1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

""" 

Tick locating and formatting 

============================ 

 

This module contains classes to support completely configurable tick 

locating and formatting. Although the locators know nothing about major 

or minor ticks, they are used by the Axis class to support major and 

minor tick locating and formatting. Generic tick locators and 

formatters are provided, as well as domain specific custom ones. 

 

Default Formatter 

----------------- 

 

The default formatter identifies when the x-data being plotted is a 

small range on top of a large off set. To reduce the chances that the 

ticklabels overlap the ticks are labeled as deltas from a fixed offset. 

For example:: 

 

ax.plot(np.arange(2000, 2010), range(10)) 

 

will have tick of 0-9 with an offset of +2e3. If this is not desired 

turn off the use of the offset on the default formatter:: 

 

ax.get_xaxis().get_major_formatter().set_useOffset(False) 

 

set the rcParam ``axes.formatter.useoffset=False`` to turn it off 

globally, or set a different formatter. 

 

Tick locating 

------------- 

 

The Locator class is the base class for all tick locators. The locators 

handle autoscaling of the view limits based on the data limits, and the 

choosing of tick locations. A useful semi-automatic tick locator is 

`MultipleLocator`. It is initialized with a base, e.g., 10, and it picks 

axis limits and ticks that are multiples of that base. 

 

The Locator subclasses defined here are 

 

:class:`AutoLocator` 

`MaxNLocator` with simple defaults. This is the default tick locator for 

most plotting. 

 

:class:`MaxNLocator` 

Finds up to a max number of intervals with ticks at nice locations. 

 

:class:`LinearLocator` 

Space ticks evenly from min to max. 

 

:class:`LogLocator` 

Space ticks logarithmically from min to max. 

 

:class:`MultipleLocator` 

Ticks and range are a multiple of base; either integer or float. 

 

:class:`FixedLocator` 

Tick locations are fixed. 

 

:class:`IndexLocator` 

Locator for index plots (e.g., where ``x = range(len(y))``). 

 

:class:`NullLocator` 

No ticks. 

 

:class:`SymmetricalLogLocator` 

Locator for use with with the symlog norm; works like `LogLocator` for the 

part outside of the threshold and adds 0 if inside the limits. 

 

:class:`LogitLocator` 

Locator for logit scaling. 

 

:class:`OldAutoLocator` 

Choose a `MultipleLocator` and dynamically reassign it for intelligent 

ticking during navigation. 

 

:class:`AutoMinorLocator` 

Locator for minor ticks when the axis is linear and the 

major ticks are uniformly spaced. Subdivides the major 

tick interval into a specified number of minor intervals, 

defaulting to 4 or 5 depending on the major interval. 

 

 

There are a number of locators specialized for date locations - see 

the `dates` module. 

 

You can define your own locator by deriving from Locator. You must 

override the ``__call__`` method, which returns a sequence of locations, 

and you will probably want to override the autoscale method to set the 

view limits from the data limits. 

 

If you want to override the default locator, use one of the above or a custom 

locator and pass it to the x or y axis instance. The relevant methods are:: 

 

ax.xaxis.set_major_locator(xmajor_locator) 

ax.xaxis.set_minor_locator(xminor_locator) 

ax.yaxis.set_major_locator(ymajor_locator) 

ax.yaxis.set_minor_locator(yminor_locator) 

 

The default minor locator is `NullLocator`, i.e., no minor ticks on by default. 

 

Tick formatting 

--------------- 

 

Tick formatting is controlled by classes derived from Formatter. The formatter 

operates on a single tick value and returns a string to the axis. 

 

:class:`NullFormatter` 

No labels on the ticks. 

 

:class:`IndexFormatter` 

Set the strings from a list of labels. 

 

:class:`FixedFormatter` 

Set the strings manually for the labels. 

 

:class:`FuncFormatter` 

User defined function sets the labels. 

 

:class:`StrMethodFormatter` 

Use string `format` method. 

 

:class:`FormatStrFormatter` 

Use an old-style sprintf format string. 

 

:class:`ScalarFormatter` 

Default formatter for scalars: autopick the format string. 

 

:class:`LogFormatter` 

Formatter for log axes. 

 

:class:`LogFormatterExponent` 

Format values for log axis using ``exponent = log_base(value)``. 

 

:class:`LogFormatterMathtext` 

Format values for log axis using ``exponent = log_base(value)`` 

using Math text. 

 

:class:`LogFormatterSciNotation` 

Format values for log axis using scientific notation. 

 

:class:`LogitFormatter` 

Probability formatter. 

 

:class:`EngFormatter` 

Format labels in engineering notation 

 

:class:`PercentFormatter` 

Format labels as a percentage 

 

You can derive your own formatter from the Formatter base class by 

simply overriding the ``__call__`` method. The formatter class has 

access to the axis view and data limits. 

 

To control the major and minor tick label formats, use one of the 

following methods:: 

 

ax.xaxis.set_major_formatter(xmajor_formatter) 

ax.xaxis.set_minor_formatter(xminor_formatter) 

ax.yaxis.set_major_formatter(ymajor_formatter) 

ax.yaxis.set_minor_formatter(yminor_formatter) 

 

See :doc:`/gallery/ticks_and_spines/major_minor_demo` for an 

example of setting major and minor ticks. See the :mod:`matplotlib.dates` 

module for more information and examples of using date locators and formatters. 

""" 

 

import itertools 

import logging 

import locale 

import math 

import numpy as np 

from matplotlib import rcParams 

from matplotlib import cbook 

from matplotlib import transforms as mtransforms 

 

import warnings 

 

_log = logging.getLogger(__name__) 

 

__all__ = ('TickHelper', 'Formatter', 'FixedFormatter', 

'NullFormatter', 'FuncFormatter', 'FormatStrFormatter', 

'StrMethodFormatter', 'ScalarFormatter', 'LogFormatter', 

'LogFormatterExponent', 'LogFormatterMathtext', 

'IndexFormatter', 'LogFormatterSciNotation', 

'LogitFormatter', 'EngFormatter', 'PercentFormatter', 

'Locator', 'IndexLocator', 'FixedLocator', 'NullLocator', 

'LinearLocator', 'LogLocator', 'AutoLocator', 

'MultipleLocator', 'MaxNLocator', 'AutoMinorLocator', 

'SymmetricalLogLocator', 'LogitLocator') 

 

 

# Work around numpy/numpy#6127. 

def _divmod(x, y): 

if isinstance(x, np.generic): 

x = x.item() 

if isinstance(y, np.generic): 

y = y.item() 

return divmod(x, y) 

 

 

def _mathdefault(s): 

return '\\mathdefault{%s}' % s 

 

 

class _DummyAxis(object): 

def __init__(self, minpos=0): 

self.dataLim = mtransforms.Bbox.unit() 

self.viewLim = mtransforms.Bbox.unit() 

self._minpos = minpos 

 

def get_view_interval(self): 

return self.viewLim.intervalx 

 

def set_view_interval(self, vmin, vmax): 

self.viewLim.intervalx = vmin, vmax 

 

def get_minpos(self): 

return self._minpos 

 

def get_data_interval(self): 

return self.dataLim.intervalx 

 

def set_data_interval(self, vmin, vmax): 

self.dataLim.intervalx = vmin, vmax 

 

def get_tick_space(self): 

# Just use the long-standing default of nbins==9 

return 9 

 

 

class TickHelper(object): 

axis = None 

 

def set_axis(self, axis): 

self.axis = axis 

 

def create_dummy_axis(self, **kwargs): 

if self.axis is None: 

self.axis = _DummyAxis(**kwargs) 

 

def set_view_interval(self, vmin, vmax): 

self.axis.set_view_interval(vmin, vmax) 

 

def set_data_interval(self, vmin, vmax): 

self.axis.set_data_interval(vmin, vmax) 

 

def set_bounds(self, vmin, vmax): 

self.set_view_interval(vmin, vmax) 

self.set_data_interval(vmin, vmax) 

 

 

class Formatter(TickHelper): 

""" 

Create a string based on a tick value and location. 

""" 

# some classes want to see all the locs to help format 

# individual ones 

locs = [] 

 

def __call__(self, x, pos=None): 

""" 

Return the format for tick value *x* at position pos. 

``pos=None`` indicates an unspecified location. 

""" 

raise NotImplementedError('Derived must override') 

 

def format_data(self, value): 

""" 

Returns the full string representation of the value with the 

position unspecified. 

""" 

return self.__call__(value) 

 

def format_data_short(self, value): 

""" 

Return a short string version of the tick value. 

 

Defaults to the position-independent long value. 

""" 

return self.format_data(value) 

 

def get_offset(self): 

return '' 

 

def set_locs(self, locs): 

self.locs = locs 

 

def fix_minus(self, s): 

""" 

Some classes may want to replace a hyphen for minus with the 

proper unicode symbol (U+2212) for typographical correctness. 

The default is to not replace it. 

 

Note, if you use this method, e.g., in :meth:`format_data` or 

call, you probably don't want to use it for 

:meth:`format_data_short` since the toolbar uses this for 

interactive coord reporting and I doubt we can expect GUIs 

across platforms will handle the unicode correctly. So for 

now the classes that override :meth:`fix_minus` should have an 

explicit :meth:`format_data_short` method 

""" 

return s 

 

 

class IndexFormatter(Formatter): 

""" 

Format the position x to the nearest i-th label where i=int(x+0.5) 

""" 

def __init__(self, labels): 

self.labels = labels 

self.n = len(labels) 

 

def __call__(self, x, pos=None): 

""" 

Return the format for tick value `x` at position pos. 

 

The position is ignored and the value is rounded to the nearest 

integer, which is used to look up the label. 

""" 

i = int(x + 0.5) 

if i < 0 or i >= self.n: 

return '' 

else: 

return self.labels[i] 

 

 

class NullFormatter(Formatter): 

""" 

Always return the empty string. 

""" 

def __call__(self, x, pos=None): 

""" 

Returns an empty string for all inputs. 

""" 

return '' 

 

 

class FixedFormatter(Formatter): 

""" 

Return fixed strings for tick labels based only on position, not 

value. 

""" 

def __init__(self, seq): 

""" 

Set the sequence of strings that will be used for labels. 

""" 

self.seq = seq 

self.offset_string = '' 

 

def __call__(self, x, pos=None): 

""" 

Returns the label that matches the position regardless of the 

value. 

 

For positions ``pos < len(seq)``, return `seq[i]` regardless of 

`x`. Otherwise return empty string. `seq` is the sequence of 

strings that this object was initialized with. 

""" 

if pos is None or pos >= len(self.seq): 

return '' 

else: 

return self.seq[pos] 

 

def get_offset(self): 

return self.offset_string 

 

def set_offset_string(self, ofs): 

self.offset_string = ofs 

 

 

class FuncFormatter(Formatter): 

""" 

Use a user-defined function for formatting. 

 

The function should take in two inputs (a tick value ``x`` and a 

position ``pos``), and return a string containing the corresponding 

tick label. 

""" 

def __init__(self, func): 

self.func = func 

 

def __call__(self, x, pos=None): 

""" 

Return the value of the user defined function. 

 

`x` and `pos` are passed through as-is. 

""" 

return self.func(x, pos) 

 

 

class FormatStrFormatter(Formatter): 

""" 

Use an old-style ('%' operator) format string to format the tick. 

 

The format string should have a single variable format (%) in it. 

It will be applied to the value (not the position) of the tick. 

""" 

def __init__(self, fmt): 

self.fmt = fmt 

 

def __call__(self, x, pos=None): 

""" 

Return the formatted label string. 

 

Only the value `x` is formatted. The position is ignored. 

""" 

return self.fmt % x 

 

 

class StrMethodFormatter(Formatter): 

""" 

Use a new-style format string (as used by `str.format()`) 

to format the tick. 

 

The field used for the value must be labeled `x` and the field used 

for the position must be labeled `pos`. 

""" 

def __init__(self, fmt): 

self.fmt = fmt 

 

def __call__(self, x, pos=None): 

""" 

Return the formatted label string. 

 

`x` and `pos` are passed to `str.format` as keyword arguments 

with those exact names. 

""" 

return self.fmt.format(x=x, pos=pos) 

 

 

class OldScalarFormatter(Formatter): 

""" 

Tick location is a plain old number. 

""" 

 

def __call__(self, x, pos=None): 

""" 

Return the format for tick val `x` based on the width of the 

axis. 

 

The position `pos` is ignored. 

""" 

xmin, xmax = self.axis.get_view_interval() 

d = abs(xmax - xmin) 

 

return self.pprint_val(x, d) 

 

def pprint_val(self, x, d): 

""" 

Formats the value `x` based on the size of the axis range `d`. 

""" 

#if the number is not too big and it's an int, format it as an 

#int 

if abs(x) < 1e4 and x == int(x): 

return '%d' % x 

 

if d < 1e-2: 

fmt = '%1.3e' 

elif d < 1e-1: 

fmt = '%1.3f' 

elif d > 1e5: 

fmt = '%1.1e' 

elif d > 10: 

fmt = '%1.1f' 

elif d > 1: 

fmt = '%1.2f' 

else: 

fmt = '%1.3f' 

s = fmt % x 

tup = s.split('e') 

if len(tup) == 2: 

mantissa = tup[0].rstrip('0').rstrip('.') 

sign = tup[1][0].replace('+', '') 

exponent = tup[1][1:].lstrip('0') 

s = '%se%s%s' % (mantissa, sign, exponent) 

else: 

s = s.rstrip('0').rstrip('.') 

return s 

 

 

class ScalarFormatter(Formatter): 

""" 

Format tick values as a number. 

 

Tick value is interpreted as a plain old number. If 

``useOffset==True`` and the data range is much smaller than the data 

average, then an offset will be determined such that the tick labels 

are meaningful. Scientific notation is used for ``data < 10^-n`` or 

``data >= 10^m``, where ``n`` and ``m`` are the power limits set 

using ``set_powerlimits((n,m))``. The defaults for these are 

controlled by the ``axes.formatter.limits`` rc parameter. 

""" 

def __init__(self, useOffset=None, useMathText=None, useLocale=None): 

# useOffset allows plotting small data ranges with large offsets: for 

# example: [1+1e-9,1+2e-9,1+3e-9] useMathText will render the offset 

# and scientific notation in mathtext 

 

if useOffset is None: 

useOffset = rcParams['axes.formatter.useoffset'] 

self._offset_threshold = rcParams['axes.formatter.offset_threshold'] 

self.set_useOffset(useOffset) 

self._usetex = rcParams['text.usetex'] 

if useMathText is None: 

useMathText = rcParams['axes.formatter.use_mathtext'] 

self.set_useMathText(useMathText) 

self.orderOfMagnitude = 0 

self.format = '' 

self._scientific = True 

self._powerlimits = rcParams['axes.formatter.limits'] 

if useLocale is None: 

useLocale = rcParams['axes.formatter.use_locale'] 

self._useLocale = useLocale 

 

def get_useOffset(self): 

return self._useOffset 

 

def set_useOffset(self, val): 

if val in [True, False]: 

self.offset = 0 

self._useOffset = val 

else: 

self._useOffset = False 

self.offset = val 

 

useOffset = property(fget=get_useOffset, fset=set_useOffset) 

 

def get_useLocale(self): 

return self._useLocale 

 

def set_useLocale(self, val): 

if val is None: 

self._useLocale = rcParams['axes.formatter.use_locale'] 

else: 

self._useLocale = val 

 

useLocale = property(fget=get_useLocale, fset=set_useLocale) 

 

def get_useMathText(self): 

return self._useMathText 

 

def set_useMathText(self, val): 

if val is None: 

self._useMathText = rcParams['axes.formatter.use_mathtext'] 

else: 

self._useMathText = val 

 

useMathText = property(fget=get_useMathText, fset=set_useMathText) 

 

def fix_minus(self, s): 

""" 

Replace hyphens with a unicode minus. 

""" 

if rcParams['text.usetex'] or not rcParams['axes.unicode_minus']: 

return s 

else: 

return s.replace('-', '\N{MINUS SIGN}') 

 

def __call__(self, x, pos=None): 

""" 

Return the format for tick value `x` at position `pos`. 

""" 

if len(self.locs) == 0: 

return '' 

else: 

s = self.pprint_val(x) 

return self.fix_minus(s) 

 

def set_scientific(self, b): 

""" 

Turn scientific notation on or off. 

 

.. seealso:: Method :meth:`set_powerlimits` 

""" 

self._scientific = bool(b) 

 

def set_powerlimits(self, lims): 

""" 

Sets size thresholds for scientific notation. 

 

Parameters 

---------- 

lims : (min_exp, max_exp) 

A tuple containing the powers of 10 that determine the switchover 

threshold. Numbers below ``10**min_exp`` and above ``10**max_exp`` 

will be displayed in scientific notation. 

 

For example, ``formatter.set_powerlimits((-3, 4))`` sets the 

pre-2007 default in which scientific notation is used for 

numbers less than 1e-3 or greater than 1e4. 

 

.. seealso:: Method :meth:`set_scientific` 

""" 

if len(lims) != 2: 

raise ValueError("'lims' must be a sequence of length 2") 

self._powerlimits = lims 

 

def format_data_short(self, value): 

""" 

Return a short formatted string representation of a number. 

""" 

if self._useLocale: 

return locale.format_string('%-12g', (value,)) 

else: 

return '%-12g' % value 

 

def format_data(self, value): 

""" 

Return a formatted string representation of a number. 

""" 

if self._useLocale: 

s = locale.format_string('%1.10e', (value,)) 

else: 

s = '%1.10e' % value 

s = self._formatSciNotation(s) 

return self.fix_minus(s) 

 

def get_offset(self): 

""" 

Return scientific notation, plus offset. 

""" 

if len(self.locs) == 0: 

return '' 

s = '' 

if self.orderOfMagnitude or self.offset: 

offsetStr = '' 

sciNotStr = '' 

if self.offset: 

offsetStr = self.format_data(self.offset) 

if self.offset > 0: 

offsetStr = '+' + offsetStr 

if self.orderOfMagnitude: 

if self._usetex or self._useMathText: 

sciNotStr = self.format_data(10 ** self.orderOfMagnitude) 

else: 

sciNotStr = '1e%d' % self.orderOfMagnitude 

if self._useMathText: 

if sciNotStr != '': 

sciNotStr = r'\times%s' % _mathdefault(sciNotStr) 

s = ''.join(('$', sciNotStr, _mathdefault(offsetStr), '$')) 

elif self._usetex: 

if sciNotStr != '': 

sciNotStr = r'\times%s' % sciNotStr 

s = ''.join(('$', sciNotStr, offsetStr, '$')) 

else: 

s = ''.join((sciNotStr, offsetStr)) 

 

return self.fix_minus(s) 

 

def set_locs(self, locs): 

""" 

Set the locations of the ticks. 

""" 

self.locs = locs 

if len(self.locs) > 0: 

vmin, vmax = self.axis.get_view_interval() 

d = abs(vmax - vmin) 

if self._useOffset: 

self._compute_offset() 

self._set_orderOfMagnitude(d) 

self._set_format(vmin, vmax) 

 

def _compute_offset(self): 

locs = self.locs 

if locs is None or not len(locs): 

self.offset = 0 

return 

# Restrict to visible ticks. 

vmin, vmax = sorted(self.axis.get_view_interval()) 

locs = np.asarray(locs) 

locs = locs[(vmin <= locs) & (locs <= vmax)] 

if not len(locs): 

self.offset = 0 

return 

lmin, lmax = locs.min(), locs.max() 

# Only use offset if there are at least two ticks and every tick has 

# the same sign. 

if lmin == lmax or lmin <= 0 <= lmax: 

self.offset = 0 

return 

# min, max comparing absolute values (we want division to round towards 

# zero so we work on absolute values). 

abs_min, abs_max = sorted([abs(float(lmin)), abs(float(lmax))]) 

sign = math.copysign(1, lmin) 

# What is the smallest power of ten such that abs_min and abs_max are 

# equal up to that precision? 

# Note: Internally using oom instead of 10 ** oom avoids some numerical 

# accuracy issues. 

oom_max = np.ceil(math.log10(abs_max)) 

oom = 1 + next(oom for oom in itertools.count(oom_max, -1) 

if abs_min // 10 ** oom != abs_max // 10 ** oom) 

if (abs_max - abs_min) / 10 ** oom <= 1e-2: 

# Handle the case of straddling a multiple of a large power of ten 

# (relative to the span). 

# What is the smallest power of ten such that abs_min and abs_max 

# are no more than 1 apart at that precision? 

oom = 1 + next(oom for oom in itertools.count(oom_max, -1) 

if abs_max // 10 ** oom - abs_min // 10 ** oom > 1) 

# Only use offset if it saves at least _offset_threshold digits. 

n = self._offset_threshold - 1 

self.offset = (sign * (abs_max // 10 ** oom) * 10 ** oom 

if abs_max // 10 ** oom >= 10**n 

else 0) 

 

def _set_orderOfMagnitude(self, range): 

# if scientific notation is to be used, find the appropriate exponent 

# if using an numerical offset, find the exponent after applying the 

# offset. When lower power limit = upper <> 0, use provided exponent. 

if not self._scientific: 

self.orderOfMagnitude = 0 

return 

if self._powerlimits[0] == self._powerlimits[1] != 0: 

# fixed scaling when lower power limit = upper <> 0. 

self.orderOfMagnitude = self._powerlimits[0] 

return 

locs = np.abs(self.locs) 

if self.offset: 

oom = math.floor(math.log10(range)) 

else: 

if locs[0] > locs[-1]: 

val = locs[0] 

else: 

val = locs[-1] 

if val == 0: 

oom = 0 

else: 

oom = math.floor(math.log10(val)) 

if oom <= self._powerlimits[0]: 

self.orderOfMagnitude = oom 

elif oom >= self._powerlimits[1]: 

self.orderOfMagnitude = oom 

else: 

self.orderOfMagnitude = 0 

 

def _set_format(self, vmin, vmax): 

# set the format string to format all the ticklabels 

if len(self.locs) < 2: 

# Temporarily augment the locations with the axis end points. 

_locs = [*self.locs, vmin, vmax] 

else: 

_locs = self.locs 

locs = (np.asarray(_locs) - self.offset) / 10. ** self.orderOfMagnitude 

loc_range = np.ptp(locs) 

# Curvilinear coordinates can yield two identical points. 

if loc_range == 0: 

loc_range = np.max(np.abs(locs)) 

# Both points might be zero. 

if loc_range == 0: 

loc_range = 1 

if len(self.locs) < 2: 

# We needed the end points only for the loc_range calculation. 

locs = locs[:-2] 

loc_range_oom = int(math.floor(math.log10(loc_range))) 

# first estimate: 

sigfigs = max(0, 3 - loc_range_oom) 

# refined estimate: 

thresh = 1e-3 * 10 ** loc_range_oom 

while sigfigs >= 0: 

if np.abs(locs - np.round(locs, decimals=sigfigs)).max() < thresh: 

sigfigs -= 1 

else: 

break 

sigfigs += 1 

self.format = '%1.' + str(sigfigs) + 'f' 

if self._usetex: 

self.format = '$%s$' % self.format 

elif self._useMathText: 

self.format = '$%s$' % _mathdefault(self.format) 

 

def pprint_val(self, x): 

xp = (x - self.offset) / (10. ** self.orderOfMagnitude) 

if np.abs(xp) < 1e-8: 

xp = 0 

if self._useLocale: 

return locale.format_string(self.format, (xp,)) 

else: 

return self.format % xp 

 

def _formatSciNotation(self, s): 

# transform 1e+004 into 1e4, for example 

if self._useLocale: 

decimal_point = locale.localeconv()['decimal_point'] 

positive_sign = locale.localeconv()['positive_sign'] 

else: 

decimal_point = '.' 

positive_sign = '+' 

tup = s.split('e') 

try: 

significand = tup[0].rstrip('0').rstrip(decimal_point) 

sign = tup[1][0].replace(positive_sign, '') 

exponent = tup[1][1:].lstrip('0') 

if self._useMathText or self._usetex: 

if significand == '1' and exponent != '': 

# reformat 1x10^y as 10^y 

significand = '' 

if exponent: 

exponent = '10^{%s%s}' % (sign, exponent) 

if significand and exponent: 

return r'%s{\times}%s' % (significand, exponent) 

else: 

return r'%s%s' % (significand, exponent) 

else: 

s = ('%se%s%s' % (significand, sign, exponent)).rstrip('e') 

return s 

except IndexError: 

return s 

 

 

class LogFormatter(Formatter): 

""" 

Base class for formatting ticks on a log or symlog scale. 

 

It may be instantiated directly, or subclassed. 

 

Parameters 

---------- 

base : float, optional, default: 10. 

Base of the logarithm used in all calculations. 

 

labelOnlyBase : bool, optional, default: False 

If True, label ticks only at integer powers of base. 

This is normally True for major ticks and False for 

minor ticks. 

 

minor_thresholds : (subset, all), optional, default: (1, 0.4) 

If labelOnlyBase is False, these two numbers control 

the labeling of ticks that are not at integer powers of 

base; normally these are the minor ticks. The controlling 

parameter is the log of the axis data range. In the typical 

case where base is 10 it is the number of decades spanned 

by the axis, so we can call it 'numdec'. If ``numdec <= all``, 

all minor ticks will be labeled. If ``all < numdec <= subset``, 

then only a subset of minor ticks will be labeled, so as to 

avoid crowding. If ``numdec > subset`` then no minor ticks will 

be labeled. 

 

linthresh : None or float, optional, default: None 

If a symmetric log scale is in use, its ``linthresh`` 

parameter must be supplied here. 

 

Notes 

----- 

The `set_locs` method must be called to enable the subsetting 

logic controlled by the ``minor_thresholds`` parameter. 

 

In some cases such as the colorbar, there is no distinction between 

major and minor ticks; the tick locations might be set manually, 

or by a locator that puts ticks at integer powers of base and 

at intermediate locations. For this situation, disable the 

minor_thresholds logic by using ``minor_thresholds=(np.inf, np.inf)``, 

so that all ticks will be labeled. 

 

To disable labeling of minor ticks when 'labelOnlyBase' is False, 

use ``minor_thresholds=(0, 0)``. This is the default for the 

"classic" style. 

 

Examples 

-------- 

To label a subset of minor ticks when the view limits span up 

to 2 decades, and all of the ticks when zoomed in to 0.5 decades 

or less, use ``minor_thresholds=(2, 0.5)``. 

 

To label all minor ticks when the view limits span up to 1.5 

decades, use ``minor_thresholds=(1.5, 1.5)``. 

 

""" 

def __init__(self, base=10.0, labelOnlyBase=False, 

minor_thresholds=None, 

linthresh=None): 

 

self._base = float(base) 

self.labelOnlyBase = labelOnlyBase 

if minor_thresholds is None: 

if rcParams['_internal.classic_mode']: 

minor_thresholds = (0, 0) 

else: 

minor_thresholds = (1, 0.4) 

self.minor_thresholds = minor_thresholds 

self._sublabels = None 

self._linthresh = linthresh 

 

def base(self, base): 

""" 

Change the *base* for labeling. 

 

.. warning:: 

Should always match the base used for :class:`LogLocator` 

 

""" 

self._base = base 

 

def label_minor(self, labelOnlyBase): 

""" 

Switch minor tick labeling on or off. 

 

Parameters 

---------- 

labelOnlyBase : bool 

If True, label ticks only at integer powers of base. 

 

""" 

self.labelOnlyBase = labelOnlyBase 

 

def set_locs(self, locs=None): 

""" 

Use axis view limits to control which ticks are labeled. 

 

The *locs* parameter is ignored in the present algorithm. 

 

""" 

if np.isinf(self.minor_thresholds[0]): 

self._sublabels = None 

return 

 

# Handle symlog case: 

linthresh = self._linthresh 

if linthresh is None: 

try: 

linthresh = self.axis.get_transform().linthresh 

except AttributeError: 

pass 

 

vmin, vmax = self.axis.get_view_interval() 

if vmin > vmax: 

vmin, vmax = vmax, vmin 

 

if linthresh is None and vmin <= 0: 

# It's probably a colorbar with 

# a format kwarg setting a LogFormatter in the manner 

# that worked with 1.5.x, but that doesn't work now. 

self._sublabels = {1} # label powers of base 

return 

 

b = self._base 

if linthresh is not None: # symlog 

# Only compute the number of decades in the logarithmic part of the 

# axis 

numdec = 0 

if vmin < -linthresh: 

rhs = min(vmax, -linthresh) 

numdec += math.log(vmin / rhs) / math.log(b) 

if vmax > linthresh: 

lhs = max(vmin, linthresh) 

numdec += math.log(vmax / lhs) / math.log(b) 

else: 

vmin = math.log(vmin) / math.log(b) 

vmax = math.log(vmax) / math.log(b) 

numdec = abs(vmax - vmin) 

 

if numdec > self.minor_thresholds[0]: 

# Label only bases 

self._sublabels = {1} 

elif numdec > self.minor_thresholds[1]: 

# Add labels between bases at log-spaced coefficients; 

# include base powers in case the locations include 

# "major" and "minor" points, as in colorbar. 

c = np.logspace(0, 1, int(b)//2 + 1, base=b) 

self._sublabels = set(np.round(c)) 

# For base 10, this yields (1, 2, 3, 4, 6, 10). 

else: 

# Label all integer multiples of base**n. 

self._sublabels = set(np.arange(1, b + 1)) 

 

def _num_to_string(self, x, vmin, vmax): 

if x > 10000: 

s = '%1.0e' % x 

elif x < 1: 

s = '%1.0e' % x 

else: 

s = self.pprint_val(x, vmax - vmin) 

return s 

 

def __call__(self, x, pos=None): 

""" 

Return the format for tick val *x*. 

""" 

if x == 0.0: # Symlog 

return '0' 

 

x = abs(x) 

b = self._base 

# only label the decades 

fx = math.log(x) / math.log(b) 

is_x_decade = is_close_to_int(fx) 

exponent = np.round(fx) if is_x_decade else np.floor(fx) 

coeff = np.round(x / b ** exponent) 

 

if self.labelOnlyBase and not is_x_decade: 

return '' 

if self._sublabels is not None and coeff not in self._sublabels: 

return '' 

 

vmin, vmax = self.axis.get_view_interval() 

vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05) 

s = self._num_to_string(x, vmin, vmax) 

return self.fix_minus(s) 

 

def format_data(self, value): 

b = self.labelOnlyBase 

self.labelOnlyBase = False 

value = cbook.strip_math(self.__call__(value)) 

self.labelOnlyBase = b 

return value 

 

def format_data_short(self, value): 

""" 

Return a short formatted string representation of a number. 

""" 

return '%-12g' % value 

 

def pprint_val(self, x, d): 

#if the number is not too big and it's an int, format it as an 

#int 

if abs(x) < 1e4 and x == int(x): 

return '%d' % x 

 

if d < 1e-2: 

fmt = '%1.3e' 

elif d < 1e-1: 

fmt = '%1.3f' 

elif d > 1e5: 

fmt = '%1.1e' 

elif d > 10: 

fmt = '%1.1f' 

elif d > 1: 

fmt = '%1.2f' 

else: 

fmt = '%1.3f' 

s = fmt % x 

 

tup = s.split('e') 

if len(tup) == 2: 

mantissa = tup[0].rstrip('0').rstrip('.') 

exponent = int(tup[1]) 

if exponent: 

s = '%se%d' % (mantissa, exponent) 

else: 

s = mantissa 

else: 

s = s.rstrip('0').rstrip('.') 

return s 

 

 

class LogFormatterExponent(LogFormatter): 

""" 

Format values for log axis using ``exponent = log_base(value)``. 

""" 

def _num_to_string(self, x, vmin, vmax): 

fx = math.log(x) / math.log(self._base) 

if abs(fx) > 10000: 

s = '%1.0g' % fx 

elif abs(fx) < 1: 

s = '%1.0g' % fx 

else: 

fd = math.log(vmax - vmin) / math.log(self._base) 

s = self.pprint_val(fx, fd) 

return s 

 

 

class LogFormatterMathtext(LogFormatter): 

""" 

Format values for log axis using ``exponent = log_base(value)``. 

""" 

 

def _non_decade_format(self, sign_string, base, fx, usetex): 

'Return string for non-decade locations' 

if usetex: 

return (r'$%s%s^{%.2f}$') % (sign_string, base, fx) 

else: 

return ('$%s$' % _mathdefault('%s%s^{%.2f}' % 

(sign_string, base, fx))) 

 

def __call__(self, x, pos=None): 

""" 

Return the format for tick value *x*. 

 

The position *pos* is ignored. 

""" 

usetex = rcParams['text.usetex'] 

min_exp = rcParams['axes.formatter.min_exponent'] 

 

if x == 0: # Symlog 

if usetex: 

return '$0$' 

else: 

return '$%s$' % _mathdefault('0') 

 

sign_string = '-' if x < 0 else '' 

x = abs(x) 

b = self._base 

 

# only label the decades 

fx = math.log(x) / math.log(b) 

is_x_decade = is_close_to_int(fx) 

exponent = np.round(fx) if is_x_decade else np.floor(fx) 

coeff = np.round(x / b ** exponent) 

if is_x_decade: 

fx = round(fx) 

 

if self.labelOnlyBase and not is_x_decade: 

return '' 

if self._sublabels is not None and coeff not in self._sublabels: 

return '' 

 

# use string formatting of the base if it is not an integer 

if b % 1 == 0.0: 

base = '%d' % b 

else: 

base = '%s' % b 

 

if np.abs(fx) < min_exp: 

if usetex: 

return r'${0}{1:g}$'.format(sign_string, x) 

else: 

return '${0}$'.format(_mathdefault( 

'{0}{1:g}'.format(sign_string, x))) 

elif not is_x_decade: 

return self._non_decade_format(sign_string, base, fx, usetex) 

elif usetex: 

return r'$%s%s^{%d}$' % (sign_string, base, fx) 

else: 

return '$%s$' % _mathdefault('%s%s^{%d}' % (sign_string, base, fx)) 

 

 

class LogFormatterSciNotation(LogFormatterMathtext): 

""" 

Format values following scientific notation in a logarithmic axis. 

""" 

 

def _non_decade_format(self, sign_string, base, fx, usetex): 

'Return string for non-decade locations' 

b = float(base) 

exponent = math.floor(fx) 

coeff = b ** fx / b ** exponent 

if is_close_to_int(coeff): 

coeff = round(coeff) 

if usetex: 

return (r'$%s%g\times%s^{%d}$') % \ 

(sign_string, coeff, base, exponent) 

else: 

return ('$%s$' % _mathdefault(r'%s%g\times%s^{%d}' % 

(sign_string, coeff, base, exponent))) 

 

 

class LogitFormatter(Formatter): 

""" 

Probability formatter (using Math text). 

""" 

def __call__(self, x, pos=None): 

s = '' 

if 0.01 <= x <= 0.99: 

s = '{:.2f}'.format(x) 

elif x < 0.01: 

if is_decade(x): 

s = '$10^{{{:.0f}}}$'.format(np.log10(x)) 

else: 

s = '${:.5f}$'.format(x) 

else: # x > 0.99 

if is_decade(1-x): 

s = '$1-10^{{{:.0f}}}$'.format(np.log10(1-x)) 

else: 

s = '$1-{:.5f}$'.format(1-x) 

return s 

 

def format_data_short(self, value): 

'return a short formatted string representation of a number' 

return '%-12g' % value 

 

 

class EngFormatter(Formatter): 

""" 

Formats axis values using engineering prefixes to represent powers 

of 1000, plus a specified unit, e.g., 10 MHz instead of 1e7. 

""" 

 

# The SI engineering prefixes 

ENG_PREFIXES = { 

-24: "y", 

-21: "z", 

-18: "a", 

-15: "f", 

-12: "p", 

-9: "n", 

-6: "\N{GREEK SMALL LETTER MU}", 

-3: "m", 

0: "", 

3: "k", 

6: "M", 

9: "G", 

12: "T", 

15: "P", 

18: "E", 

21: "Z", 

24: "Y" 

} 

 

def __init__(self, unit="", places=None, sep=" "): 

""" 

Parameters 

---------- 

unit : str (default: "") 

Unit symbol to use, suitable for use with single-letter 

representations of powers of 1000. For example, 'Hz' or 'm'. 

 

places : int (default: None) 

Precision with which to display the number, specified in 

digits after the decimal point (there will be between one 

and three digits before the decimal point). If it is None, 

the formatting falls back to the floating point format '%g', 

which displays up to 6 *significant* digits, i.e. the equivalent 

value for *places* varies between 0 and 5 (inclusive). 

 

sep : str (default: " ") 

Separator used between the value and the prefix/unit. For 

example, one get '3.14 mV' if ``sep`` is " " (default) and 

'3.14mV' if ``sep`` is "". Besides the default behavior, some 

other useful options may be: 

 

* ``sep=""`` to append directly the prefix/unit to the value; 

* ``sep="\\N{THIN SPACE}"`` (``U+2009``); 

* ``sep="\\N{NARROW NO-BREAK SPACE}"`` (``U+202F``); 

* ``sep="\\N{NO-BREAK SPACE}"`` (``U+00A0``). 

""" 

self.unit = unit 

self.places = places 

self.sep = sep 

 

def __call__(self, x, pos=None): 

s = "%s%s" % (self.format_eng(x), self.unit) 

# Remove the trailing separator when there is neither prefix nor unit 

if self.sep and s.endswith(self.sep): 

s = s[:-len(self.sep)] 

return self.fix_minus(s) 

 

def format_eng(self, num): 

""" 

Formats a number in engineering notation, appending a letter 

representing the power of 1000 of the original number. 

Some examples: 

 

>>> format_eng(0) # for self.places = 0 

'0' 

 

>>> format_eng(1000000) # for self.places = 1 

'1.0 M' 

 

>>> format_eng("-1e-6") # for self.places = 2 

'-1.00 \N{GREEK SMALL LETTER MU}' 

""" 

sign = 1 

fmt = "g" if self.places is None else ".{:d}f".format(self.places) 

 

if num < 0: 

sign = -1 

num = -num 

 

if num != 0: 

pow10 = int(math.floor(math.log10(num) / 3) * 3) 

else: 

pow10 = 0 

# Force num to zero, to avoid inconsistencies like 

# format_eng(-0) = "0" and format_eng(0.0) = "0" 

# but format_eng(-0.0) = "-0.0" 

num = 0.0 

 

pow10 = np.clip(pow10, min(self.ENG_PREFIXES), max(self.ENG_PREFIXES)) 

 

mant = sign * num / (10.0 ** pow10) 

# Taking care of the cases like 999.9..., which may be rounded to 1000 

# instead of 1 k. Beware of the corner case of values that are beyond 

# the range of SI prefixes (i.e. > 'Y'). 

if float(format(mant, fmt)) >= 1000 and pow10 < max(self.ENG_PREFIXES): 

mant /= 1000 

pow10 += 3 

 

prefix = self.ENG_PREFIXES[int(pow10)] 

 

formatted = "{mant:{fmt}}{sep}{prefix}".format( 

mant=mant, sep=self.sep, prefix=prefix, fmt=fmt) 

 

return formatted 

 

 

class PercentFormatter(Formatter): 

""" 

Format numbers as a percentage. 

 

Parameters 

---------- 

xmax : float 

Determines how the number is converted into a percentage. 

*xmax* is the data value that corresponds to 100%. 

Percentages are computed as ``x / xmax * 100``. So if the data is 

already scaled to be percentages, *xmax* will be 100. Another common 

situation is where `xmax` is 1.0. 

 

decimals : None or int 

The number of decimal places to place after the point. 

If *None* (the default), the number will be computed automatically. 

 

symbol : string or None 

A string that will be appended to the label. It may be 

*None* or empty to indicate that no symbol should be used. LaTeX 

special characters are escaped in *symbol* whenever latex mode is 

enabled, unless *is_latex* is *True*. 

 

is_latex : bool 

If *False*, reserved LaTeX characters in *symbol* will be escaped. 

""" 

def __init__(self, xmax=100, decimals=None, symbol='%', is_latex=False): 

self.xmax = xmax + 0.0 

self.decimals = decimals 

self._symbol = symbol 

self._is_latex = is_latex 

 

def __call__(self, x, pos=None): 

""" 

Formats the tick as a percentage with the appropriate scaling. 

""" 

ax_min, ax_max = self.axis.get_view_interval() 

display_range = abs(ax_max - ax_min) 

 

return self.fix_minus(self.format_pct(x, display_range)) 

 

def format_pct(self, x, display_range): 

""" 

Formats the number as a percentage number with the correct 

number of decimals and adds the percent symbol, if any. 

 

If `self.decimals` is `None`, the number of digits after the 

decimal point is set based on the `display_range` of the axis 

as follows: 

 

+---------------+----------+------------------------+ 

| display_range | decimals | sample | 

+---------------+----------+------------------------+ 

| >50 | 0 | ``x = 34.5`` => 35% | 

+---------------+----------+------------------------+ 

| >5 | 1 | ``x = 34.5`` => 34.5% | 

+---------------+----------+------------------------+ 

| >0.5 | 2 | ``x = 34.5`` => 34.50% | 

+---------------+----------+------------------------+ 

| ... | ... | ... | 

+---------------+----------+------------------------+ 

 

This method will not be very good for tiny axis ranges or 

extremely large ones. It assumes that the values on the chart 

are percentages displayed on a reasonable scale. 

""" 

x = self.convert_to_pct(x) 

if self.decimals is None: 

# conversion works because display_range is a difference 

scaled_range = self.convert_to_pct(display_range) 

if scaled_range <= 0: 

decimals = 0 

else: 

# Luckily Python's built-in ceil rounds to +inf, not away from 

# zero. This is very important since the equation for decimals 

# starts out as `scaled_range > 0.5 * 10**(2 - decimals)` 

# and ends up with `decimals > 2 - log10(2 * scaled_range)`. 

decimals = math.ceil(2.0 - math.log10(2.0 * scaled_range)) 

if decimals > 5: 

decimals = 5 

elif decimals < 0: 

decimals = 0 

else: 

decimals = self.decimals 

s = '{x:0.{decimals}f}'.format(x=x, decimals=int(decimals)) 

 

return s + self.symbol 

 

def convert_to_pct(self, x): 

return 100.0 * (x / self.xmax) 

 

@property 

def symbol(self): 

""" 

The configured percent symbol as a string. 

 

If LaTeX is enabled via :rc:`text.usetex`, the special characters 

``{'#', '$', '%', '&', '~', '_', '^', '\\', '{', '}'}`` are 

automatically escaped in the string. 

""" 

symbol = self._symbol 

if not symbol: 

symbol = '' 

elif rcParams['text.usetex'] and not self._is_latex: 

# Source: http://www.personal.ceu.hu/tex/specchar.htm 

# Backslash must be first for this to work correctly since 

# it keeps getting added in 

for spec in r'\#$%&~_^{}': 

symbol = symbol.replace(spec, '\\' + spec) 

return symbol 

 

@symbol.setter 

def symbol(self, symbol): 

self._symbol = symbol 

 

 

class Locator(TickHelper): 

""" 

Determine the tick locations; 

 

Note, you should not use the same locator between different 

:class:`~matplotlib.axis.Axis` because the locator stores references to 

the Axis data and view limits 

""" 

 

# Some automatic tick locators can generate so many ticks they 

# kill the machine when you try and render them. 

# This parameter is set to cause locators to raise an error if too 

# many ticks are generated. 

MAXTICKS = 1000 

 

def tick_values(self, vmin, vmax): 

""" 

Return the values of the located ticks given **vmin** and **vmax**. 

 

.. note:: 

To get tick locations with the vmin and vmax values defined 

automatically for the associated :attr:`axis` simply call 

the Locator instance:: 

 

>>> print(type(loc)) 

<type 'Locator'> 

>>> print(loc()) 

[1, 2, 3, 4] 

 

""" 

raise NotImplementedError('Derived must override') 

 

def set_params(self, **kwargs): 

""" 

Do nothing, and rase a warning. Any locator class not supporting the 

set_params() function will call this. 

""" 

warnings.warn("'set_params()' not defined for locator of type " + 

str(type(self))) 

 

def __call__(self): 

"""Return the locations of the ticks""" 

# note: some locators return data limits, other return view limits, 

# hence there is no *one* interface to call self.tick_values. 

raise NotImplementedError('Derived must override') 

 

def raise_if_exceeds(self, locs): 

"""raise a RuntimeError if Locator attempts to create more than 

MAXTICKS locs""" 

if len(locs) >= self.MAXTICKS: 

raise RuntimeError("Locator attempting to generate {} ticks from " 

"{} to {}: exceeds Locator.MAXTICKS".format( 

len(locs), locs[0], locs[-1])) 

return locs 

 

def view_limits(self, vmin, vmax): 

""" 

select a scale for the range from vmin to vmax 

 

Normally this method is overridden by subclasses to 

change locator behaviour. 

""" 

return mtransforms.nonsingular(vmin, vmax) 

 

def autoscale(self): 

"""autoscale the view limits""" 

return self.view_limits(*self.axis.get_view_interval()) 

 

def pan(self, numsteps): 

"""Pan numticks (can be positive or negative)""" 

ticks = self() 

numticks = len(ticks) 

 

vmin, vmax = self.axis.get_view_interval() 

vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05) 

if numticks > 2: 

step = numsteps * abs(ticks[0] - ticks[1]) 

else: 

d = abs(vmax - vmin) 

step = numsteps * d / 6. 

 

vmin += step 

vmax += step 

self.axis.set_view_interval(vmin, vmax, ignore=True) 

 

def zoom(self, direction): 

"Zoom in/out on axis; if direction is >0 zoom in, else zoom out" 

 

vmin, vmax = self.axis.get_view_interval() 

vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05) 

interval = abs(vmax - vmin) 

step = 0.1 * interval * direction 

self.axis.set_view_interval(vmin + step, vmax - step, ignore=True) 

 

def refresh(self): 

"""refresh internal information based on current lim""" 

pass 

 

 

class IndexLocator(Locator): 

""" 

Place a tick on every multiple of some base number of points 

plotted, e.g., on every 5th point. It is assumed that you are doing 

index plotting; i.e., the axis is 0, len(data). This is mainly 

useful for x ticks. 

""" 

def __init__(self, base, offset): 

'place ticks on the i-th data points where (i-offset)%base==0' 

self._base = base 

self.offset = offset 

 

def set_params(self, base=None, offset=None): 

"""Set parameters within this locator""" 

if base is not None: 

self._base = base 

if offset is not None: 

self.offset = offset 

 

def __call__(self): 

"""Return the locations of the ticks""" 

dmin, dmax = self.axis.get_data_interval() 

return self.tick_values(dmin, dmax) 

 

def tick_values(self, vmin, vmax): 

return self.raise_if_exceeds( 

np.arange(vmin + self.offset, vmax + 1, self._base)) 

 

 

class FixedLocator(Locator): 

""" 

Tick locations are fixed. If nbins is not None, 

the array of possible positions will be subsampled to 

keep the number of ticks <= nbins +1. 

The subsampling will be done so as to include the smallest 

absolute value; for example, if zero is included in the 

array of possibilities, then it is guaranteed to be one of 

the chosen ticks. 

""" 

 

def __init__(self, locs, nbins=None): 

self.locs = np.asarray(locs) 

self.nbins = max(nbins, 2) if nbins is not None else None 

 

def set_params(self, nbins=None): 

"""Set parameters within this locator.""" 

if nbins is not None: 

self.nbins = nbins 

 

def __call__(self): 

return self.tick_values(None, None) 

 

def tick_values(self, vmin, vmax): 

"""" 

Return the locations of the ticks. 

 

.. note:: 

 

Because the values are fixed, vmin and vmax are not used in this 

method. 

 

""" 

if self.nbins is None: 

return self.locs 

step = max(int(np.ceil(len(self.locs) / self.nbins)), 1) 

ticks = self.locs[::step] 

for i in range(1, step): 

ticks1 = self.locs[i::step] 

if np.abs(ticks1).min() < np.abs(ticks).min(): 

ticks = ticks1 

return self.raise_if_exceeds(ticks) 

 

 

class NullLocator(Locator): 

""" 

No ticks 

""" 

 

def __call__(self): 

return self.tick_values(None, None) 

 

def tick_values(self, vmin, vmax): 

"""" 

Return the locations of the ticks. 

 

.. note:: 

 

Because the values are Null, vmin and vmax are not used in this 

method. 

""" 

return [] 

 

 

class LinearLocator(Locator): 

""" 

Determine the tick locations 

 

The first time this function is called it will try to set the 

number of ticks to make a nice tick partitioning. Thereafter the 

number of ticks will be fixed so that interactive navigation will 

be nice 

 

""" 

def __init__(self, numticks=None, presets=None): 

""" 

Use presets to set locs based on lom. A dict mapping vmin, vmax->locs 

""" 

self.numticks = numticks 

if presets is None: 

self.presets = {} 

else: 

self.presets = presets 

 

def set_params(self, numticks=None, presets=None): 

"""Set parameters within this locator.""" 

if presets is not None: 

self.presets = presets 

if numticks is not None: 

self.numticks = numticks 

 

def __call__(self): 

'Return the locations of the ticks' 

vmin, vmax = self.axis.get_view_interval() 

return self.tick_values(vmin, vmax) 

 

def tick_values(self, vmin, vmax): 

vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05) 

if vmax < vmin: 

vmin, vmax = vmax, vmin 

 

if (vmin, vmax) in self.presets: 

return self.presets[(vmin, vmax)] 

 

if self.numticks is None: 

self._set_numticks() 

 

if self.numticks == 0: 

return [] 

ticklocs = np.linspace(vmin, vmax, self.numticks) 

 

return self.raise_if_exceeds(ticklocs) 

 

def _set_numticks(self): 

self.numticks = 11 # todo; be smart here; this is just for dev 

 

def view_limits(self, vmin, vmax): 

'Try to choose the view limits intelligently' 

 

if vmax < vmin: 

vmin, vmax = vmax, vmin 

 

if vmin == vmax: 

vmin -= 1 

vmax += 1 

 

if rcParams['axes.autolimit_mode'] == 'round_numbers': 

exponent, remainder = _divmod( 

math.log10(vmax - vmin), math.log10(max(self.numticks - 1, 1))) 

exponent -= (remainder < .5) 

scale = max(self.numticks - 1, 1) ** (-exponent) 

vmin = math.floor(scale * vmin) / scale 

vmax = math.ceil(scale * vmax) / scale 

 

return mtransforms.nonsingular(vmin, vmax) 

 

 

@cbook.deprecated("3.0") 

def closeto(x, y): 

return abs(x - y) < 1e-10 

 

 

@cbook.deprecated("3.0") 

class Base(object): 

'this solution has some hacks to deal with floating point inaccuracies' 

def __init__(self, base): 

if base <= 0: 

raise ValueError("'base' must be positive") 

self._base = base 

 

def lt(self, x): 

'return the largest multiple of base < x' 

d, m = _divmod(x, self._base) 

if closeto(m, 0) and not closeto(m / self._base, 1): 

return (d - 1) * self._base 

return d * self._base 

 

def le(self, x): 

'return the largest multiple of base <= x' 

d, m = _divmod(x, self._base) 

if closeto(m / self._base, 1): # was closeto(m, self._base) 

#looks like floating point error 

return (d + 1) * self._base 

return d * self._base 

 

def gt(self, x): 

'return the smallest multiple of base > x' 

d, m = _divmod(x, self._base) 

if closeto(m / self._base, 1): 

#looks like floating point error 

return (d + 2) * self._base 

return (d + 1) * self._base 

 

def ge(self, x): 

'return the smallest multiple of base >= x' 

d, m = _divmod(x, self._base) 

if closeto(m, 0) and not closeto(m / self._base, 1): 

return d * self._base 

return (d + 1) * self._base 

 

def get_base(self): 

return self._base 

 

 

class MultipleLocator(Locator): 

""" 

Set a tick on each integer multiple of a base within the view interval. 

""" 

 

def __init__(self, base=1.0): 

self._edge = _Edge_integer(base, 0) 

 

def set_params(self, base): 

"""Set parameters within this locator.""" 

if base is not None: 

self._edge = _Edge_integer(base, 0) 

 

def __call__(self): 

'Return the locations of the ticks' 

vmin, vmax = self.axis.get_view_interval() 

return self.tick_values(vmin, vmax) 

 

def tick_values(self, vmin, vmax): 

if vmax < vmin: 

vmin, vmax = vmax, vmin 

step = self._edge.step 

vmin = self._edge.ge(vmin) * step 

n = (vmax - vmin + 0.001 * step) // step 

locs = vmin - step + np.arange(n + 3) * step 

return self.raise_if_exceeds(locs) 

 

def view_limits(self, dmin, dmax): 

""" 

Set the view limits to the nearest multiples of base that 

contain the data. 

""" 

if rcParams['axes.autolimit_mode'] == 'round_numbers': 

vmin = self._edge.le(dmin) * self._edge.step 

vmax = self._edge.ge(dmax) * self._edge.step 

if vmin == vmax: 

vmin -= 1 

vmax += 1 

else: 

vmin = dmin 

vmax = dmax 

 

return mtransforms.nonsingular(vmin, vmax) 

 

 

def scale_range(vmin, vmax, n=1, threshold=100): 

dv = abs(vmax - vmin) # > 0 as nonsingular is called before. 

meanv = (vmax + vmin) / 2 

if abs(meanv) / dv < threshold: 

offset = 0 

else: 

offset = math.copysign(10 ** (math.log10(abs(meanv)) // 1), meanv) 

scale = 10 ** (math.log10(dv / n) // 1) 

return scale, offset 

 

 

class _Edge_integer: 

""" 

Helper for MaxNLocator, MultipleLocator, etc. 

 

Take floating point precision limitations into account when calculating 

tick locations as integer multiples of a step. 

""" 

def __init__(self, step, offset): 

""" 

*step* is a positive floating-point interval between ticks. 

*offset* is the offset subtracted from the data limits 

prior to calculating tick locations. 

""" 

if step <= 0: 

raise ValueError("'step' must be positive") 

self.step = step 

self._offset = abs(offset) 

 

def closeto(self, ms, edge): 

# Allow more slop when the offset is large compared to the step. 

if self._offset > 0: 

digits = np.log10(self._offset / self.step) 

tol = max(1e-10, 10 ** (digits - 12)) 

tol = min(0.4999, tol) 

else: 

tol = 1e-10 

return abs(ms - edge) < tol 

 

def le(self, x): 

'Return the largest n: n*step <= x.' 

d, m = _divmod(x, self.step) 

if self.closeto(m / self.step, 1): 

return (d + 1) 

return d 

 

def ge(self, x): 

'Return the smallest n: n*step >= x.' 

d, m = _divmod(x, self.step) 

if self.closeto(m / self.step, 0): 

return d 

return (d + 1) 

 

 

class MaxNLocator(Locator): 

""" 

Select no more than N intervals at nice locations. 

""" 

default_params = dict(nbins=10, 

steps=None, 

integer=False, 

symmetric=False, 

prune=None, 

min_n_ticks=2) 

 

def __init__(self, *args, **kwargs): 

""" 

Keyword args: 

 

*nbins* 

Maximum number of intervals; one less than max number of 

ticks. If the string `'auto'`, the number of bins will be 

automatically determined based on the length of the axis. 

 

*steps* 

Sequence of nice numbers starting with 1 and ending with 10; 

e.g., [1, 2, 4, 5, 10], where the values are acceptable 

tick multiples. i.e. for the example, 20, 40, 60 would be 

an acceptable set of ticks, as would 0.4, 0.6, 0.8, because 

they are multiples of 2. However, 30, 60, 90 would not 

be allowed because 3 does not appear in the list of steps. 

 

*integer* 

If True, ticks will take only integer values, provided 

at least `min_n_ticks` integers are found within the 

view limits. 

 

*symmetric* 

If True, autoscaling will result in a range symmetric 

about zero. 

 

*prune* 

['lower' | 'upper' | 'both' | None] 

Remove edge ticks -- useful for stacked or ganged plots where 

the upper tick of one axes overlaps with the lower tick of the 

axes above it, primarily when :rc:`axes.autolimit_mode` is 

``'round_numbers'``. If ``prune=='lower'``, the smallest tick will 

be removed. If ``prune == 'upper'``, the largest tick will be 

removed. If ``prune == 'both'``, the largest and smallest ticks 

will be removed. If ``prune == None``, no ticks will be removed. 

 

*min_n_ticks* 

Relax `nbins` and `integer` constraints if necessary to 

obtain this minimum number of ticks. 

 

""" 

if args: 

kwargs['nbins'] = args[0] 

if len(args) > 1: 

raise ValueError( 

"Keywords are required for all arguments except 'nbins'") 

self.set_params(**self.default_params) 

self.set_params(**kwargs) 

 

@staticmethod 

def _validate_steps(steps): 

if not np.iterable(steps): 

raise ValueError('steps argument must be a sequence of numbers ' 

'from 1 to 10') 

steps = np.asarray(steps) 

if np.any(np.diff(steps) <= 0): 

raise ValueError('steps argument must be uniformly increasing') 

if steps[-1] > 10 or steps[0] < 1: 

warnings.warn('Steps argument should be a sequence of numbers\n' 

'increasing from 1 to 10, inclusive. Behavior with\n' 

'values outside this range is undefined, and will\n' 

'raise a ValueError in future versions of mpl.') 

if steps[0] != 1: 

steps = np.hstack((1, steps)) 

if steps[-1] != 10: 

steps = np.hstack((steps, 10)) 

return steps 

 

@staticmethod 

def _staircase(steps): 

# Make an extended staircase within which the needed 

# step will be found. This is probably much larger 

# than necessary. 

flights = (0.1 * steps[:-1], steps, 10 * steps[1]) 

return np.hstack(flights) 

 

def set_params(self, **kwargs): 

"""Set parameters within this locator.""" 

if 'nbins' in kwargs: 

self._nbins = kwargs['nbins'] 

if self._nbins != 'auto': 

self._nbins = int(self._nbins) 

if 'symmetric' in kwargs: 

self._symmetric = kwargs['symmetric'] 

if 'prune' in kwargs: 

prune = kwargs['prune'] 

if prune is not None and prune not in ['upper', 'lower', 'both']: 

raise ValueError( 

"prune must be 'upper', 'lower', 'both', or None") 

self._prune = prune 

if 'min_n_ticks' in kwargs: 

self._min_n_ticks = max(1, kwargs['min_n_ticks']) 

if 'steps' in kwargs: 

steps = kwargs['steps'] 

if steps is None: 

self._steps = np.array([1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10]) 

else: 

self._steps = self._validate_steps(steps) 

self._extended_steps = self._staircase(self._steps) 

if 'integer' in kwargs: 

self._integer = kwargs['integer'] 

 

def _raw_ticks(self, vmin, vmax): 

""" 

Generate a list of tick locations including the range *vmin* to 

*vmax*. In some applications, one or both of the end locations 

will not be needed, in which case they are trimmed off 

elsewhere. 

""" 

if self._nbins == 'auto': 

if self.axis is not None: 

nbins = np.clip(self.axis.get_tick_space(), 

max(1, self._min_n_ticks - 1), 9) 

else: 

nbins = 9 

else: 

nbins = self._nbins 

 

scale, offset = scale_range(vmin, vmax, nbins) 

_vmin = vmin - offset 

_vmax = vmax - offset 

raw_step = (_vmax - _vmin) / nbins 

steps = self._extended_steps * scale 

if self._integer: 

# For steps > 1, keep only integer values. 

igood = (steps < 1) | (np.abs(steps - np.round(steps)) < 0.001) 

steps = steps[igood] 

 

istep = np.nonzero(steps >= raw_step)[0][0] 

 

# Classic round_numbers mode may require a larger step. 

if rcParams['axes.autolimit_mode'] == 'round_numbers': 

for istep in range(istep, len(steps)): 

step = steps[istep] 

best_vmin = (_vmin // step) * step 

best_vmax = best_vmin + step * nbins 

if best_vmax >= _vmax: 

break 

 

# This is an upper limit; move to smaller steps if necessary. 

for istep in reversed(range(istep + 1)): 

step = steps[istep] 

 

if (self._integer and 

np.floor(_vmax) - np.ceil(_vmin) >= self._min_n_ticks - 1): 

step = max(1, step) 

best_vmin = (_vmin // step) * step 

 

# Find tick locations spanning the vmin-vmax range, taking into 

# account degradation of precision when there is a large offset. 

# The edge ticks beyond vmin and/or vmax are needed for the 

# "round_numbers" autolimit mode. 

edge = _Edge_integer(step, offset) 

low = edge.le(_vmin - best_vmin) 

high = edge.ge(_vmax - best_vmin) 

ticks = np.arange(low, high + 1) * step + best_vmin 

# Count only the ticks that will be displayed. 

nticks = ((ticks <= _vmax) & (ticks >= _vmin)).sum() 

if nticks >= self._min_n_ticks: 

break 

return ticks + offset 

 

def __call__(self): 

vmin, vmax = self.axis.get_view_interval() 

return self.tick_values(vmin, vmax) 

 

def tick_values(self, vmin, vmax): 

if self._symmetric: 

vmax = max(abs(vmin), abs(vmax)) 

vmin = -vmax 

vmin, vmax = mtransforms.nonsingular( 

vmin, vmax, expander=1e-13, tiny=1e-14) 

locs = self._raw_ticks(vmin, vmax) 

 

prune = self._prune 

if prune == 'lower': 

locs = locs[1:] 

elif prune == 'upper': 

locs = locs[:-1] 

elif prune == 'both': 

locs = locs[1:-1] 

return self.raise_if_exceeds(locs) 

 

def view_limits(self, dmin, dmax): 

if self._symmetric: 

dmax = max(abs(dmin), abs(dmax)) 

dmin = -dmax 

 

dmin, dmax = mtransforms.nonsingular( 

dmin, dmax, expander=1e-12, tiny=1e-13) 

 

if rcParams['axes.autolimit_mode'] == 'round_numbers': 

return self._raw_ticks(dmin, dmax)[[0, -1]] 

else: 

return dmin, dmax 

 

 

def decade_down(x, base=10): 

'floor x to the nearest lower decade' 

if x == 0.0: 

return -base 

lx = np.floor(np.log(x) / np.log(base)) 

return base ** lx 

 

 

def decade_up(x, base=10): 

'ceil x to the nearest higher decade' 

if x == 0.0: 

return base 

lx = np.ceil(np.log(x) / np.log(base)) 

return base ** lx 

 

 

def nearest_long(x): 

cbook.warn_deprecated('3.0', removal='3.1', name='`nearest_long`', 

obj_type='function', alternative='`round`') 

if x >= 0: 

return int(x + 0.5) 

return int(x - 0.5) 

 

 

def is_decade(x, base=10): 

if not np.isfinite(x): 

return False 

if x == 0.0: 

return True 

lx = np.log(np.abs(x)) / np.log(base) 

return is_close_to_int(lx) 

 

 

def is_close_to_int(x): 

if not np.isfinite(x): 

return False 

return abs(x - round(x)) < 1e-10 

 

 

class LogLocator(Locator): 

""" 

Determine the tick locations for log axes 

""" 

 

def __init__(self, base=10.0, subs=(1.0,), numdecs=4, numticks=None): 

""" 

Place ticks on the locations : subs[j] * base**i 

 

Parameters 

---------- 

subs : None, string, or sequence of float, optional, default (1.0,) 

Gives the multiples of integer powers of the base at which 

to place ticks. The default places ticks only at 

integer powers of the base. 

The permitted string values are ``'auto'`` and ``'all'``, 

both of which use an algorithm based on the axis view 

limits to determine whether and how to put ticks between 

integer powers of the base. With ``'auto'``, ticks are 

placed only between integer powers; with ``'all'``, the 

integer powers are included. A value of None is 

equivalent to ``'auto'``. 

 

""" 

if numticks is None: 

if rcParams['_internal.classic_mode']: 

numticks = 15 

else: 

numticks = 'auto' 

self.base(base) 

self.subs(subs) 

self.numdecs = numdecs 

self.numticks = numticks 

 

def set_params(self, base=None, subs=None, numdecs=None, numticks=None): 

"""Set parameters within this locator.""" 

if base is not None: 

self.base(base) 

if subs is not None: 

self.subs(subs) 

if numdecs is not None: 

self.numdecs = numdecs 

if numticks is not None: 

self.numticks = numticks 

 

# FIXME: these base and subs functions are contrary to our 

# usual and desired API. 

 

def base(self, base): 

""" 

set the base of the log scaling (major tick every base**i, i integer) 

""" 

self._base = float(base) 

 

def subs(self, subs): 

""" 

set the minor ticks for the log scaling every base**i*subs[j] 

""" 

if subs is None: # consistency with previous bad API 

self._subs = 'auto' 

elif isinstance(subs, str): 

if subs not in ('all', 'auto'): 

raise ValueError("A subs string must be 'all' or 'auto'; " 

"found '%s'." % subs) 

self._subs = subs 

else: 

self._subs = np.asarray(subs, dtype=float) 

 

def __call__(self): 

'Return the locations of the ticks' 

vmin, vmax = self.axis.get_view_interval() 

return self.tick_values(vmin, vmax) 

 

def tick_values(self, vmin, vmax): 

if self.numticks == 'auto': 

if self.axis is not None: 

numticks = np.clip(self.axis.get_tick_space(), 2, 9) 

else: 

numticks = 9 

else: 

numticks = self.numticks 

 

b = self._base 

# dummy axis has no axes attribute 

if hasattr(self.axis, 'axes') and self.axis.axes.name == 'polar': 

vmax = math.ceil(math.log(vmax) / math.log(b)) 

decades = np.arange(vmax - self.numdecs, vmax) 

ticklocs = b ** decades 

 

return ticklocs 

 

if vmin <= 0.0: 

if self.axis is not None: 

vmin = self.axis.get_minpos() 

 

if vmin <= 0.0 or not np.isfinite(vmin): 

raise ValueError( 

"Data has no positive values, and therefore can not be " 

"log-scaled.") 

 

_log.debug('vmin %s vmax %s', vmin, vmax) 

vmin = math.log(vmin) / math.log(b) 

vmax = math.log(vmax) / math.log(b) 

 

if vmax < vmin: 

vmin, vmax = vmax, vmin 

 

numdec = math.floor(vmax) - math.ceil(vmin) 

 

if isinstance(self._subs, str): 

_first = 2.0 if self._subs == 'auto' else 1.0 

if numdec > 10 or b < 3: 

if self._subs == 'auto': 

return np.array([]) # no minor or major ticks 

else: 

subs = np.array([1.0]) # major ticks 

else: 

subs = np.arange(_first, b) 

else: 

subs = self._subs 

 

# get decades between major ticks. 

stride = 1 

if rcParams['_internal.classic_mode']: 

# Leave the bug left over from the PY2-PY3 transition. 

while numdec / stride + 1 > numticks: 

stride += 1 

else: 

while numdec // stride + 1 > numticks: 

stride += 1 

 

# Does subs include anything other than 1? 

have_subs = len(subs) > 1 or (len(subs == 1) and subs[0] != 1.0) 

 

decades = np.arange(math.floor(vmin) - stride, 

math.ceil(vmax) + 2 * stride, stride) 

 

if hasattr(self, '_transform'): 

ticklocs = self._transform.inverted().transform(decades) 

if have_subs: 

if stride == 1: 

ticklocs = np.ravel(np.outer(subs, ticklocs)) 

else: 

# no ticklocs if we have more than one decade 

# between major ticks. 

ticklocs = [] 

else: 

if have_subs: 

ticklocs = [] 

if stride == 1: 

for decadeStart in b ** decades: 

ticklocs.extend(subs * decadeStart) 

else: 

ticklocs = b ** decades 

 

_log.debug('ticklocs %r', ticklocs) 

return self.raise_if_exceeds(np.asarray(ticklocs)) 

 

def view_limits(self, vmin, vmax): 

'Try to choose the view limits intelligently' 

b = self._base 

 

vmin, vmax = self.nonsingular(vmin, vmax) 

 

if self.axis.axes.name == 'polar': 

vmax = math.ceil(math.log(vmax) / math.log(b)) 

vmin = b ** (vmax - self.numdecs) 

 

if rcParams['axes.autolimit_mode'] == 'round_numbers': 

if not is_decade(vmin, self._base): 

vmin = decade_down(vmin, self._base) 

if not is_decade(vmax, self._base): 

vmax = decade_up(vmax, self._base) 

 

return vmin, vmax 

 

def nonsingular(self, vmin, vmax): 

if not np.isfinite(vmin) or not np.isfinite(vmax): 

return 1, 10 # initial range, no data plotted yet 

 

if vmin > vmax: 

vmin, vmax = vmax, vmin 

if vmax <= 0: 

warnings.warn( 

"Data has no positive values, and therefore cannot be " 

"log-scaled.") 

return 1, 10 

 

minpos = self.axis.get_minpos() 

if not np.isfinite(minpos): 

minpos = 1e-300 # This should never take effect. 

if vmin <= 0: 

vmin = minpos 

if vmin == vmax: 

vmin = decade_down(vmin, self._base) 

vmax = decade_up(vmax, self._base) 

return vmin, vmax 

 

 

class SymmetricalLogLocator(Locator): 

""" 

Determine the tick locations for symmetric log axes 

""" 

 

def __init__(self, transform=None, subs=None, linthresh=None, base=None): 

""" 

place ticks on the location= base**i*subs[j] 

""" 

if transform is not None: 

self._base = transform.base 

self._linthresh = transform.linthresh 

elif linthresh is not None and base is not None: 

self._base = base 

self._linthresh = linthresh 

else: 

raise ValueError("Either transform, or both linthresh " 

"and base, must be provided.") 

if subs is None: 

self._subs = [1.0] 

else: 

self._subs = subs 

self.numticks = 15 

 

def set_params(self, subs=None, numticks=None): 

"""Set parameters within this locator.""" 

if numticks is not None: 

self.numticks = numticks 

if subs is not None: 

self._subs = subs 

 

def __call__(self): 

'Return the locations of the ticks' 

# Note, these are untransformed coordinates 

vmin, vmax = self.axis.get_view_interval() 

return self.tick_values(vmin, vmax) 

 

def tick_values(self, vmin, vmax): 

b = self._base 

t = self._linthresh 

 

if vmax < vmin: 

vmin, vmax = vmax, vmin 

 

# The domain is divided into three sections, only some of 

# which may actually be present. 

# 

# <======== -t ==0== t ========> 

# aaaaaaaaa bbbbb ccccccccc 

# 

# a) and c) will have ticks at integral log positions. The 

# number of ticks needs to be reduced if there are more 

# than self.numticks of them. 

# 

# b) has a tick at 0 and only 0 (we assume t is a small 

# number, and the linear segment is just an implementation 

# detail and not interesting.) 

# 

# We could also add ticks at t, but that seems to usually be 

# uninteresting. 

# 

# "simple" mode is when the range falls entirely within (-t, 

# t) -- it should just display (vmin, 0, vmax) 

 

has_a = has_b = has_c = False 

if vmin < -t: 

has_a = True 

if vmax > -t: 

has_b = True 

if vmax > t: 

has_c = True 

elif vmin < 0: 

if vmax > 0: 

has_b = True 

if vmax > t: 

has_c = True 

else: 

return [vmin, vmax] 

elif vmin < t: 

if vmax > t: 

has_b = True 

has_c = True 

else: 

return [vmin, vmax] 

else: 

has_c = True 

 

def get_log_range(lo, hi): 

lo = np.floor(np.log(lo) / np.log(b)) 

hi = np.ceil(np.log(hi) / np.log(b)) 

return lo, hi 

 

# First, calculate all the ranges, so we can determine striding 

if has_a: 

if has_b: 

a_range = get_log_range(t, -vmin + 1) 

else: 

a_range = get_log_range(-vmax, -vmin + 1) 

else: 

a_range = (0, 0) 

 

if has_c: 

if has_b: 

c_range = get_log_range(t, vmax + 1) 

else: 

c_range = get_log_range(vmin, vmax + 1) 

else: 

c_range = (0, 0) 

 

total_ticks = (a_range[1] - a_range[0]) + (c_range[1] - c_range[0]) 

if has_b: 

total_ticks += 1 

stride = max(total_ticks // (self.numticks - 1), 1) 

 

decades = [] 

if has_a: 

decades.extend(-1 * (b ** (np.arange(a_range[0], a_range[1], 

stride)[::-1]))) 

 

if has_b: 

decades.append(0.0) 

 

if has_c: 

decades.extend(b ** (np.arange(c_range[0], c_range[1], stride))) 

 

# Add the subticks if requested 

if self._subs is None: 

subs = np.arange(2.0, b) 

else: 

subs = np.asarray(self._subs) 

 

if len(subs) > 1 or subs[0] != 1.0: 

ticklocs = [] 

for decade in decades: 

if decade == 0: 

ticklocs.append(decade) 

else: 

ticklocs.extend(subs * decade) 

else: 

ticklocs = decades 

 

return self.raise_if_exceeds(np.array(ticklocs)) 

 

def view_limits(self, vmin, vmax): 

'Try to choose the view limits intelligently' 

b = self._base 

if vmax < vmin: 

vmin, vmax = vmax, vmin 

 

if rcParams['axes.autolimit_mode'] == 'round_numbers': 

if not is_decade(abs(vmin), b): 

if vmin < 0: 

vmin = -decade_up(-vmin, b) 

else: 

vmin = decade_down(vmin, b) 

if not is_decade(abs(vmax), b): 

if vmax < 0: 

vmax = -decade_down(-vmax, b) 

else: 

vmax = decade_up(vmax, b) 

 

if vmin == vmax: 

if vmin < 0: 

vmin = -decade_up(-vmin, b) 

vmax = -decade_down(-vmax, b) 

else: 

vmin = decade_down(vmin, b) 

vmax = decade_up(vmax, b) 

 

result = mtransforms.nonsingular(vmin, vmax) 

return result 

 

 

class LogitLocator(Locator): 

""" 

Determine the tick locations for logit axes 

""" 

 

def __init__(self, minor=False): 

""" 

place ticks on the logit locations 

""" 

self.minor = minor 

 

def set_params(self, minor=None): 

"""Set parameters within this locator.""" 

if minor is not None: 

self.minor = minor 

 

def __call__(self): 

'Return the locations of the ticks' 

vmin, vmax = self.axis.get_view_interval() 

return self.tick_values(vmin, vmax) 

 

def tick_values(self, vmin, vmax): 

# dummy axis has no axes attribute 

if hasattr(self.axis, 'axes') and self.axis.axes.name == 'polar': 

raise NotImplementedError('Polar axis cannot be logit scaled yet') 

 

vmin, vmax = self.nonsingular(vmin, vmax) 

vmin = np.log10(vmin / (1 - vmin)) 

vmax = np.log10(vmax / (1 - vmax)) 

 

decade_min = np.floor(vmin) 

decade_max = np.ceil(vmax) 

 

# major ticks 

if not self.minor: 

ticklocs = [] 

if decade_min <= -1: 

expo = np.arange(decade_min, min(0, decade_max + 1)) 

ticklocs.extend(10**expo) 

if decade_min <= 0 <= decade_max: 

ticklocs.append(0.5) 

if decade_max >= 1: 

expo = -np.arange(max(1, decade_min), decade_max + 1) 

ticklocs.extend(1 - 10**expo) 

 

# minor ticks 

else: 

ticklocs = [] 

if decade_min <= -2: 

expo = np.arange(decade_min, min(-1, decade_max)) 

newticks = np.outer(np.arange(2, 10), 10**expo).ravel() 

ticklocs.extend(newticks) 

if decade_min <= 0 <= decade_max: 

ticklocs.extend([0.2, 0.3, 0.4, 0.6, 0.7, 0.8]) 

if decade_max >= 2: 

expo = -np.arange(max(2, decade_min), decade_max + 1) 

newticks = 1 - np.outer(np.arange(2, 10), 10**expo).ravel() 

ticklocs.extend(newticks) 

 

return self.raise_if_exceeds(np.array(ticklocs)) 

 

def nonsingular(self, vmin, vmax): 

initial_range = (1e-7, 1 - 1e-7) 

if not np.isfinite(vmin) or not np.isfinite(vmax): 

return initial_range # no data plotted yet 

 

if vmin > vmax: 

vmin, vmax = vmax, vmin 

 

# what to do if a window beyond ]0, 1[ is chosen 

if self.axis is not None: 

minpos = self.axis.get_minpos() 

if not np.isfinite(minpos): 

return initial_range # again, no data plotted 

else: 

minpos = 1e-7 # should not occur in normal use 

 

# NOTE: for vmax, we should query a property similar to get_minpos, but 

# related to the maximal, less-than-one data point. Unfortunately, 

# Bbox._minpos is defined very deep in the BBox and updated with data, 

# so for now we use 1 - minpos as a substitute. 

 

if vmin <= 0: 

vmin = minpos 

if vmax >= 1: 

vmax = 1 - minpos 

if vmin == vmax: 

return 0.1 * vmin, 1 - 0.1 * vmin 

 

return vmin, vmax 

 

 

class AutoLocator(MaxNLocator): 

""" 

Dynamically find major tick positions. This is actually a subclass 

of `~matplotlib.ticker.MaxNLocator`, with parameters *nbins = 'auto'* 

and *steps = [1, 2, 2.5, 5, 10]*. 

""" 

def __init__(self): 

""" 

To know the values of the non-public parameters, please have a 

look to the defaults of `~matplotlib.ticker.MaxNLocator`. 

""" 

if rcParams['_internal.classic_mode']: 

nbins = 9 

steps = [1, 2, 5, 10] 

else: 

nbins = 'auto' 

steps = [1, 2, 2.5, 5, 10] 

MaxNLocator.__init__(self, nbins=nbins, steps=steps) 

 

 

class AutoMinorLocator(Locator): 

""" 

Dynamically find minor tick positions based on the positions of 

major ticks. The scale must be linear with major ticks evenly spaced. 

""" 

def __init__(self, n=None): 

""" 

*n* is the number of subdivisions of the interval between 

major ticks; e.g., n=2 will place a single minor tick midway 

between major ticks. 

 

If *n* is omitted or None, it will be set to 5 or 4. 

""" 

self.ndivs = n 

 

def __call__(self): 

'Return the locations of the ticks' 

if self.axis.get_scale() == 'log': 

warnings.warn('AutoMinorLocator does not work with logarithmic ' 

'scale') 

return [] 

 

majorlocs = self.axis.get_majorticklocs() 

try: 

majorstep = majorlocs[1] - majorlocs[0] 

except IndexError: 

# Need at least two major ticks to find minor tick locations 

# TODO: Figure out a way to still be able to display minor 

# ticks without two major ticks visible. For now, just display 

# no ticks at all. 

return [] 

 

if self.ndivs is None: 

x = int(np.round(10 ** (np.log10(majorstep) % 1))) 

if x in [1, 5, 10]: 

ndivs = 5 

else: 

ndivs = 4 

else: 

ndivs = self.ndivs 

 

minorstep = majorstep / ndivs 

 

vmin, vmax = self.axis.get_view_interval() 

if vmin > vmax: 

vmin, vmax = vmax, vmin 

 

t0 = majorlocs[0] 

tmin = ((vmin - t0) // minorstep + 1) * minorstep 

tmax = ((vmax - t0) // minorstep + 1) * minorstep 

locs = np.arange(tmin, tmax, minorstep) + t0 

mod = np.abs((locs - t0) % majorstep) 

cond1 = mod > minorstep / 10.0 

cond2 = ~np.isclose(mod, majorstep, atol=0) 

locs = locs.compress(cond1 & cond2) 

 

return self.raise_if_exceeds(np.array(locs)) 

 

def tick_values(self, vmin, vmax): 

raise NotImplementedError('Cannot get tick locations for a ' 

'%s type.' % type(self)) 

 

 

class OldAutoLocator(Locator): 

""" 

On autoscale this class picks the best MultipleLocator to set the 

view limits and the tick locs. 

 

""" 

def __init__(self): 

self._locator = LinearLocator() 

 

def __call__(self): 

'Return the locations of the ticks' 

self.refresh() 

return self.raise_if_exceeds(self._locator()) 

 

def tick_values(self, vmin, vmax): 

raise NotImplementedError('Cannot get tick locations for a ' 

'%s type.' % type(self)) 

 

def refresh(self): 

'refresh internal information based on current lim' 

vmin, vmax = self.axis.get_view_interval() 

vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05) 

d = abs(vmax - vmin) 

self._locator = self.get_locator(d) 

 

def view_limits(self, vmin, vmax): 

'Try to choose the view limits intelligently' 

 

d = abs(vmax - vmin) 

self._locator = self.get_locator(d) 

return self._locator.view_limits(vmin, vmax) 

 

def get_locator(self, d): 

'pick the best locator based on a distance' 

d = abs(d) 

if d <= 0: 

locator = MultipleLocator(0.2) 

else: 

 

try: 

ld = math.log10(d) 

except OverflowError: 

raise RuntimeError('AutoLocator illegal data interval range') 

 

fld = math.floor(ld) 

base = 10 ** fld 

 

#if ld==fld: base = 10**(fld-1) 

#else: base = 10**fld 

 

if d >= 5 * base: 

ticksize = base 

elif d >= 2 * base: 

ticksize = base / 2.0 

else: 

ticksize = base / 5.0 

locator = MultipleLocator(ticksize) 

 

return locator