"""an axis spine -- the line noting the data area boundaries
Spines are the lines connecting the axis tick marks and noting the boundaries of the data area. They can be placed at arbitrary positions. See function:`~matplotlib.spines.Spine.set_position` for more information.
The default position is ``('outward',0)``.
Spines are subclasses of class:`~matplotlib.patches.Patch`, and inherit much of their behavior.
Spines draw a line, a circle, or an arc depending if function:`~matplotlib.spines.Spine.set_patch_line`, function:`~matplotlib.spines.Spine.set_patch_circle`, or function:`~matplotlib.spines.Spine.set_patch_arc` has been called. Line-like is the default.
""" def __str__(self): return "Spine"
def __init__(self, axes, spine_type, path, **kwargs): """ - *axes* : the Axes instance containing the spine - *spine_type* : a string specifying the spine type - *path* : the path instance used to draw the spine
Valid kwargs are: %(Patch)s """
# Defer initial position determination. (Not much support for # non-rectangular axes is currently implemented, and this lets # them pass through the spines machinery without errors.) raise ValueError( "'path' must be an instance of 'matplotlib.path.Path'")
# To support drawing both linear and circular spines, this # class implements Patch behavior three ways. If # self._patch_type == 'line', behave like a mpatches.PathPatch # instance. If self._patch_type == 'circle', behave like a # mpatches.Ellipse instance. If self._patch_type == 'arc', behave like # a mpatches.Arc instance.
# Behavior copied from mpatches.Ellipse: # Note: This cannot be calculated until this is added to an Axes
"""set the spine and associated axis to have smart bounds""" self._smart_bounds = value
# also set the axis if possible if self.spine_type in ('left', 'right'): self.axes.yaxis.set_smart_bounds(value) elif self.spine_type in ('top', 'bottom'): self.axes.xaxis.set_smart_bounds(value) self.stale = True
"""get whether the spine has smart bounds""" return self._smart_bounds
"""set the spine to be arc-like""" # arc drawn on axes transform
"""set the spine to be circular""" self._patch_type = 'circle' self._center = center self._width = radius * 2 self._height = radius * 2 # circle drawn on axes transform self.set_transform(self.axes.transAxes) self.stale = True
"""set the spine to be linear""" self._patch_type = 'line' self.stale = True
# Behavior copied from mpatches.Ellipse: """NOTE: This cannot be called until after this has been added to an Axes, otherwise unit conversion will fail. This makes it very important to call the accessor method and not directly access the transformation member variable. """ self.convert_yunits(self._center[1])) .scale(width * 0.5, height * 0.5) \ .translate(*center)
else:
# make sure the location is updated so that transforms etc are # correct: self._adjust_location() return super().get_window_extent(renderer=renderer)
# default position
"""register an axis
An axis should be registered with its corresponding spine from the Axes instance. This allows the spine to clear any axis properties when needed. """
"""Clear the current spine"""
"""return True if directly on axes frame
This is useful for determining if a spine is the edge of an old style MPL plot. If so, this function will return True. """ self._ensure_position_is_set() position = self._position if isinstance(position, str): if position == 'center': position = ('axes', 0.5) elif position == 'zero': position = ('data', 0) if len(position) != 2: raise ValueError("position should be 2-tuple") position_type, amount = position if position_type == 'outward' and amount == 0: return True else: return False
"""automatically set spine bounds to the view interval"""
return
else: raise ValueError('unknown spine spine_type: %s' % self.spine_type)
# attempt to set bounds in sophisticated way
# handle inverted limits viewlim_low, viewlim_high = sorted([low, high])
if self.spine_type in ('left', 'right'): datalim_low, datalim_high = self.axes.dataLim.intervaly ticks = self.axes.get_yticks() elif self.spine_type in ('top', 'bottom'): datalim_low, datalim_high = self.axes.dataLim.intervalx ticks = self.axes.get_xticks() # handle inverted limits ticks = np.sort(ticks) datalim_low, datalim_high = sorted([datalim_low, datalim_high])
if datalim_low < viewlim_low: # Data extends past view. Clip line to view. low = viewlim_low else: # Data ends before view ends. cond = (ticks <= datalim_low) & (ticks >= viewlim_low) tickvals = ticks[cond] if len(tickvals): # A tick is less than or equal to lowest data point. low = tickvals[-1] else: # No tick is available low = datalim_low low = max(low, viewlim_low)
if datalim_high > viewlim_high: # Data extends past view. Clip line to view. high = viewlim_high else: # Data ends before view ends. cond = (ticks >= datalim_high) & (ticks <= viewlim_high) tickvals = ticks[cond] if len(tickvals): # A tick is greater than or equal to highest data # point. high = tickvals[0] else: # No tick is available high = datalim_high high = min(high, viewlim_high)
else: low, high = self._bounds
except AttributeError: direction = 1 except AttributeError: offset = 0
except AttributeError: rorigin = rmin
else: raise ValueError('unable to set bounds for spine "%s"' % self.spine_type) else: else: raise ValueError('unable to set bounds for spine "%s"' % self.spine_type)
def draw(self, renderer):
"""calculate the offset transform performed by the spine""" if position == 'center': position = ('axes', 0.5) elif position == 'zero': position = ('data', 0) # short circuit commonest case mtransforms.IdentityTransform()) elif self.spine_type in ['left', 'right', 'top', 'bottom']: offset_vec = {'left': (-1, 0), 'right': (1, 0), 'bottom': (0, -1), 'top': (0, 1), }[self.spine_type] # calculate x and y offset in dots offset_x = amount * offset_vec[0] / 72.0 offset_y = amount * offset_vec[1] / 72.0 self._spine_transform = ('post', mtransforms.ScaledTranslation( offset_x, offset_y, self.figure.dpi_scale_trans)) else: warnings.warn('unknown spine type "%s": no spine ' 'offset performed' % self.spine_type) self._spine_transform = ('identity', mtransforms.IdentityTransform()) elif position_type == 'axes': if self.spine_type in ('left', 'right'): self._spine_transform = ('pre', mtransforms.Affine2D.from_values( # keep y unchanged, fix x at # amount 0, 0, 0, 1, amount, 0)) elif self.spine_type in ('bottom', 'top'): self._spine_transform = ('pre', mtransforms.Affine2D.from_values( # keep x unchanged, fix y at # amount 1, 0, 0, 0, 0, amount)) else: warnings.warn('unknown spine type "%s": no spine ' 'offset performed' % self.spine_type) self._spine_transform = ('identity', mtransforms.IdentityTransform()) elif position_type == 'data': if self.spine_type in ('right', 'top'): # The right and top spines have a default position of 1 in # axes coordinates. When specifying the position in data # coordinates, we need to calculate the position relative to 0. amount -= 1 if self.spine_type in ('left', 'right'): self._spine_transform = ('data', mtransforms.Affine2D().translate( amount, 0)) elif self.spine_type in ('bottom', 'top'): self._spine_transform = ('data', mtransforms.Affine2D().translate( 0, amount)) else: warnings.warn('unknown spine type "%s": no spine ' 'offset performed' % self.spine_type) self._spine_transform = ('identity', mtransforms.IdentityTransform())
"""set the position of the spine
Spine position is specified by a 2 tuple of (position type, amount). The position types are:
* 'outward' : place the spine out from the data area by the specified number of points. (Negative values specify placing the spine inward.)
* 'axes' : place the spine at the specified Axes coordinate (from 0.0-1.0).
* 'data' : place the spine at the specified data coordinate.
Additionally, shorthand notations define a special positions:
* 'center' -> ('axes',0.5) * 'zero' -> ('data', 0.0)
""" # special positions pass else: raise ValueError("position should be 'center' or 2-tuple") raise ValueError("position[0] should be one of 'outward', " "'axes', or 'data' ")
"""get the spine position""" self._ensure_position_is_set() return self._position
"""get the spine transform"""
# special case data based spine locations data_xform = self.axes.transScale + \ (how + self.axes.transLimits + self.axes.transAxes) if self.spine_type in ['left', 'right']: result = mtransforms.blended_transform_factory( data_xform, self.axes.transData) elif self.spine_type in ['top', 'bottom']: result = mtransforms.blended_transform_factory( self.axes.transData, data_xform) else: raise ValueError('unknown spine spine_type: %s' % self.spine_type) return result
else: raise ValueError('unknown spine spine_type: %s' % self.spine_type)
elif what == 'post': return base_transform + how elif what == 'pre': return how + base_transform else: raise ValueError("unknown spine_transform type: %s" % what)
"""Set the bounds of the spine.""" if self.spine_type == 'circle': raise ValueError( 'set_bounds() method incompatible with circular spines') self._bounds = (low, high) self.stale = True
"""Get the bounds of the spine.""" return self._bounds
def linear_spine(cls, axes, spine_type, **kwargs): """ (staticmethod) Returns a linear :class:`Spine`. """ # all values of 0.999 get replaced upon call to set_bounds() else: raise ValueError('unable to make path for spine "%s"' % spine_type)
def arc_spine(cls, axes, spine_type, center, radius, theta1, theta2, **kwargs): """ (classmethod) Returns an arc :class:`Spine`. """
def circular_spine(cls, axes, center, radius, **kwargs): """ (staticmethod) Returns a circular :class:`Spine`. """ path = mpath.Path.unit_circle() spine_type = 'circle' result = cls(axes, spine_type, path, **kwargs) result.set_patch_circle(center, radius) return result
""" Set the edgecolor.
Parameters ---------- c : color or sequence of rgba tuples
.. seealso::
:meth:`set_facecolor`, :meth:`set_edgecolor` For setting the edge or face color individually. """ # The facecolor of a spine is always 'none' by default -- let # the user change it manually if desired. self.set_edgecolor(c) self.stale = True |