1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

""" 

Streamline plotting for 2D vector fields. 

 

""" 

 

import numpy as np 

 

import matplotlib 

import matplotlib.cm as cm 

import matplotlib.colors as mcolors 

import matplotlib.collections as mcollections 

import matplotlib.lines as mlines 

import matplotlib.patches as patches 

 

 

__all__ = ['streamplot'] 

 

 

def streamplot(axes, x, y, u, v, density=1, linewidth=None, color=None, 

cmap=None, norm=None, arrowsize=1, arrowstyle='-|>', 

minlength=0.1, transform=None, zorder=None, start_points=None, 

maxlength=4.0, integration_direction='both'): 

"""Draw streamlines of a vector flow. 

 

*x*, *y* : 1d arrays 

an *evenly spaced* grid. 

*u*, *v* : 2d arrays 

x and y-velocities. Number of rows should match length of y, and 

the number of columns should match x. 

*density* : float or 2-tuple 

Controls the closeness of streamlines. When `density = 1`, the domain 

is divided into a 30x30 grid---*density* linearly scales this grid. 

Each cell in the grid can have, at most, one traversing streamline. 

For different densities in each direction, use [density_x, density_y]. 

*linewidth* : numeric or 2d array 

vary linewidth when given a 2d array with the same shape as velocities. 

*color* : matplotlib color code, or 2d array 

Streamline color. When given an array with the same shape as 

velocities, *color* values are converted to colors using *cmap*. 

*cmap* : :class:`~matplotlib.colors.Colormap` 

Colormap used to plot streamlines and arrows. Only necessary when using 

an array input for *color*. 

*norm* : :class:`~matplotlib.colors.Normalize` 

Normalize object used to scale luminance data to 0, 1. If None, stretch 

(min, max) to (0, 1). Only necessary when *color* is an array. 

*arrowsize* : float 

Factor scale arrow size. 

*arrowstyle* : str 

Arrow style specification. 

See :class:`~matplotlib.patches.FancyArrowPatch`. 

*minlength* : float 

Minimum length of streamline in axes coordinates. 

*start_points*: Nx2 array 

Coordinates of starting points for the streamlines. 

In data coordinates, the same as the ``x`` and ``y`` arrays. 

*zorder* : int 

any number 

*maxlength* : float 

Maximum length of streamline in axes coordinates. 

*integration_direction* : ['forward', 'backward', 'both'] 

Integrate the streamline in forward, backward or both directions. 

 

Returns: 

 

*stream_container* : StreamplotSet 

Container object with attributes 

 

- lines: `matplotlib.collections.LineCollection` of streamlines 

 

- arrows: collection of `matplotlib.patches.FancyArrowPatch` 

objects representing arrows half-way along stream 

lines. 

 

This container will probably change in the future to allow changes 

to the colormap, alpha, etc. for both lines and arrows, but these 

changes should be backward compatible. 

 

""" 

grid = Grid(x, y) 

mask = StreamMask(density) 

dmap = DomainMap(grid, mask) 

 

if zorder is None: 

zorder = mlines.Line2D.zorder 

 

# default to data coordinates 

if transform is None: 

transform = axes.transData 

 

if color is None: 

color = axes._get_lines.get_next_color() 

 

if linewidth is None: 

linewidth = matplotlib.rcParams['lines.linewidth'] 

 

line_kw = {} 

arrow_kw = dict(arrowstyle=arrowstyle, mutation_scale=10 * arrowsize) 

 

if integration_direction not in ['both', 'forward', 'backward']: 

errstr = ("Integration direction '%s' not recognised. " 

"Expected 'both', 'forward' or 'backward'." % 

integration_direction) 

raise ValueError(errstr) 

 

if integration_direction == 'both': 

maxlength /= 2. 

 

use_multicolor_lines = isinstance(color, np.ndarray) 

if use_multicolor_lines: 

if color.shape != grid.shape: 

raise ValueError( 

"If 'color' is given, must have the shape of 'Grid(x,y)'") 

line_colors = [] 

color = np.ma.masked_invalid(color) 

else: 

line_kw['color'] = color 

arrow_kw['color'] = color 

 

if isinstance(linewidth, np.ndarray): 

if linewidth.shape != grid.shape: 

raise ValueError( 

"If 'linewidth' is given, must have the shape of 'Grid(x,y)'") 

line_kw['linewidth'] = [] 

else: 

line_kw['linewidth'] = linewidth 

arrow_kw['linewidth'] = linewidth 

 

line_kw['zorder'] = zorder 

arrow_kw['zorder'] = zorder 

 

## Sanity checks. 

if u.shape != grid.shape or v.shape != grid.shape: 

raise ValueError("'u' and 'v' must be of shape 'Grid(x,y)'") 

 

u = np.ma.masked_invalid(u) 

v = np.ma.masked_invalid(v) 

 

integrate = get_integrator(u, v, dmap, minlength, maxlength, 

integration_direction) 

 

trajectories = [] 

if start_points is None: 

for xm, ym in _gen_starting_points(mask.shape): 

if mask[ym, xm] == 0: 

xg, yg = dmap.mask2grid(xm, ym) 

t = integrate(xg, yg) 

if t is not None: 

trajectories.append(t) 

else: 

sp2 = np.asanyarray(start_points, dtype=float).copy() 

 

# Check if start_points are outside the data boundaries 

for xs, ys in sp2: 

if not (grid.x_origin <= xs <= grid.x_origin + grid.width 

and grid.y_origin <= ys <= grid.y_origin + grid.height): 

raise ValueError("Starting point ({}, {}) outside of data " 

"boundaries".format(xs, ys)) 

 

# Convert start_points from data to array coords 

# Shift the seed points from the bottom left of the data so that 

# data2grid works properly. 

sp2[:, 0] -= grid.x_origin 

sp2[:, 1] -= grid.y_origin 

 

for xs, ys in sp2: 

xg, yg = dmap.data2grid(xs, ys) 

t = integrate(xg, yg) 

if t is not None: 

trajectories.append(t) 

 

if use_multicolor_lines: 

if norm is None: 

norm = mcolors.Normalize(color.min(), color.max()) 

if cmap is None: 

cmap = cm.get_cmap(matplotlib.rcParams['image.cmap']) 

else: 

cmap = cm.get_cmap(cmap) 

 

streamlines = [] 

arrows = [] 

for t in trajectories: 

tgx = np.array(t[0]) 

tgy = np.array(t[1]) 

# Rescale from grid-coordinates to data-coordinates. 

tx, ty = dmap.grid2data(*np.array(t)) 

tx += grid.x_origin 

ty += grid.y_origin 

 

points = np.transpose([tx, ty]).reshape(-1, 1, 2) 

streamlines.extend(np.hstack([points[:-1], points[1:]])) 

 

# Add arrows half way along each trajectory. 

s = np.cumsum(np.sqrt(np.diff(tx) ** 2 + np.diff(ty) ** 2)) 

n = np.searchsorted(s, s[-1] / 2.) 

arrow_tail = (tx[n], ty[n]) 

arrow_head = (np.mean(tx[n:n + 2]), np.mean(ty[n:n + 2])) 

 

if isinstance(linewidth, np.ndarray): 

line_widths = interpgrid(linewidth, tgx, tgy)[:-1] 

line_kw['linewidth'].extend(line_widths) 

arrow_kw['linewidth'] = line_widths[n] 

 

if use_multicolor_lines: 

color_values = interpgrid(color, tgx, tgy)[:-1] 

line_colors.append(color_values) 

arrow_kw['color'] = cmap(norm(color_values[n])) 

 

p = patches.FancyArrowPatch( 

arrow_tail, arrow_head, transform=transform, **arrow_kw) 

axes.add_patch(p) 

arrows.append(p) 

 

lc = mcollections.LineCollection( 

streamlines, transform=transform, **line_kw) 

lc.sticky_edges.x[:] = [grid.x_origin, grid.x_origin + grid.width] 

lc.sticky_edges.y[:] = [grid.y_origin, grid.y_origin + grid.height] 

if use_multicolor_lines: 

lc.set_array(np.ma.hstack(line_colors)) 

lc.set_cmap(cmap) 

lc.set_norm(norm) 

axes.add_collection(lc) 

axes.autoscale_view() 

 

ac = matplotlib.collections.PatchCollection(arrows) 

stream_container = StreamplotSet(lc, ac) 

return stream_container 

 

 

class StreamplotSet(object): 

 

def __init__(self, lines, arrows, **kwargs): 

self.lines = lines 

self.arrows = arrows 

 

 

# Coordinate definitions 

# ======================== 

 

class DomainMap(object): 

"""Map representing different coordinate systems. 

 

Coordinate definitions: 

 

* axes-coordinates goes from 0 to 1 in the domain. 

* data-coordinates are specified by the input x-y coordinates. 

* grid-coordinates goes from 0 to N and 0 to M for an N x M grid, 

where N and M match the shape of the input data. 

* mask-coordinates goes from 0 to N and 0 to M for an N x M mask, 

where N and M are user-specified to control the density of streamlines. 

 

This class also has methods for adding trajectories to the StreamMask. 

Before adding a trajectory, run `start_trajectory` to keep track of regions 

crossed by a given trajectory. Later, if you decide the trajectory is bad 

(e.g., if the trajectory is very short) just call `undo_trajectory`. 

""" 

 

def __init__(self, grid, mask): 

self.grid = grid 

self.mask = mask 

# Constants for conversion between grid- and mask-coordinates 

self.x_grid2mask = (mask.nx - 1) / grid.nx 

self.y_grid2mask = (mask.ny - 1) / grid.ny 

 

self.x_mask2grid = 1. / self.x_grid2mask 

self.y_mask2grid = 1. / self.y_grid2mask 

 

self.x_data2grid = 1. / grid.dx 

self.y_data2grid = 1. / grid.dy 

 

def grid2mask(self, xi, yi): 

"""Return nearest space in mask-coords from given grid-coords.""" 

return (int((xi * self.x_grid2mask) + 0.5), 

int((yi * self.y_grid2mask) + 0.5)) 

 

def mask2grid(self, xm, ym): 

return xm * self.x_mask2grid, ym * self.y_mask2grid 

 

def data2grid(self, xd, yd): 

return xd * self.x_data2grid, yd * self.y_data2grid 

 

def grid2data(self, xg, yg): 

return xg / self.x_data2grid, yg / self.y_data2grid 

 

def start_trajectory(self, xg, yg): 

xm, ym = self.grid2mask(xg, yg) 

self.mask._start_trajectory(xm, ym) 

 

def reset_start_point(self, xg, yg): 

xm, ym = self.grid2mask(xg, yg) 

self.mask._current_xy = (xm, ym) 

 

def update_trajectory(self, xg, yg): 

if not self.grid.within_grid(xg, yg): 

raise InvalidIndexError 

xm, ym = self.grid2mask(xg, yg) 

self.mask._update_trajectory(xm, ym) 

 

def undo_trajectory(self): 

self.mask._undo_trajectory() 

 

 

class Grid(object): 

"""Grid of data.""" 

def __init__(self, x, y): 

 

if x.ndim == 1: 

pass 

elif x.ndim == 2: 

x_row = x[0, :] 

if not np.allclose(x_row, x): 

raise ValueError("The rows of 'x' must be equal") 

x = x_row 

else: 

raise ValueError("'x' can have at maximum 2 dimensions") 

 

if y.ndim == 1: 

pass 

elif y.ndim == 2: 

y_col = y[:, 0] 

if not np.allclose(y_col, y.T): 

raise ValueError("The columns of 'y' must be equal") 

y = y_col 

else: 

raise ValueError("'y' can have at maximum 2 dimensions") 

 

self.nx = len(x) 

self.ny = len(y) 

 

self.dx = x[1] - x[0] 

self.dy = y[1] - y[0] 

 

self.x_origin = x[0] 

self.y_origin = y[0] 

 

self.width = x[-1] - x[0] 

self.height = y[-1] - y[0] 

 

@property 

def shape(self): 

return self.ny, self.nx 

 

def within_grid(self, xi, yi): 

"""Return True if point is a valid index of grid.""" 

# Note that xi/yi can be floats; so, for example, we can't simply check 

# `xi < self.nx` since `xi` can be `self.nx - 1 < xi < self.nx` 

return xi >= 0 and xi <= self.nx - 1 and yi >= 0 and yi <= self.ny - 1 

 

 

class StreamMask(object): 

"""Mask to keep track of discrete regions crossed by streamlines. 

 

The resolution of this grid determines the approximate spacing between 

trajectories. Streamlines are only allowed to pass through zeroed cells: 

When a streamline enters a cell, that cell is set to 1, and no new 

streamlines are allowed to enter. 

""" 

 

def __init__(self, density): 

if np.isscalar(density): 

if density <= 0: 

raise ValueError("If a scalar, 'density' must be positive") 

self.nx = self.ny = int(30 * density) 

else: 

if len(density) != 2: 

raise ValueError("'density' can have at maximum 2 dimensions") 

self.nx = int(30 * density[0]) 

self.ny = int(30 * density[1]) 

self._mask = np.zeros((self.ny, self.nx)) 

self.shape = self._mask.shape 

 

self._current_xy = None 

 

def __getitem__(self, *args): 

return self._mask.__getitem__(*args) 

 

def _start_trajectory(self, xm, ym): 

"""Start recording streamline trajectory""" 

self._traj = [] 

self._update_trajectory(xm, ym) 

 

def _undo_trajectory(self): 

"""Remove current trajectory from mask""" 

for t in self._traj: 

self._mask.__setitem__(t, 0) 

 

def _update_trajectory(self, xm, ym): 

"""Update current trajectory position in mask. 

 

If the new position has already been filled, raise `InvalidIndexError`. 

""" 

if self._current_xy != (xm, ym): 

if self[ym, xm] == 0: 

self._traj.append((ym, xm)) 

self._mask[ym, xm] = 1 

self._current_xy = (xm, ym) 

else: 

raise InvalidIndexError 

 

 

class InvalidIndexError(Exception): 

pass 

 

 

class TerminateTrajectory(Exception): 

pass 

 

 

# Integrator definitions 

#======================== 

 

def get_integrator(u, v, dmap, minlength, maxlength, integration_direction): 

 

# rescale velocity onto grid-coordinates for integrations. 

u, v = dmap.data2grid(u, v) 

 

# speed (path length) will be in axes-coordinates 

u_ax = u / dmap.grid.nx 

v_ax = v / dmap.grid.ny 

speed = np.ma.sqrt(u_ax ** 2 + v_ax ** 2) 

 

def forward_time(xi, yi): 

ds_dt = interpgrid(speed, xi, yi) 

if ds_dt == 0: 

raise TerminateTrajectory() 

dt_ds = 1. / ds_dt 

ui = interpgrid(u, xi, yi) 

vi = interpgrid(v, xi, yi) 

return ui * dt_ds, vi * dt_ds 

 

def backward_time(xi, yi): 

dxi, dyi = forward_time(xi, yi) 

return -dxi, -dyi 

 

def integrate(x0, y0): 

"""Return x, y grid-coordinates of trajectory based on starting point. 

 

Integrate both forward and backward in time from starting point in 

grid coordinates. 

 

Integration is terminated when a trajectory reaches a domain boundary 

or when it crosses into an already occupied cell in the StreamMask. The 

resulting trajectory is None if it is shorter than `minlength`. 

""" 

 

stotal, x_traj, y_traj = 0., [], [] 

 

try: 

dmap.start_trajectory(x0, y0) 

except InvalidIndexError: 

return None 

if integration_direction in ['both', 'backward']: 

s, xt, yt = _integrate_rk12(x0, y0, dmap, backward_time, maxlength) 

stotal += s 

x_traj += xt[::-1] 

y_traj += yt[::-1] 

 

if integration_direction in ['both', 'forward']: 

dmap.reset_start_point(x0, y0) 

s, xt, yt = _integrate_rk12(x0, y0, dmap, forward_time, maxlength) 

if len(x_traj) > 0: 

xt = xt[1:] 

yt = yt[1:] 

stotal += s 

x_traj += xt 

y_traj += yt 

 

if stotal > minlength: 

return x_traj, y_traj 

else: # reject short trajectories 

dmap.undo_trajectory() 

return None 

 

return integrate 

 

 

def _integrate_rk12(x0, y0, dmap, f, maxlength): 

"""2nd-order Runge-Kutta algorithm with adaptive step size. 

 

This method is also referred to as the improved Euler's method, or Heun's 

method. This method is favored over higher-order methods because: 

 

1. To get decent looking trajectories and to sample every mask cell 

on the trajectory we need a small timestep, so a lower order 

solver doesn't hurt us unless the data is *very* high resolution. 

In fact, for cases where the user inputs 

data smaller or of similar grid size to the mask grid, the higher 

order corrections are negligible because of the very fast linear 

interpolation used in `interpgrid`. 

 

2. For high resolution input data (i.e. beyond the mask 

resolution), we must reduce the timestep. Therefore, an adaptive 

timestep is more suited to the problem as this would be very hard 

to judge automatically otherwise. 

 

This integrator is about 1.5 - 2x as fast as both the RK4 and RK45 

solvers in most setups on my machine. I would recommend removing the 

other two to keep things simple. 

""" 

# This error is below that needed to match the RK4 integrator. It 

# is set for visual reasons -- too low and corners start 

# appearing ugly and jagged. Can be tuned. 

maxerror = 0.003 

 

# This limit is important (for all integrators) to avoid the 

# trajectory skipping some mask cells. We could relax this 

# condition if we use the code which is commented out below to 

# increment the location gradually. However, due to the efficient 

# nature of the interpolation, this doesn't boost speed by much 

# for quite a bit of complexity. 

maxds = min(1. / dmap.mask.nx, 1. / dmap.mask.ny, 0.1) 

 

ds = maxds 

stotal = 0 

xi = x0 

yi = y0 

xf_traj = [] 

yf_traj = [] 

 

while dmap.grid.within_grid(xi, yi): 

xf_traj.append(xi) 

yf_traj.append(yi) 

try: 

k1x, k1y = f(xi, yi) 

k2x, k2y = f(xi + ds * k1x, 

yi + ds * k1y) 

except IndexError: 

# Out of the domain on one of the intermediate integration steps. 

# Take an Euler step to the boundary to improve neatness. 

ds, xf_traj, yf_traj = _euler_step(xf_traj, yf_traj, dmap, f) 

stotal += ds 

break 

except TerminateTrajectory: 

break 

 

dx1 = ds * k1x 

dy1 = ds * k1y 

dx2 = ds * 0.5 * (k1x + k2x) 

dy2 = ds * 0.5 * (k1y + k2y) 

 

nx, ny = dmap.grid.shape 

# Error is normalized to the axes coordinates 

error = np.sqrt(((dx2 - dx1) / nx) ** 2 + ((dy2 - dy1) / ny) ** 2) 

 

# Only save step if within error tolerance 

if error < maxerror: 

xi += dx2 

yi += dy2 

try: 

dmap.update_trajectory(xi, yi) 

except InvalidIndexError: 

break 

if stotal + ds > maxlength: 

break 

stotal += ds 

 

# recalculate stepsize based on step error 

if error == 0: 

ds = maxds 

else: 

ds = min(maxds, 0.85 * ds * (maxerror / error) ** 0.5) 

 

return stotal, xf_traj, yf_traj 

 

 

def _euler_step(xf_traj, yf_traj, dmap, f): 

"""Simple Euler integration step that extends streamline to boundary.""" 

ny, nx = dmap.grid.shape 

xi = xf_traj[-1] 

yi = yf_traj[-1] 

cx, cy = f(xi, yi) 

if cx == 0: 

dsx = np.inf 

elif cx < 0: 

dsx = xi / -cx 

else: 

dsx = (nx - 1 - xi) / cx 

if cy == 0: 

dsy = np.inf 

elif cy < 0: 

dsy = yi / -cy 

else: 

dsy = (ny - 1 - yi) / cy 

ds = min(dsx, dsy) 

xf_traj.append(xi + cx * ds) 

yf_traj.append(yi + cy * ds) 

return ds, xf_traj, yf_traj 

 

 

# Utility functions 

# ======================== 

 

def interpgrid(a, xi, yi): 

"""Fast 2D, linear interpolation on an integer grid""" 

 

Ny, Nx = np.shape(a) 

if isinstance(xi, np.ndarray): 

x = xi.astype(int) 

y = yi.astype(int) 

# Check that xn, yn don't exceed max index 

xn = np.clip(x + 1, 0, Nx - 1) 

yn = np.clip(y + 1, 0, Ny - 1) 

else: 

x = int(xi) 

y = int(yi) 

# conditional is faster than clipping for integers 

if x == (Nx - 1): 

xn = x 

else: 

xn = x + 1 

if y == (Ny - 1): 

yn = y 

else: 

yn = y + 1 

 

a00 = a[y, x] 

a01 = a[y, xn] 

a10 = a[yn, x] 

a11 = a[yn, xn] 

xt = xi - x 

yt = yi - y 

a0 = a00 * (1 - xt) + a01 * xt 

a1 = a10 * (1 - xt) + a11 * xt 

ai = a0 * (1 - yt) + a1 * yt 

 

if not isinstance(xi, np.ndarray): 

if np.ma.is_masked(ai): 

raise TerminateTrajectory 

 

return ai 

 

 

def _gen_starting_points(shape): 

"""Yield starting points for streamlines. 

 

Trying points on the boundary first gives higher quality streamlines. 

This algorithm starts with a point on the mask corner and spirals inward. 

This algorithm is inefficient, but fast compared to rest of streamplot. 

""" 

ny, nx = shape 

xfirst = 0 

yfirst = 1 

xlast = nx - 1 

ylast = ny - 1 

x, y = 0, 0 

i = 0 

direction = 'right' 

for i in range(nx * ny): 

 

yield x, y 

 

if direction == 'right': 

x += 1 

if x >= xlast: 

xlast -= 1 

direction = 'up' 

elif direction == 'up': 

y += 1 

if y >= ylast: 

ylast -= 1 

direction = 'left' 

elif direction == 'left': 

x -= 1 

if x <= xfirst: 

xfirst += 1 

direction = 'down' 

elif direction == 'down': 

y -= 1 

if y <= yfirst: 

yfirst += 1 

direction = 'right'