakref is not None: 

self_weakref.labelsep = (self_weakref._labelsep_inches*fig.dpi) 

self_weakref._initialized = False # simple brute force update 

# works because _init is 

# called at the start of 

# draw. 

 

self._cid = Q.ax.figure.callbacks.connect('dpi_changed', 

on_dpi_change) 

 

self.labelpos = labelpos 

self.labelcolor = labelcolor 

self.fontproperties = fontproperties or dict() 

self.kw = kw 

_fp = self.fontproperties 

# boxprops = dict(facecolor='red') 

self.text = mtext.Text( 

text=label, # bbox=boxprops, 

horizontalalignment=self.halign[self.labelpos], 

verticalalignment=self.valign[self.labelpos], 

fontproperties=font_manager.FontProperties(**_fp)) 

 

if self.labelcolor is not None: 

self.text.set_color(self.labelcolor) 

self._initialized = False 

self.zorder = Q.zorder + 0.1 

 

def remove(self): 

""" 

Overload the remove method 

""" 

self.Q.ax.figure.callbacks.disconnect(self._cid) 

self._cid = None 

# pass the remove call up the stack 

martist.Artist.remove(self) 

 

__init__.__doc__ = _quiverkey_doc 

 

def _init(self): 

if True: # not self._initialized: 

if not self.Q._initialized: 

self.Q._init() 

self._set_transform() 

_pivot = self.Q.pivot 

self.Q.pivot = self.pivot[self.labelpos] 

# Hack: save and restore the Umask 

_mask = self.Q.Umask 

self.Q.Umask = ma.nomask 

self.verts = self.Q._make_verts(np.array([self.U]), 

np.zeros((1,)), 

self.angle) 

self.Q.Umask = _mask 

self.Q.pivot = _pivot 

kw = self.Q.polykw 

kw.update(self.kw) 

self.vector = mcollections.PolyCollection( 

self.verts, 

offsets=[(self.X, self.Y)], 

transOffset=self.get_transform(), 

**kw) 

if self.color is not None: 

self.vector.set_color(self.color) 

self.vector.set_transform(self.Q.get_transform()) 

self.vector.set_figure(self.get_figure()) 

self._initialized = True 

 

def _text_x(self, x): 

if self.labelpos == 'E': 

return x + self.labelsep 

elif self.labelpos == 'W': 

return x - self.labelsep 

else: 

return x 

 

def _text_y(self, y): 

if self.labelpos == 'N': 

return y + self.labelsep 

elif self.labelpos == 'S': 

return y - self.labelsep 

else: 

return y 

 

@allow_rasterization 

def draw(self, renderer): 

self._init() 

self.vector.draw(renderer) 

x, y = self.get_transform().transform_point((self.X, self.Y)) 

self.text.set_x(self._text_x(x)) 

self.text.set_y(self._text_y(y)) 

self.text.draw(renderer) 

self.stale = False 

 

def _set_transform(self): 

if self.coord == 'data': 

self.set_transform(self.Q.ax.transData) 

elif self.coord == 'axes': 

self.set_transform(self.Q.ax.transAxes) 

elif self.coord == 'figure': 

self.set_transform(self.Q.ax.figure.transFigure) 

elif self.coord == 'inches': 

self.set_transform(self.Q.ax.figure.dpi_scale_trans) 

else: 

raise ValueError('unrecognized coordinates') 

 

def set_figure(self, fig): 

martist.Artist.set_figure(self, fig) 

self.text.set_figure(fig) 

 

def contains(self, mouseevent): 

# Maybe the dictionary should allow one to 

# distinguish between a text hit and a vector hit. 

if (self.text.contains(mouseevent)[0] or 

self.vector.contains(mouseevent)[0]): 

return True, {} 

return False, {} 

 

quiverkey_doc = _quiverkey_doc 

 

 

# This is a helper function that parses out the various combination of 

# arguments for doing colored vector plots. Pulling it out here 

# allows both Quiver and Barbs to use it 

def _parse_args(*args): 

X, Y, U, V, C = [None] * 5 

args = list(args) 

 

# The use of atleast_1d allows for handling scalar arguments while also 

# keeping masked arrays 

if len(args) == 3 or len(args) == 5: 

C = np.atleast_1d(args.pop(-1)) 

V = np.atleast_1d(args.pop(-1)) 

U = np.atleast_1d(args.pop(-1)) 

if U.ndim == 1: 

nr, nc = 1, U.shape[0] 

else: 

nr, nc = U.shape 

if len(args) == 2: # remaining after removing U,V,C 

X, Y = [np.array(a).ravel() for a in args] 

if len(X) == nc and len(Y) == nr: 

X, Y = [a.ravel() for a in np.meshgrid(X, Y)] 

else: 

indexgrid = np.meshgrid(np.arange(nc), np.arange(nr)) 

X, Y = [np.ravel(a) for a in indexgrid] 

return X, Y, U, V, C 

 

 

def _check_consistent_shapes(*arrays): 

all_shapes = {a.shape for a in arrays} 

if len(all_shapes) != 1: 

raise ValueError('The shapes of the passed in arrays do not match') 

 

 

class Quiver(mcollections.PolyCollection): 

""" 

Specialized PolyCollection for arrows. 

 

The only API method is set_UVC(), which can be used 

to change the size, orientation, and color of the 

arrows; their locations are fixed when the class is 

instantiated. Possibly this method will be useful 

in animations. 

 

Much of the work in this class is done in the draw() 

method so that as much information as possible is available 

about the plot. In subsequent draw() calls, recalculation 

is limited to things that might have changed, so there 

should be no performance penalty from putting the calculations 

in the draw() method. 

""" 

 

_PIVOT_VALS = ('tail', 'middle', 'tip') 

 

@docstring.Substitution(_quiver_doc) 

def __init__(self, ax, *args, 

scale=None, headwidth=3, headlength=5, headaxislength=4.5, 

minshaft=1, minlength=1, units='width', scale_units=None, 

angles='uv', width=None, color='k', pivot='tail', **kw): 

""" 

The constructor takes one required argument, an Axes 

instance, followed by the args and kwargs described 

by the following pyplot interface documentation: 

%s 

""" 

self.ax = ax 

X, Y, U, V, C = _parse_args(*args) 

self.X = X 

self.Y = Y 

self.XY = np.column_stack((X, Y)) 

self.N = len(X) 

self.scale = scale 

self.headwidth = headwidth 

self.headlength = float(headlength) 

self.headaxislength = headaxislength 

self.minshaft = minshaft 

self.minlength = minlength 

self.units = units 

self.scale_units = scale_units 

self.angles = angles 

self.width = width 

self.color = color 

 

if pivot.lower() == 'mid': 

pivot = 'middle' 

self.pivot = pivot.lower() 

if self.pivot not in self._PIVOT_VALS: 

raise ValueError( 

'pivot must be one of {keys}, you passed {inp}'.format( 

keys=self._PIVOT_VALS, inp=pivot)) 

 

self.transform = kw.pop('transform', ax.transData) 

kw.setdefault('facecolors', self.color) 

kw.setdefault('linewidths', (0,)) 

mcollections.PolyCollection.__init__(self, [], offsets=self.XY, 

transOffset=self.transform, 

closed=False, 

**kw) 

self.polykw = kw 

self.set_UVC(U, V, C) 

self._initialized = False 

 

self.keyvec = None 

self.keytext = None 

 

# try to prevent closure over the real self 

weak_self = weakref.ref(self) 

 

def on_dpi_change(fig): 

self_weakref = weak_self() 

if self_weakref is not None: 

self_weakref._new_UV = True # vertices depend on width, span 

# which in turn depend on dpi 

self_weakref._initialized = False # simple brute force update 

# works because _init is 

# called at the start of 

# draw. 

 

self._cid = self.ax.figure.callbacks.connect('dpi_changed', 

on_dpi_change) 

 

def remove(self): 

""" 

Overload the remove method 

""" 

# disconnect the call back 

self.ax.figure.callbacks.disconnect(self._cid) 

self._cid = None 

# pass the remove call up the stack 

mcollections.PolyCollection.remove(self) 

 

def _init(self): 

""" 

Initialization delayed until first draw; 

allow time for axes setup. 

""" 

# It seems that there are not enough event notifications 

# available to have this work on an as-needed basis at present. 

if True: # not self._initialized: 

trans = self._set_transform() 

ax = self.ax 

sx, sy = trans.inverted().transform_point( 

(ax.bbox.width, ax.bbox.height)) 

self.span = sx 

if self.width is None: 

sn = np.clip(math.sqrt(self.N), 8, 25) 

self.width = 0.06 * self.span / sn 

 

# _make_verts sets self.scale if not already specified 

if not self._initialized and self.scale is None: 

self._make_verts(self.U, self.V, self.angles) 

 

self._initialized = True 

 

def get_datalim(self, transData): 

trans = self.get_transform() 

transOffset = self.get_offset_transform() 

full_transform = (trans - transData) + (transOffset - transData) 

XY = full_transform.transform(self.XY) 

bbox = transforms.Bbox.null() 

bbox.update_from_data_xy(XY, ignore=True) 

return bbox 

 

@allow_rasterization 

def draw(self, renderer): 

self._init() 

verts = self._make_verts(self.U, self.V, self.angles) 

self.set_verts(verts, closed=False) 

self._new_UV = False 

mcollections.PolyCollection.draw(self, renderer) 

self.stale = False 

 

def set_UVC(self, U, V, C=None): 

# We need to ensure we have a copy, not a reference 

# to an array that might change before draw(). 

U = ma.masked_invalid(U, copy=True).ravel() 

V = ma.masked_invalid(V, copy=True).ravel() 

mask = ma.mask_or(U.mask, V.mask, copy=False, shrink=True) 

if C is not None: 

C = ma.masked_invalid(C, copy=True).ravel() 

mask = ma.mask_or(mask, C.mask, copy=False, shrink=True) 

if mask is ma.nomask: 

C = C.filled() 

else: 

C = ma.array(C, mask=mask, copy=False) 

self.U = U.filled(1) 

self.V = V.filled(1) 

self.Umask = mask 

if C is not None: 

self.set_array(C) 

self._new_UV = True 

self.stale = True 

 

def _dots_per_unit(self, units): 

""" 

Return a scale factor for converting from units to pixels 

""" 

ax = self.ax 

if units in ('x', 'y', 'xy'): 

if units == 'x': 

dx0 = ax.viewLim.width 

dx1 = ax.bbox.width 

elif units == 'y': 

dx0 = ax.viewLim.height 

dx1 = ax.bbox.height 

else: # 'xy' is assumed 

dxx0 = ax.viewLim.width 

dxx1 = ax.bbox.width 

dyy0 = ax.viewLim.height 

dyy1 = ax.bbox.height 

dx1 = np.hypot(dxx1, dyy1) 

dx0 = np.hypot(dxx0, dyy0) 

dx = dx1 / dx0 

else: 

if units == 'width': 

dx = ax.bbox.width 

elif units == 'height': 

dx = ax.bbox.height 

elif units == 'dots': 

dx = 1.0 

elif units == 'inches': 

dx = ax.figure.dpi 

else: 

raise ValueError('unrecognized units') 

return dx 

 

def _set_transform(self): 

""" 

Sets the PolygonCollection transform to go 

from arrow width units to pixels. 

""" 

dx = self._dots_per_unit(self.units) 

self._trans_scale = dx # pixels per arrow width unit 

trans = transforms.Affine2D().scale(dx) 

self.set_transform(trans) 

return trans 

 

def _angles_lengths(self, U, V, eps=1): 

xy = self.ax.transData.transform(self.XY) 

uv = np.column_stack((U, V)) 

xyp = self.ax.transData.transform(self.XY + eps * uv) 

dxy = xyp - xy 

angles = np.arctan2(dxy[:, 1], dxy[:, 0]) 

lengths = np.hypot(*dxy.T) / eps 

return angles, lengths 

 

def _make_verts(self, U, V, angles): 

uv = (U + V * 1j) 

str_angles = angles if isinstance(angles, str) else '' 

if str_angles == 'xy' and self.scale_units == 'xy': 

# Here eps is 1 so that if we get U, V by diffing 

# the X, Y arrays, the vectors will connect the 

# points, regardless of the axis scaling (including log). 

angles, lengths = self._angles_lengths(U, V, eps=1) 

elif str_angles == 'xy' or self.scale_units == 'xy': 

# Calculate eps based on the extents of the plot 

# so that we don't end up with roundoff error from 

# adding a small number to a large. 

eps = np.abs(self.ax.dataLim.extents).max() * 0.001 

angles, lengths = self._angles_lengths(U, V, eps=eps) 

if str_angles and self.scale_units == 'xy': 

a = lengths 

else: 

a = np.abs(uv) 

if self.scale is None: 

sn = max(10, math.sqrt(self.N)) 

if self.Umask is not ma.nomask: 

amean = a[~self.Umask].mean() 

else: 

amean = a.mean() 

# crude auto-scaling 

# scale is typical arrow length as a multiple of the arrow width 

scale = 1.8 * amean * sn / self.span 

if self.scale_units is None: 

if self.scale is None: 

self.scale = scale 

widthu_per_lenu = 1.0 

else: 

if self.scale_units == 'xy': 

dx = 1 

else: 

dx = self._dots_per_unit(self.scale_units) 

widthu_per_lenu = dx / self._trans_scale 

if self.scale is None: 

self.scale = scale * widthu_per_lenu 

length = a * (widthu_per_lenu / (self.scale * self.width)) 

X, Y = self._h_arrows(length) 

if str_angles == 'xy': 

theta = angles 

elif str_angles == 'uv': 

theta = np.angle(uv) 

else: 

theta = ma.masked_invalid(np.deg2rad(angles)).filled(0) 

theta = theta.reshape((-1, 1)) # for broadcasting 

xy = (X + Y * 1j) * np.exp(1j * theta) * self.width 

XY = np.stack((xy.real, xy.imag), axis=2) 

if self.Umask is not ma.nomask: 

XY = ma.array(XY) 

XY[self.Umask] = ma.masked 

# This might be handled more efficiently with nans, given 

# that nans will end up in the paths anyway. 

 

return XY 

 

def _h_arrows(self, length): 

""" length is in arrow width units """ 

# It might be possible to streamline the code 

# and speed it up a bit by using complex (x,y) 

# instead of separate arrays; but any gain would be slight. 

minsh = self.minshaft * self.headlength 

N = len(length) 

length = length.reshape(N, 1) 

# This number is chosen based on when pixel values overflow in Agg 

# causing rendering errors 

# length = np.minimum(length, 2 ** 16) 

np.clip(length, 0, 2 ** 16, out=length) 

# x, y: normal horizontal arrow 

x = np.array([0, -self.headaxislength, 

-self.headlength, 0], 

np.float64) 

x = x + np.array([0, 1, 1, 1]) * length 

y = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64) 

y = np.repeat(y[np.newaxis, :], N, axis=0) 

# x0, y0: arrow without shaft, for short vectors 

x0 = np.array([0, minsh - self.headaxislength, 

minsh - self.headlength, minsh], np.float64) 

y0 = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64) 

ii = [0, 1, 2, 3, 2, 1, 0, 0] 

X = x.take(ii, 1) 

Y = y.take(ii, 1) 

Y[:, 3:-1] *= -1 

X0 = x0.take(ii) 

Y0 = y0.take(ii) 

Y0[3:-1] *= -1 

shrink = length / minsh if minsh != 0. else 0. 

X0 = shrink * X0[np.newaxis, :] 

Y0 = shrink * Y0[np.newaxis, :] 

short = np.repeat(length < minsh, 8, axis=1) 

# Now select X0, Y0 if short, otherwise X, Y 

np.copyto(X, X0, where=short) 

np.copyto(Y, Y0, where=short) 

if self.pivot == 'middle': 

X -= 0.5 * X[:, 3, np.newaxis] 

elif self.pivot == 'tip': 

X = X - X[:, 3, np.newaxis] # numpy bug? using -= does not 

# work here unless we multiply 

# by a float first, as with 'mid'. 

elif self.pivot != 'tail': 

raise ValueError(("Quiver.pivot must have value in {{'middle', " 

"'tip', 'tail'}} not {0}").format(self.pivot)) 

 

tooshort = length < self.minlength 

if tooshort.any(): 

# Use a heptagonal dot: 

th = np.arange(0, 8, 1, np.float64) * (np.pi / 3.0) 

x1 = np.cos(th) * self.minlength * 0.5 

y1 = np.sin(th) * self.minlength * 0.5 

X1 = np.repeat(x1[np.newaxis, :], N, axis=0) 

Y1 = np.repeat(y1[np.newaxis, :], N, axis=0) 

tooshort = np.repeat(tooshort, 8, 1) 

np.copyto(X, X1, where=tooshort) 

np.copyto(Y, Y1, where=tooshort) 

# Mask handling is deferred to the caller, _make_verts. 

return X, Y 

 

quiver_doc = _quiver_doc 

 

 

_barbs_doc = r""" 

Plot a 2-D field of barbs. 

 

Call signatures:: 

 

barb(U, V, **kw) 

barb(U, V, C, **kw) 

barb(X, Y, U, V, **kw) 

barb(X, Y, U, V, C, **kw) 

 

Arguments: 

 

*X*, *Y*: 

The x and y coordinates of the barb locations 

(default is head of barb; see *pivot* kwarg) 

 

*U*, *V*: 

Give the x and y components of the barb shaft 

 

*C*: 

An optional array used to map colors to the barbs 

 

All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y* 

are absent, they will be generated as a uniform grid. If *U* and *V* 

are 2-D arrays but *X* and *Y* are 1-D, and if ``len(X)`` and ``len(Y)`` 

match the column and row dimensions of *U*, then *X* and *Y* will be 

expanded with :func:`numpy.meshgrid`. 

 

*U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not 

supported at present. 

 

Keyword arguments: 

 

*length*: 

Length of the barb in points; the other parts of the barb 

are scaled against this. 

Default is 7. 

 

*pivot*: [ 'tip' | 'middle' | float ] 

The part of the arrow that is at the grid point; the arrow rotates 

about this point, hence the name *pivot*. Default is 'tip'. Can 

also be a number, which shifts the start of the barb that many 

points from the origin. 

 

*barbcolor*: [ color | color sequence ] 

Specifies the color all parts of the barb except any flags. This 

parameter is analogous to the *edgecolor* parameter for polygons, 

which can be used instead. However this parameter will override 

facecolor. 

 

*flagcolor*: [ color | color sequence ] 

Specifies the color of any flags on the barb. This parameter is 

analogous to the *facecolor* parameter for polygons, which can be 

used instead. However this parameter will override facecolor. If 

this is not set (and *C* has not either) then *flagcolor* will be 

set to match *barbcolor* so that the barb has a uniform color. If 

*C* has been set, *flagcolor* has no effect. 

 

*sizes*: 

A dictionary of coefficients specifying the ratio of a given 

feature to the length of the barb. Only those values one wishes to 

override need to be included. These features include: 

 

- 'spacing' - space between features (flags, full/half barbs) 

 

- 'height' - height (distance from shaft to top) of a flag or 

full barb 

 

- 'width' - width of a flag, twice the width of a full barb 

 

- 'emptybarb' - radius of the circle used for low magnitudes 

 

*fill_empty*: 

A flag on whether the empty barbs (circles) that are drawn should 

be filled with the flag color. If they are not filled, they will 

be drawn such that no color is applied to the center. Default is 

False 

 

*rounding*: 

A flag to indicate whether the vector magnitude should be rounded 

when allocating barb components. If True, the magnitude is 

rounded to the nearest multiple of the half-barb increment. If 

False, the magnitude is simply truncated to the next lowest 

multiple. Default is True 

 

*barb_increments*: 

A dictionary of increments specifying values to associate with 

different parts of the barb. Only those values one wishes to 

override need to be included. 

 

- 'half' - half barbs (Default is 5) 

 

- 'full' - full barbs (Default is 10) 

 

- 'flag' - flags (default is 50) 

 

*flip_barb*: 

Either a single boolean flag or an array of booleans. Single 

boolean indicates whether the lines and flags should point 

opposite to normal for all barbs. An array (which should be the 

same size as the other data arrays) indicates whether to flip for 

each individual barb. Normal behavior is for the barbs and lines 

to point right (comes from wind barbs having these features point 

towards low pressure in the Northern Hemisphere.) Default is 

False 

 

Barbs are traditionally used in meteorology as a way to plot the speed 

and direction of wind observations, but can technically be used to 

plot any two dimensional vector quantity. As opposed to arrows, which 

give vector magnitude by the length of the arrow, the barbs give more 

quantitative information about the vector magnitude by putting slanted 

lines or a triangle for various increments in magnitude, as show 

schematically below:: 

 

: /\ \\ 

: / \ \\ 

: / \ \ \\ 

: / \ \ \\ 

: ------------------------------ 

 

.. note the double \\ at the end of each line to make the figure 

.. render correctly 

 

The largest increment is given by a triangle (or "flag"). After those 

come full lines (barbs). The smallest increment is a half line. There 

is only, of course, ever at most 1 half line. If the magnitude is 

small and only needs a single half-line and no full lines or 

triangles, the half-line is offset from the end of the barb so that it 

can be easily distinguished from barbs with a single full line. The 

magnitude for the barb shown above would nominally be 65, using the 

standard increments of 50, 10, and 5. 

 

linewidths and edgecolors can be used to customize the barb. 

Additional :class:`~matplotlib.collections.PolyCollection` keyword 

arguments: 

 

%(PolyCollection)s 

""" % docstring.interpd.params 

 

docstring.interpd.update(barbs_doc=_barbs_doc) 

 

 

class Barbs(mcollections.PolyCollection): 

''' 

Specialized PolyCollection for barbs. 

 

The only API method is :meth:`set_UVC`, which can be used to 

change the size, orientation, and color of the arrows. Locations 

are changed using the :meth:`set_offsets` collection method. 

Possibly this method will be useful in animations. 

 

There is one internal function :meth:`_find_tails` which finds 

exactly what should be put on the barb given the vector magnitude. 

From there :meth:`_make_barbs` is used to find the vertices of the 

polygon to represent the barb based on this information. 

''' 

# This may be an abuse of polygons here to render what is essentially maybe 

# 1 triangle and a series of lines. It works fine as far as I can tell 

# however. 

@docstring.interpd 

def __init__(self, ax, *args, 

pivot='tip', length=7, barbcolor=None, flagcolor=None, 

sizes=None, fill_empty=False, barb_increments=None, 

rounding=True, flip_barb=False, **kw): 

""" 

The constructor takes one required argument, an Axes 

instance, followed by the args and kwargs described 

by the following pyplot interface documentation: 

%(barbs_doc)s 

""" 

self.sizes = sizes or dict() 

self.fill_empty = fill_empty 

self.barb_increments = barb_increments or dict() 

self.rounding = rounding 

self.flip = flip_barb 

transform = kw.pop('transform', ax.transData) 

self._pivot = pivot 

self._length = length 

barbcolor = barbcolor 

flagcolor = flagcolor 

 

# Flagcolor and barbcolor provide convenience parameters for 

# setting the facecolor and edgecolor, respectively, of the barb 

# polygon. We also work here to make the flag the same color as the 

# rest of the barb by default 

 

if None in (barbcolor, flagcolor): 

kw['edgecolors'] = 'face' 

if flagcolor: 

kw['facecolors'] = flagcolor 

elif barbcolor: 

kw['facecolors'] = barbcolor 

else: 

# Set to facecolor passed in or default to black 

kw.setdefault('facecolors', 'k') 

else: 

kw['edgecolors'] = barbcolor 

kw['facecolors'] = flagcolor 

 

# Explicitly set a line width if we're not given one, otherwise 

# polygons are not outlined and we get no barbs 

if 'linewidth' not in kw and 'lw' not in kw: 

kw['linewidth'] = 1 

 

# Parse out the data arrays from the various configurations supported 

x, y, u, v, c = _parse_args(*args) 

self.x = x 

self.y = y 

xy = np.column_stack((x, y)) 

 

# Make a collection 

barb_size = self._length ** 2 / 4 # Empirically determined 

mcollections.PolyCollection.__init__(self, [], (barb_size,), 

offsets=xy, 

transOffset=transform, **kw) 

self.set_transform(transforms.IdentityTransform()) 

 

self.set_UVC(u, v, c) 

 

def _find_tails(self, mag, rounding=True, half=5, full=10, flag=50): 

''' 

Find how many of each of the tail pieces is necessary. Flag 

specifies the increment for a flag, barb for a full barb, and half for 

half a barb. Mag should be the magnitude of a vector (i.e., >= 0). 

 

This returns a tuple of: 

 

(*number of flags*, *number of barbs*, *half_flag*, *empty_flag*) 

 

*half_flag* is a boolean whether half of a barb is needed, 

since there should only ever be one half on a given 

barb. *empty_flag* flag is an array of flags to easily tell if 

a barb is empty (too low to plot any barbs/flags. 

''' 

 

# If rounding, round to the nearest multiple of half, the smallest 

# increment 

if rounding: 

mag = half * (mag / half + 0.5).astype(int) 

 

num_flags = np.floor(mag / flag).astype(int) 

mag = np.mod(mag, flag) 

 

num_barb = np.floor(mag / full).astype(int) 

mag = np.mod(mag, full) 

 

half_flag = mag >= half 

empty_flag = ~(half_flag | (num_flags > 0) | (num_barb > 0)) 

 

return num_flags, num_barb, half_flag, empty_flag 

 

def _make_barbs(self, u, v, nflags, nbarbs, half_barb, empty_flag, length, 

pivot, sizes, fill_empty, flip): 

''' 

This function actually creates the wind barbs. *u* and *v* 

are components of the vector in the *x* and *y* directions, 

respectively. 

 

*nflags*, *nbarbs*, and *half_barb*, empty_flag* are, 

*respectively, the number of flags, number of barbs, flag for 

*half a barb, and flag for empty barb, ostensibly obtained 

*from :meth:`_find_tails`. 

 

*length* is the length of the barb staff in points. 

 

*pivot* specifies the point on the barb around which the 

entire barb should be rotated. Right now, valid options are 

'tip' and 'middle'. Can also be a number, which shifts the start 

of the barb that many points from the origin. 

 

*sizes* is a dictionary of coefficients specifying the ratio 

of a given feature to the length of the barb. These features 

include: 

 

- *spacing*: space between features (flags, full/half 

barbs) 

 

- *height*: distance from shaft of top of a flag or full 

barb 

 

- *width* - width of a flag, twice the width of a full barb 

 

- *emptybarb* - radius of the circle used for low 

magnitudes 

 

*fill_empty* specifies whether the circle representing an 

empty barb should be filled or not (this changes the drawing 

of the polygon). 

 

*flip* is a flag indicating whether the features should be flipped to 

the other side of the barb (useful for winds in the southern 

hemisphere). 

 

This function returns list of arrays of vertices, defining a polygon 

for each of the wind barbs. These polygons have been rotated to 

properly align with the vector direction. 

''' 

 

# These control the spacing and size of barb elements relative to the 

# length of the shaft 

spacing = length * sizes.get('spacing', 0.125) 

full_height = length * sizes.get('height', 0.4) 

full_width = length * sizes.get('width', 0.25) 

empty_rad = length * sizes.get('emptybarb', 0.15) 

 

# Controls y point where to pivot the barb. 

pivot_points = dict(tip=0.0, middle=-length / 2.) 

 

# Check for flip 

if flip: 

full_height = -full_height 

 

endx = 0.0 

try: 

endy = float(pivot) 

except ValueError: 

endy = pivot_points[pivot.lower()] 

 

# Get the appropriate angle for the vector components. The offset is 

# due to the way the barb is initially drawn, going down the y-axis. 

# This makes sense in a meteorological mode of thinking since there 0 

# degrees corresponds to north (the y-axis traditionally) 

angles = -(ma.arctan2(v, u) + np.pi / 2) 

 

# Used for low magnitude. We just get the vertices, so if we make it 

# out here, it can be reused. The center set here should put the 

# center of the circle at the location(offset), rather than at the 

# same point as the barb pivot; this seems more sensible. 

circ = CirclePolygon((0, 0), radius=empty_rad).get_verts() 

if fill_empty: 

empty_barb = circ 

else: 

# If we don't want the empty one filled, we make a degenerate 

# polygon that wraps back over itself 

empty_barb = np.concatenate((circ, circ[::-1])) 

 

barb_list = [] 

for index, angle in np.ndenumerate(angles): 

# If the vector magnitude is too weak to draw anything, plot an 

# empty circle instead 

if empty_flag[index]: 

# We can skip the transform since the circle has no preferred 

# orientation 

barb_list.append(empty_barb) 

continue 

 

poly_verts = [(endx, endy)] 

offset = length 

 

# Add vertices for each flag 

for i in range(nflags[index]): 

# The spacing that works for the barbs is a little to much for 

# the flags, but this only occurs when we have more than 1 

# flag. 

if offset != length: 

offset += spacing / 2. 

poly_verts.extend( 

[[endx, endy + offset], 

[endx + full_height, endy - full_width / 2 + offset], 

[endx, endy - full_width + offset]]) 

 

offset -= full_width + spacing 

 

# Add vertices for each barb. These really are lines, but works 

# great adding 3 vertices that basically pull the polygon out and 

# back down the line 

for i in range(nbarbs[index]): 

poly_verts.extend( 

[(endx, endy + offset), 

(endx + full_height, endy + offset + full_width / 2), 

(endx, endy + offset)]) 

 

offset -= spacing 

 

# Add the vertices for half a barb, if needed 

if half_barb[index]: 

# If the half barb is the first on the staff, traditionally it 

# is offset from the end to make it easy to distinguish from a 

# barb with a full one 

if offset == length: 

poly_verts.append((endx, endy + offset)) 

offset -= 1.5 * spacing 

poly_verts.extend( 

[(endx, endy + offset), 

(endx + full_height / 2, endy + offset + full_width / 4), 

(endx, endy + offset)]) 

 

# Rotate the barb according the angle. Making the barb first and 

# then rotating it made the math for drawing the barb really easy. 

# Also, the transform framework makes doing the rotation simple. 

poly_verts = transforms.Affine2D().rotate(-angle).transform( 

poly_verts) 

barb_list.append(poly_verts) 

 

return barb_list 

 

def set_UVC(self, U, V, C=None): 

self.u = ma.masked_invalid(U, copy=False).ravel() 

self.v = ma.masked_invalid(V, copy=False).ravel() 

if C is not None: 

c = ma.masked_invalid(C, copy=False).ravel() 

x, y, u, v, c = delete_masked_points(self.x.ravel(), 

self.y.ravel(), 

self.u, self.v, c) 

_check_consistent_shapes(x, y, u, v, c) 

else: 

x, y, u, v = delete_masked_points(self.x.ravel(), self.y.ravel(), 

self.u, self.v) 

_check_consistent_shapes(x, y, u, v) 

 

magnitude = np.hypot(u, v) 

flags, barbs, halves, empty = self._find_tails(magnitude, 

self.rounding, 

**self.barb_increments) 

 

# Get the vertices for each of the barbs 

 

plot_barbs = self._make_barbs(u, v, flags, barbs, halves, empty, 

self._length, self._pivot, self.sizes, 

self.fill_empty, self.flip) 

self.set_verts(plot_barbs) 

 

# Set the color array 

if C is not None: 

self.set_array(c) 

 

# Update the offsets in case the masked data changed 

xy = np.column_stack((x, y)) 

self._offsets = xy 

self.stale = True 

 

def set_offsets(self, xy): 

""" 

Set the offsets for the barb polygons. This saves the offsets passed 

in and actually sets version masked as appropriate for the existing 

U/V data. *offsets* should be a sequence. 

 

Parameters 

---------- 

offsets : sequence of pairs of floats 

""" 

self.x = xy[:, 0] 

self.y = xy[:, 1] 

x, y, u, v = delete_masked_points(self.x.ravel(), self.y.ravel(), 

self.u, self.v) 

_check_consistent_shapes(x, y, u, v) 

xy = np.column_stack((x, y)) 

mcollections.PolyCollection.set_offsets(self, xy) 

self.stale = True 

 

set_offsets.__doc__ = mcollections.PolyCollection.set_offsets.__doc__ 

 

barbs_doc = _barbs_doc