1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

""" 

matplotlib includes a framework for arbitrary geometric 

transformations that is used determine the final position of all 

elements drawn on the canvas. 

 

Transforms are composed into trees of :class:`TransformNode` objects 

whose actual value depends on their children. When the contents of 

children change, their parents are automatically invalidated. The 

next time an invalidated transform is accessed, it is recomputed to 

reflect those changes. This invalidation/caching approach prevents 

unnecessary recomputations of transforms, and contributes to better 

interactive performance. 

 

For example, here is a graph of the transform tree used to plot data 

to the graph: 

 

.. image:: ../_static/transforms.png 

 

The framework can be used for both affine and non-affine 

transformations. However, for speed, we want use the backend 

renderers to perform affine transformations whenever possible. 

Therefore, it is possible to perform just the affine or non-affine 

part of a transformation on a set of data. The affine is always 

assumed to occur after the non-affine. For any transform:: 

 

full transform == non-affine part + affine part 

 

The backends are not expected to handle non-affine transformations 

themselves. 

""" 

 

# Note: There are a number of places in the code where we use `np.min` or 

# `np.minimum` instead of the builtin `min`, and likewise for `max`. This is 

# done so that `nan`s are propagated, instead of being silently dropped. 

 

import re 

import warnings 

import weakref 

 

import numpy as np 

from numpy.linalg import inv 

 

from matplotlib._path import ( 

affine_transform, count_bboxes_overlapping_bbox, update_path_extents) 

from . import cbook 

from .path import Path 

 

DEBUG = False 

 

 

def _indent_str(obj): # textwrap.indent(str(obj), 4) on Py3. 

return re.sub("(^|\n)", r"\1 ", str(obj)) 

 

 

class TransformNode(object): 

""" 

:class:`TransformNode` is the base class for anything that 

participates in the transform tree and needs to invalidate its 

parents or be invalidated. This includes classes that are not 

really transforms, such as bounding boxes, since some transforms 

depend on bounding boxes to compute their values. 

""" 

_gid = 0 

 

# Invalidation may affect only the affine part. If the 

# invalidation was "affine-only", the _invalid member is set to 

# INVALID_AFFINE_ONLY 

INVALID_NON_AFFINE = 1 

INVALID_AFFINE = 2 

INVALID = INVALID_NON_AFFINE | INVALID_AFFINE 

 

# Some metadata about the transform, used to determine whether an 

# invalidation is affine-only 

is_affine = False 

is_bbox = False 

 

pass_through = False 

""" 

If pass_through is True, all ancestors will always be 

invalidated, even if 'self' is already invalid. 

""" 

 

def __init__(self, shorthand_name=None): 

""" 

Creates a new :class:`TransformNode`. 

 

Parameters 

---------- 

shorthand_name : str 

A string representing the "name" of the transform. The name carries 

no significance other than to improve the readability of 

``str(transform)`` when DEBUG=True. 

""" 

self._parents = {} 

 

# TransformNodes start out as invalid until their values are 

# computed for the first time. 

self._invalid = 1 

self._shorthand_name = shorthand_name or '' 

 

if DEBUG: 

def __str__(self): 

# either just return the name of this TransformNode, or its repr 

return self._shorthand_name or repr(self) 

 

def __getstate__(self): 

# turn the dictionary with weak values into a normal dictionary 

return {**self.__dict__, 

'_parents': {k: v() for k, v in self._parents.items()}} 

 

def __setstate__(self, data_dict): 

self.__dict__ = data_dict 

# turn the normal dictionary back into a dictionary with weak values 

self._parents = {k: weakref.ref(v) 

for k, v in self._parents.items() if v is not None} 

 

def __copy__(self, *args): 

raise NotImplementedError( 

"TransformNode instances can not be copied. " 

"Consider using frozen() instead.") 

__deepcopy__ = __copy__ 

 

def invalidate(self): 

""" 

Invalidate this :class:`TransformNode` and triggers an 

invalidation of its ancestors. Should be called any 

time the transform changes. 

""" 

value = self.INVALID 

if self.is_affine: 

value = self.INVALID_AFFINE 

return self._invalidate_internal(value, invalidating_node=self) 

 

def _invalidate_internal(self, value, invalidating_node): 

""" 

Called by :meth:`invalidate` and subsequently ascends the transform 

stack calling each TransformNode's _invalidate_internal method. 

""" 

# determine if this call will be an extension to the invalidation 

# status. If not, then a shortcut means that we needn't invoke an 

# invalidation up the transform stack as it will already have been 

# invalidated. 

 

# N.B This makes the invalidation sticky, once a transform has been 

# invalidated as NON_AFFINE, then it will always be invalidated as 

# NON_AFFINE even when triggered with a AFFINE_ONLY invalidation. 

# In most cases this is not a problem (i.e. for interactive panning and 

# zooming) and the only side effect will be on performance. 

status_changed = self._invalid < value 

 

if self.pass_through or status_changed: 

self._invalid = value 

 

for parent in list(self._parents.values()): 

# Dereference the weak reference 

parent = parent() 

if parent is not None: 

parent._invalidate_internal( 

value=value, invalidating_node=self) 

 

def set_children(self, *children): 

""" 

Set the children of the transform, to let the invalidation 

system know which transforms can invalidate this transform. 

Should be called from the constructor of any transforms that 

depend on other transforms. 

""" 

# Parents are stored as weak references, so that if the 

# parents are destroyed, references from the children won't 

# keep them alive. 

for child in children: 

child._parents[id(self)] = weakref.ref(self) 

 

if DEBUG: 

_set_children = set_children 

 

def set_children(self, *children): 

self._set_children(*children) 

self._children = children 

set_children.__doc__ = _set_children.__doc__ 

 

def frozen(self): 

""" 

Returns a frozen copy of this transform node. The frozen copy 

will not update when its children change. Useful for storing 

a previously known state of a transform where 

``copy.deepcopy()`` might normally be used. 

""" 

return self 

 

if DEBUG: 

def write_graphviz(self, fobj, highlight=[]): 

""" 

For debugging purposes. 

 

Writes the transform tree rooted at 'self' to a graphviz "dot" 

format file. This file can be run through the "dot" utility 

to produce a graph of the transform tree. 

 

Affine transforms are marked in blue. Bounding boxes are 

marked in yellow. 

 

*fobj*: A Python file-like object 

 

Once the "dot" file has been created, it can be turned into a 

png easily with:: 

 

$> dot -Tpng -o $OUTPUT_FILE $DOT_FILE 

 

""" 

seen = set() 

 

def recurse(root): 

if root in seen: 

return 

seen.add(root) 

props = {} 

label = root.__class__.__name__ 

if root._invalid: 

label = '[%s]' % label 

if root in highlight: 

props['style'] = 'bold' 

props['shape'] = 'box' 

props['label'] = '"%s"' % label 

props = ' '.join(map('{0[0]}={0[1]}'.format, props.items())) 

 

fobj.write('%s [%s];\n' % (hash(root), props)) 

 

if hasattr(root, '_children'): 

for child in root._children: 

name = next((key for key, val in root.__dict__.items() 

if val is child), '?') 

fobj.write('"%s" -> "%s" [label="%s", fontsize=10];\n' 

% (hash(root), 

hash(child), 

name)) 

recurse(child) 

 

fobj.write("digraph G {\n") 

recurse(self) 

fobj.write("}\n") 

 

 

class BboxBase(TransformNode): 

""" 

This is the base class of all bounding boxes, and provides 

read-only access to its data. A mutable bounding box is provided 

by the :class:`Bbox` class. 

 

The canonical representation is as two points, with no 

restrictions on their ordering. Convenience properties are 

provided to get the left, bottom, right and top edges and width 

and height, but these are not stored explicitly. 

""" 

is_bbox = True 

is_affine = True 

 

if DEBUG: 

def _check(points): 

if isinstance(points, np.ma.MaskedArray): 

warnings.warn("Bbox bounds are a masked array.") 

points = np.asarray(points) 

if (points[1, 0] - points[0, 0] == 0 or 

points[1, 1] - points[0, 1] == 0): 

warnings.warn("Singular Bbox.") 

_check = staticmethod(_check) 

 

def frozen(self): 

return Bbox(self.get_points().copy()) 

frozen.__doc__ = TransformNode.__doc__ 

 

def __array__(self, *args, **kwargs): 

return self.get_points() 

 

def is_unit(self): 

""" 

Returns True if the :class:`Bbox` is the unit bounding box 

from (0, 0) to (1, 1). 

""" 

return list(self.get_points().flatten()) == [0., 0., 1., 1.] 

 

@property 

def x0(self): 

""" 

:attr:`x0` is the first of the pair of *x* coordinates that 

define the bounding box. :attr:`x0` is not guaranteed to be less than 

:attr:`x1`. If you require that, use :attr:`xmin`. 

""" 

return self.get_points()[0, 0] 

 

@property 

def y0(self): 

""" 

:attr:`y0` is the first of the pair of *y* coordinates that 

define the bounding box. :attr:`y0` is not guaranteed to be less than 

:attr:`y1`. If you require that, use :attr:`ymin`. 

""" 

return self.get_points()[0, 1] 

 

@property 

def x1(self): 

""" 

:attr:`x1` is the second of the pair of *x* coordinates that 

define the bounding box. :attr:`x1` is not guaranteed to be greater 

than :attr:`x0`. If you require that, use :attr:`xmax`. 

""" 

return self.get_points()[1, 0] 

 

@property 

def y1(self): 

""" 

:attr:`y1` is the second of the pair of *y* coordinates that 

define the bounding box. :attr:`y1` is not guaranteed to be greater 

than :attr:`y0`. If you require that, use :attr:`ymax`. 

""" 

return self.get_points()[1, 1] 

 

@property 

def p0(self): 

""" 

:attr:`p0` is the first pair of (*x*, *y*) coordinates that 

define the bounding box. It is not guaranteed to be the bottom-left 

corner. For that, use :attr:`min`. 

""" 

return self.get_points()[0] 

 

@property 

def p1(self): 

""" 

:attr:`p1` is the second pair of (*x*, *y*) coordinates that 

define the bounding box. It is not guaranteed to be the top-right 

corner. For that, use :attr:`max`. 

""" 

return self.get_points()[1] 

 

@property 

def xmin(self): 

""" 

:attr:`xmin` is the left edge of the bounding box. 

""" 

return np.min(self.get_points()[:, 0]) 

 

@property 

def ymin(self): 

""" 

:attr:`ymin` is the bottom edge of the bounding box. 

""" 

return np.min(self.get_points()[:, 1]) 

 

@property 

def xmax(self): 

""" 

:attr:`xmax` is the right edge of the bounding box. 

""" 

return np.max(self.get_points()[:, 0]) 

 

@property 

def ymax(self): 

""" 

:attr:`ymax` is the top edge of the bounding box. 

""" 

return np.max(self.get_points()[:, 1]) 

 

@property 

def min(self): 

""" 

:attr:`min` is the bottom-left corner of the bounding box. 

""" 

return np.min(self.get_points(), axis=0) 

 

@property 

def max(self): 

""" 

:attr:`max` is the top-right corner of the bounding box. 

""" 

return np.max(self.get_points(), axis=0) 

 

@property 

def intervalx(self): 

""" 

:attr:`intervalx` is the pair of *x* coordinates that define 

the bounding box. It is not guaranteed to be sorted from left to right. 

""" 

return self.get_points()[:, 0] 

 

@property 

def intervaly(self): 

""" 

:attr:`intervaly` is the pair of *y* coordinates that define 

the bounding box. It is not guaranteed to be sorted from bottom to 

top. 

""" 

return self.get_points()[:, 1] 

 

@property 

def width(self): 

""" 

The width of the bounding box. It may be negative if 

:attr:`x1` < :attr:`x0`. 

""" 

points = self.get_points() 

return points[1, 0] - points[0, 0] 

 

@property 

def height(self): 

""" 

The height of the bounding box. It may be negative if 

:attr:`y1` < :attr:`y0`. 

""" 

points = self.get_points() 

return points[1, 1] - points[0, 1] 

 

@property 

def size(self): 

""" 

The width and height of the bounding box. May be negative, 

in the same way as :attr:`width` and :attr:`height`. 

""" 

points = self.get_points() 

return points[1] - points[0] 

 

@property 

def bounds(self): 

""" 

Returns (:attr:`x0`, :attr:`y0`, :attr:`width`, 

:attr:`height`). 

""" 

x0, y0, x1, y1 = self.get_points().flatten() 

return (x0, y0, x1 - x0, y1 - y0) 

 

@property 

def extents(self): 

""" 

Returns (:attr:`x0`, :attr:`y0`, :attr:`x1`, 

:attr:`y1`). 

""" 

return self.get_points().flatten().copy() 

 

def get_points(self): 

raise NotImplementedError 

 

def containsx(self, x): 

""" 

Returns whether *x* is in the closed (:attr:`x0`, :attr:`x1`) interval. 

""" 

x0, x1 = self.intervalx 

return x0 <= x <= x1 or x0 >= x >= x1 

 

def containsy(self, y): 

""" 

Returns whether *y* is in the closed (:attr:`y0`, :attr:`y1`) interval. 

""" 

y0, y1 = self.intervaly 

return y0 <= y <= y1 or y0 >= y >= y1 

 

def contains(self, x, y): 

""" 

Returns whether ``(x, y)`` is in the bounding box or on its edge. 

""" 

return self.containsx(x) and self.containsy(y) 

 

def overlaps(self, other): 

""" 

Returns whether this bounding box overlaps with the other bounding box. 

 

Parameters 

---------- 

other : BboxBase 

""" 

ax1, ay1, ax2, ay2 = self.extents 

bx1, by1, bx2, by2 = other.extents 

if ax2 < ax1: 

ax2, ax1 = ax1, ax2 

if ay2 < ay1: 

ay2, ay1 = ay1, ay2 

if bx2 < bx1: 

bx2, bx1 = bx1, bx2 

if by2 < by1: 

by2, by1 = by1, by2 

return ax1 <= bx2 and bx1 <= ax2 and ay1 <= by2 and by1 <= ay2 

 

def fully_containsx(self, x): 

""" 

Returns whether *x* is in the open (:attr:`x0`, :attr:`x1`) interval. 

""" 

x0, x1 = self.intervalx 

return x0 < x < x1 or x0 > x > x1 

 

def fully_containsy(self, y): 

""" 

Returns whether *y* is in the open (:attr:`y0`, :attr:`y1`) interval. 

""" 

y0, y1 = self.intervaly 

return y0 < y < y1 or y0 > y > y1 

 

def fully_contains(self, x, y): 

""" 

Returns whether ``x, y`` is in the bounding box, but not on its edge. 

""" 

return self.fully_containsx(x) and self.fully_containsy(y) 

 

def fully_overlaps(self, other): 

""" 

Returns whether this bounding box overlaps with the other bounding box, 

not including the edges. 

 

Parameters 

---------- 

other : BboxBase 

""" 

ax1, ay1, ax2, ay2 = self.extents 

bx1, by1, bx2, by2 = other.extents 

if ax2 < ax1: 

ax2, ax1 = ax1, ax2 

if ay2 < ay1: 

ay2, ay1 = ay1, ay2 

if bx2 < bx1: 

bx2, bx1 = bx1, bx2 

if by2 < by1: 

by2, by1 = by1, by2 

return ax1 < bx2 and bx1 < ax2 and ay1 < by2 and by1 < ay2 

 

def transformed(self, transform): 

""" 

Return a new :class:`Bbox` object, statically transformed by 

the given transform. 

""" 

pts = self.get_points() 

ll, ul, lr = transform.transform(np.array([pts[0], 

[pts[0, 0], pts[1, 1]], [pts[1, 0], pts[0, 1]]])) 

return Bbox([ll, [lr[0], ul[1]]]) 

 

def inverse_transformed(self, transform): 

""" 

Return a new :class:`Bbox` object, statically transformed by 

the inverse of the given transform. 

""" 

return self.transformed(transform.inverted()) 

 

coefs = {'C': (0.5, 0.5), 

'SW': (0, 0), 

'S': (0.5, 0), 

'SE': (1.0, 0), 

'E': (1.0, 0.5), 

'NE': (1.0, 1.0), 

'N': (0.5, 1.0), 

'NW': (0, 1.0), 

'W': (0, 0.5)} 

 

def anchored(self, c, container=None): 

""" 

Return a copy of the :class:`Bbox`, shifted to position *c* 

within a container. 

 

Parameters 

---------- 

c : 

May be either: 

 

* A sequence (*cx*, *cy*) where *cx* and *cy* range from 0 

to 1, where 0 is left or bottom and 1 is right or top 

 

* a string: 

- 'C' for centered 

- 'S' for bottom-center 

- 'SE' for bottom-left 

- 'E' for left 

- etc. 

 

container : Bbox, optional 

The box within which the :class:`Bbox` is positioned; it defaults 

to the initial :class:`Bbox`. 

""" 

if container is None: 

container = self 

l, b, w, h = container.bounds 

if isinstance(c, str): 

cx, cy = self.coefs[c] 

else: 

cx, cy = c 

L, B, W, H = self.bounds 

return Bbox(self._points + 

[(l + cx * (w - W)) - L, 

(b + cy * (h - H)) - B]) 

 

def shrunk(self, mx, my): 

""" 

Return a copy of the :class:`Bbox`, shrunk by the factor *mx* 

in the *x* direction and the factor *my* in the *y* direction. 

The lower left corner of the box remains unchanged. Normally 

*mx* and *my* will be less than 1, but this is not enforced. 

""" 

w, h = self.size 

return Bbox([self._points[0], 

self._points[0] + [mx * w, my * h]]) 

 

def shrunk_to_aspect(self, box_aspect, container=None, fig_aspect=1.0): 

""" 

Return a copy of the :class:`Bbox`, shrunk so that it is as 

large as it can be while having the desired aspect ratio, 

*box_aspect*. If the box coordinates are relative---that 

is, fractions of a larger box such as a figure---then the 

physical aspect ratio of that figure is specified with 

*fig_aspect*, so that *box_aspect* can also be given as a 

ratio of the absolute dimensions, not the relative dimensions. 

""" 

if box_aspect <= 0 or fig_aspect <= 0: 

raise ValueError("'box_aspect' and 'fig_aspect' must be positive") 

if container is None: 

container = self 

w, h = container.size 

H = w * box_aspect / fig_aspect 

if H <= h: 

W = w 

else: 

W = h * fig_aspect / box_aspect 

H = h 

return Bbox([self._points[0], 

self._points[0] + (W, H)]) 

 

def splitx(self, *args): 

""" 

e.g., ``bbox.splitx(f1, f2, ...)`` 

 

Returns a list of new :class:`Bbox` objects formed by 

splitting the original one with vertical lines at fractional 

positions *f1*, *f2*, ... 

""" 

xf = [0, *args, 1] 

x0, y0, x1, y1 = self.extents 

w = x1 - x0 

return [Bbox([[x0 + xf0 * w, y0], [x0 + xf1 * w, y1]]) 

for xf0, xf1 in zip(xf[:-1], xf[1:])] 

 

def splity(self, *args): 

""" 

e.g., ``bbox.splitx(f1, f2, ...)`` 

 

Returns a list of new :class:`Bbox` objects formed by 

splitting the original one with horizontal lines at fractional 

positions *f1*, *f2*, ... 

""" 

yf = [0, *args, 1] 

x0, y0, x1, y1 = self.extents 

h = y1 - y0 

return [Bbox([[x0, y0 + yf0 * h], [x1, y0 + yf1 * h]]) 

for yf0, yf1 in zip(yf[:-1], yf[1:])] 

 

def count_contains(self, vertices): 

""" 

Count the number of vertices contained in the :class:`Bbox`. 

Any vertices with a non-finite x or y value are ignored. 

 

Parameters 

---------- 

vertices : Nx2 Numpy array. 

""" 

if len(vertices) == 0: 

return 0 

vertices = np.asarray(vertices) 

with np.errstate(invalid='ignore'): 

return (((self.min < vertices) & 

(vertices < self.max)).all(axis=1).sum()) 

 

def count_overlaps(self, bboxes): 

""" 

Count the number of bounding boxes that overlap this one. 

 

Parameters 

---------- 

bboxes : sequence of :class:`BboxBase` objects 

""" 

return count_bboxes_overlapping_bbox( 

self, np.atleast_3d([np.array(x) for x in bboxes])) 

 

def expanded(self, sw, sh): 

""" 

Return a new :class:`Bbox` which is this :class:`Bbox` 

expanded around its center by the given factors *sw* and 

*sh*. 

""" 

width = self.width 

height = self.height 

deltaw = (sw * width - width) / 2.0 

deltah = (sh * height - height) / 2.0 

a = np.array([[-deltaw, -deltah], [deltaw, deltah]]) 

return Bbox(self._points + a) 

 

def padded(self, p): 

""" 

Return a new :class:`Bbox` that is padded on all four sides by 

the given value. 

""" 

points = self.get_points() 

return Bbox(points + [[-p, -p], [p, p]]) 

 

def translated(self, tx, ty): 

""" 

Return a copy of the :class:`Bbox`, statically translated by 

*tx* and *ty*. 

""" 

return Bbox(self._points + (tx, ty)) 

 

def corners(self): 

""" 

Return an array of points which are the four corners of this 

rectangle. For example, if this :class:`Bbox` is defined by 

the points (*a*, *b*) and (*c*, *d*), :meth:`corners` returns 

(*a*, *b*), (*a*, *d*), (*c*, *b*) and (*c*, *d*). 

""" 

l, b, r, t = self.get_points().flatten() 

return np.array([[l, b], [l, t], [r, b], [r, t]]) 

 

def rotated(self, radians): 

""" 

Return a new bounding box that bounds a rotated version of 

this bounding box by the given radians. The new bounding box 

is still aligned with the axes, of course. 

""" 

corners = self.corners() 

corners_rotated = Affine2D().rotate(radians).transform(corners) 

bbox = Bbox.unit() 

bbox.update_from_data_xy(corners_rotated, ignore=True) 

return bbox 

 

@staticmethod 

def union(bboxes): 

""" 

Return a :class:`Bbox` that contains all of the given bboxes. 

""" 

if not len(bboxes): 

raise ValueError("'bboxes' cannot be empty") 

x0 = np.min([bbox.xmin for bbox in bboxes]) 

x1 = np.max([bbox.xmax for bbox in bboxes]) 

y0 = np.min([bbox.ymin for bbox in bboxes]) 

y1 = np.max([bbox.ymax for bbox in bboxes]) 

return Bbox([[x0, y0], [x1, y1]]) 

 

@staticmethod 

def intersection(bbox1, bbox2): 

""" 

Return the intersection of the two bboxes or None 

if they do not intersect. 

""" 

x0 = np.maximum(bbox1.xmin, bbox2.xmin) 

x1 = np.minimum(bbox1.xmax, bbox2.xmax) 

y0 = np.maximum(bbox1.ymin, bbox2.ymin) 

y1 = np.minimum(bbox1.ymax, bbox2.ymax) 

return Bbox([[x0, y0], [x1, y1]]) if x0 <= x1 and y0 <= y1 else None 

 

 

class Bbox(BboxBase): 

""" 

A mutable bounding box. 

""" 

 

def __init__(self, points, **kwargs): 

""" 

Parameters 

---------- 

points : ndarray 

A 2x2 numpy array of the form ``[[x0, y0], [x1, y1]]``. 

 

Notes 

----- 

If you need to create a :class:`Bbox` object from another form 

of data, consider the static methods :meth:`unit`, 

:meth:`from_bounds` and :meth:`from_extents`. 

""" 

BboxBase.__init__(self, **kwargs) 

points = np.asarray(points, float) 

if points.shape != (2, 2): 

raise ValueError('Bbox points must be of the form ' 

'"[[x0, y0], [x1, y1]]".') 

self._points = points 

self._minpos = np.array([np.inf, np.inf]) 

self._ignore = True 

# it is helpful in some contexts to know if the bbox is a 

# default or has been mutated; we store the orig points to 

# support the mutated methods 

self._points_orig = self._points.copy() 

if DEBUG: 

___init__ = __init__ 

 

def __init__(self, points, **kwargs): 

self._check(points) 

self.___init__(points, **kwargs) 

 

def invalidate(self): 

self._check(self._points) 

TransformNode.invalidate(self) 

 

@staticmethod 

def unit(): 

""" 

(staticmethod) Create a new unit :class:`Bbox` from (0, 0) to 

(1, 1). 

""" 

return Bbox(np.array([[0.0, 0.0], [1.0, 1.0]], float)) 

 

@staticmethod 

def null(): 

""" 

(staticmethod) Create a new null :class:`Bbox` from (inf, inf) to 

(-inf, -inf). 

""" 

return Bbox(np.array([[np.inf, np.inf], [-np.inf, -np.inf]], float)) 

 

@staticmethod 

def from_bounds(x0, y0, width, height): 

""" 

(staticmethod) Create a new :class:`Bbox` from *x0*, *y0*, 

*width* and *height*. 

 

*width* and *height* may be negative. 

""" 

return Bbox.from_extents(x0, y0, x0 + width, y0 + height) 

 

@staticmethod 

def from_extents(*args): 

""" 

(staticmethod) Create a new Bbox from *left*, *bottom*, 

*right* and *top*. 

 

The *y*-axis increases upwards. 

""" 

points = np.array(args, dtype=float).reshape(2, 2) 

return Bbox(points) 

 

def __format__(self, fmt): 

return ( 

'Bbox(x0={0.x0:{1}}, y0={0.y0:{1}}, x1={0.x1:{1}}, y1={0.y1:{1}})'. 

format(self, fmt)) 

 

def __str__(self): 

return format(self, '') 

 

def __repr__(self): 

return 'Bbox([[{0.x0}, {0.y0}], [{0.x1}, {0.y1}]])'.format(self) 

 

def ignore(self, value): 

""" 

Set whether the existing bounds of the box should be ignored 

by subsequent calls to :meth:`update_from_data_xy`. 

 

value : bool 

- When ``True``, subsequent calls to :meth:`update_from_data_xy` 

will ignore the existing bounds of the :class:`Bbox`. 

 

- When ``False``, subsequent calls to :meth:`update_from_data_xy` 

will include the existing bounds of the :class:`Bbox`. 

""" 

self._ignore = value 

 

def update_from_path(self, path, ignore=None, updatex=True, updatey=True): 

""" 

Update the bounds of the :class:`Bbox` based on the passed in 

data. After updating, the bounds will have positive *width* 

and *height*; *x0* and *y0* will be the minimal values. 

 

Parameters 

---------- 

path : :class:`~matplotlib.path.Path` 

 

ignore : bool, optional 

- when ``True``, ignore the existing bounds of the :class:`Bbox`. 

- when ``False``, include the existing bounds of the :class:`Bbox`. 

- when ``None``, use the last value passed to :meth:`ignore`. 

 

updatex, updatey : bool, optional 

When ``True``, update the x/y values. 

""" 

if ignore is None: 

ignore = self._ignore 

 

if path.vertices.size == 0: 

return 

 

points, minpos, changed = update_path_extents( 

path, None, self._points, self._minpos, ignore) 

 

if changed: 

self.invalidate() 

if updatex: 

self._points[:, 0] = points[:, 0] 

self._minpos[0] = minpos[0] 

if updatey: 

self._points[:, 1] = points[:, 1] 

self._minpos[1] = minpos[1] 

 

def update_from_data_xy(self, xy, ignore=None, updatex=True, updatey=True): 

""" 

Update the bounds of the :class:`Bbox` based on the passed in 

data. After updating, the bounds will have positive *width* 

and *height*; *x0* and *y0* will be the minimal values. 

 

Parameters 

---------- 

xy : ndarray 

A numpy array of 2D points. 

 

ignore : bool, optional 

- When ``True``, ignore the existing bounds of the :class:`Bbox`. 

- When ``False``, include the existing bounds of the :class:`Bbox`. 

- When ``None``, use the last value passed to :meth:`ignore`. 

 

updatex, updatey : bool, optional 

When ``True``, update the x/y values. 

""" 

if len(xy) == 0: 

return 

 

path = Path(xy) 

self.update_from_path(path, ignore=ignore, 

updatex=updatex, updatey=updatey) 

 

@BboxBase.x0.setter 

def x0(self, val): 

self._points[0, 0] = val 

self.invalidate() 

 

@BboxBase.y0.setter 

def y0(self, val): 

self._points[0, 1] = val 

self.invalidate() 

 

@BboxBase.x1.setter 

def x1(self, val): 

self._points[1, 0] = val 

self.invalidate() 

 

@BboxBase.y1.setter 

def y1(self, val): 

self._points[1, 1] = val 

self.invalidate() 

 

@BboxBase.p0.setter 

def p0(self, val): 

self._points[0] = val 

self.invalidate() 

 

@BboxBase.p1.setter 

def p1(self, val): 

self._points[1] = val 

self.invalidate() 

 

@BboxBase.intervalx.setter 

def intervalx(self, interval): 

self._points[:, 0] = interval 

self.invalidate() 

 

@BboxBase.intervaly.setter 

def intervaly(self, interval): 

self._points[:, 1] = interval 

self.invalidate() 

 

@BboxBase.bounds.setter 

def bounds(self, bounds): 

l, b, w, h = bounds 

points = np.array([[l, b], [l + w, b + h]], float) 

if np.any(self._points != points): 

self._points = points 

self.invalidate() 

 

@property 

def minpos(self): 

return self._minpos 

 

@property 

def minposx(self): 

return self._minpos[0] 

 

@property 

def minposy(self): 

return self._minpos[1] 

 

def get_points(self): 

""" 

Get the points of the bounding box directly as a numpy array 

of the form: ``[[x0, y0], [x1, y1]]``. 

""" 

self._invalid = 0 

return self._points 

 

def set_points(self, points): 

""" 

Set the points of the bounding box directly from a numpy array 

of the form: ``[[x0, y0], [x1, y1]]``. No error checking is 

performed, as this method is mainly for internal use. 

""" 

if np.any(self._points != points): 

self._points = points 

self.invalidate() 

 

def set(self, other): 

""" 

Set this bounding box from the "frozen" bounds of another 

:class:`Bbox`. 

""" 

if np.any(self._points != other.get_points()): 

self._points = other.get_points() 

self.invalidate() 

 

def mutated(self): 

'Return whether the bbox has changed since init.' 

return self.mutatedx() or self.mutatedy() 

 

def mutatedx(self): 

'Return whether the x-limits have changed since init.' 

return (self._points[0, 0] != self._points_orig[0, 0] or 

self._points[1, 0] != self._points_orig[1, 0]) 

 

def mutatedy(self): 

'Return whether the y-limits have changed since init.' 

return (self._points[0, 1] != self._points_orig[0, 1] or 

self._points[1, 1] != self._points_orig[1, 1]) 

 

 

class TransformedBbox(BboxBase): 

""" 

A :class:`Bbox` that is automatically transformed by a given 

transform. When either the child bounding box or transform 

changes, the bounds of this bbox will update accordingly. 

""" 

def __init__(self, bbox, transform, **kwargs): 

""" 

Parameters 

---------- 

bbox : :class:`Bbox` 

 

transform : :class:`Transform` 

""" 

if not bbox.is_bbox: 

raise ValueError("'bbox' is not a bbox") 

if not isinstance(transform, Transform): 

raise ValueError("'transform' must be an instance of " 

"'matplotlib.transform.Transform'") 

if transform.input_dims != 2 or transform.output_dims != 2: 

raise ValueError( 

"The input and output dimensions of 'transform' must be 2") 

 

BboxBase.__init__(self, **kwargs) 

self._bbox = bbox 

self._transform = transform 

self.set_children(bbox, transform) 

self._points = None 

 

def __str__(self): 

return ("{}(\n" 

"{},\n" 

"{})" 

.format(type(self).__name__, 

_indent_str(self._bbox), 

_indent_str(self._transform))) 

 

def get_points(self): 

if self._invalid: 

p = self._bbox.get_points() 

# Transform all four points, then make a new bounding box 

# from the result, taking care to make the orientation the 

# same. 

points = self._transform.transform( 

[[p[0, 0], p[0, 1]], 

[p[1, 0], p[0, 1]], 

[p[0, 0], p[1, 1]], 

[p[1, 0], p[1, 1]]]) 

points = np.ma.filled(points, 0.0) 

 

xs = min(points[:, 0]), max(points[:, 0]) 

if p[0, 0] > p[1, 0]: 

xs = xs[::-1] 

 

ys = min(points[:, 1]), max(points[:, 1]) 

if p[0, 1] > p[1, 1]: 

ys = ys[::-1] 

 

self._points = np.array([ 

[xs[0], ys[0]], 

[xs[1], ys[1]] 

]) 

 

self._invalid = 0 

return self._points 

get_points.__doc__ = Bbox.get_points.__doc__ 

 

if DEBUG: 

_get_points = get_points 

 

def get_points(self): 

points = self._get_points() 

self._check(points) 

return points 

 

 

class LockableBbox(BboxBase): 

""" 

A :class:`Bbox` where some elements may be locked at certain values. 

 

When the child bounding box changes, the bounds of this bbox will update 

accordingly with the exception of the locked elements. 

""" 

def __init__(self, bbox, x0=None, y0=None, x1=None, y1=None, **kwargs): 

""" 

Parameters 

---------- 

bbox : Bbox 

The child bounding box to wrap. 

 

x0 : float or None 

The locked value for x0, or None to leave unlocked. 

 

y0 : float or None 

The locked value for y0, or None to leave unlocked. 

 

x1 : float or None 

The locked value for x1, or None to leave unlocked. 

 

y1 : float or None 

The locked value for y1, or None to leave unlocked. 

 

""" 

if not bbox.is_bbox: 

raise ValueError("'bbox' is not a bbox") 

 

BboxBase.__init__(self, **kwargs) 

self._bbox = bbox 

self.set_children(bbox) 

self._points = None 

fp = [x0, y0, x1, y1] 

mask = [val is None for val in fp] 

self._locked_points = np.ma.array(fp, float, mask=mask).reshape((2, 2)) 

 

def __str__(self): 

return ("{}(\n" 

"{},\n" 

"{})" 

.format(type(self).__name__, 

_indent_str(self._bbox), 

_indent_str(self._locked_points))) 

 

def get_points(self): 

if self._invalid: 

points = self._bbox.get_points() 

self._points = np.where(self._locked_points.mask, 

points, 

self._locked_points) 

self._invalid = 0 

return self._points 

get_points.__doc__ = Bbox.get_points.__doc__ 

 

if DEBUG: 

_get_points = get_points 

 

def get_points(self): 

points = self._get_points() 

self._check(points) 

return points 

 

@property 

def locked_x0(self): 

""" 

float or None: The value used for the locked x0. 

""" 

if self._locked_points.mask[0, 0]: 

return None 

else: 

return self._locked_points[0, 0] 

 

@locked_x0.setter 

def locked_x0(self, x0): 

self._locked_points.mask[0, 0] = x0 is None 

self._locked_points.data[0, 0] = x0 

self.invalidate() 

 

@property 

def locked_y0(self): 

""" 

float or None: The value used for the locked y0. 

""" 

if self._locked_points.mask[0, 1]: 

return None 

else: 

return self._locked_points[0, 1] 

 

@locked_y0.setter 

def locked_y0(self, y0): 

self._locked_points.mask[0, 1] = y0 is None 

self._locked_points.data[0, 1] = y0 

self.invalidate() 

 

@property 

def locked_x1(self): 

""" 

float or None: The value used for the locked x1. 

""" 

if self._locked_points.mask[1, 0]: 

return None 

else: 

return self._locked_points[1, 0] 

 

@locked_x1.setter 

def locked_x1(self, x1): 

self._locked_points.mask[1, 0] = x1 is None 

self._locked_points.data[1, 0] = x1 

self.invalidate() 

 

@property 

def locked_y1(self): 

""" 

float or None: The value used for the locked y1. 

""" 

if self._locked_points.mask[1, 1]: 

return None 

else: 

return self._locked_points[1, 1] 

 

@locked_y1.setter 

def locked_y1(self, y1): 

self._locked_points.mask[1, 1] = y1 is None 

self._locked_points.data[1, 1] = y1 

self.invalidate() 

 

 

class Transform(TransformNode): 

""" 

The base class of all :class:`TransformNode` instances that 

actually perform a transformation. 

 

All non-affine transformations should be subclasses of this class. 

New affine transformations should be subclasses of 

:class:`Affine2D`. 

 

Subclasses of this class should override the following members (at 

minimum): 

 

- :attr:`input_dims` 

- :attr:`output_dims` 

- :meth:`transform` 

- :attr:`is_separable` 

- :attr:`has_inverse` 

- :meth:`inverted` (if :attr:`has_inverse` is True) 

 

If the transform needs to do something non-standard with 

:class:`matplotlib.path.Path` objects, such as adding curves 

where there were once line segments, it should override: 

 

- :meth:`transform_path` 

""" 

input_dims = None 

""" 

The number of input dimensions of this transform. 

Must be overridden (with integers) in the subclass. 

""" 

 

output_dims = None 

""" 

The number of output dimensions of this transform. 

Must be overridden (with integers) in the subclass. 

""" 

 

has_inverse = False 

"""True if this transform has a corresponding inverse transform.""" 

 

is_separable = False 

"""True if this transform is separable in the x- and y- dimensions.""" 

 

def __add__(self, other): 

""" 

Composes two transforms together such that *self* is followed 

by *other*. 

""" 

if isinstance(other, Transform): 

return composite_transform_factory(self, other) 

raise TypeError( 

"Can not add Transform to object of type '%s'" % type(other)) 

 

def __radd__(self, other): 

""" 

Composes two transforms together such that *self* is followed 

by *other*. 

""" 

if isinstance(other, Transform): 

return composite_transform_factory(other, self) 

raise TypeError( 

"Can not add Transform to object of type '%s'" % type(other)) 

 

# Equality is based on object identity for `Transform`s (so we don't 

# override `__eq__`), but some subclasses, such as TransformWrapper & 

# AffineBase, override this behavior. 

 

def _iter_break_from_left_to_right(self): 

""" 

Returns an iterator breaking down this transform stack from left to 

right recursively. If self == ((A, N), A) then the result will be an 

iterator which yields I : ((A, N), A), followed by A : (N, A), 

followed by (A, N) : (A), but not ((A, N), A) : I. 

 

This is equivalent to flattening the stack then yielding 

``flat_stack[:i], flat_stack[i:]`` where i=0..(n-1). 

 

""" 

yield IdentityTransform(), self 

 

@property 

def depth(self): 

""" 

Returns the number of transforms which have been chained 

together to form this Transform instance. 

 

.. note:: 

 

For the special case of a Composite transform, the maximum depth 

of the two is returned. 

 

""" 

return 1 

 

def contains_branch(self, other): 

""" 

Return whether the given transform is a sub-tree of this transform. 

 

This routine uses transform equality to identify sub-trees, therefore 

in many situations it is object id which will be used. 

 

For the case where the given transform represents the whole 

of this transform, returns True. 

 

""" 

if self.depth < other.depth: 

return False 

 

# check that a subtree is equal to other (starting from self) 

for _, sub_tree in self._iter_break_from_left_to_right(): 

if sub_tree == other: 

return True 

return False 

 

def contains_branch_seperately(self, other_transform): 

""" 

Returns whether the given branch is a sub-tree of this transform on 

each separate dimension. 

 

A common use for this method is to identify if a transform is a blended 

transform containing an axes' data transform. e.g.:: 

 

x_isdata, y_isdata = trans.contains_branch_seperately(ax.transData) 

 

""" 

if self.output_dims != 2: 

raise ValueError('contains_branch_seperately only supports ' 

'transforms with 2 output dimensions') 

# for a non-blended transform each separate dimension is the same, so 

# just return the appropriate shape. 

return [self.contains_branch(other_transform)] * 2 

 

def __sub__(self, other): 

""" 

Returns a transform stack which goes all the way down self's transform 

stack, and then ascends back up other's stack. If it can, this is 

optimised:: 

 

# normally 

A - B == a + b.inverted() 

 

# sometimes, when A contains the tree B there is no need to 

# descend all the way down to the base of A (via B), instead we 

# can just stop at B. 

 

(A + B) - (B)^-1 == A 

 

# similarly, when B contains tree A, we can avoid decending A at 

# all, basically: 

A - (A + B) == ((B + A) - A).inverted() or B^-1 

 

For clarity, the result of ``(A + B) - B + B == (A + B)``. 

 

""" 

# we only know how to do this operation if other is a Transform. 

if not isinstance(other, Transform): 

return NotImplemented 

 

for remainder, sub_tree in self._iter_break_from_left_to_right(): 

if sub_tree == other: 

return remainder 

 

for remainder, sub_tree in other._iter_break_from_left_to_right(): 

if sub_tree == self: 

if not remainder.has_inverse: 

raise ValueError("The shortcut cannot be computed since " 

"other's transform includes a non-invertable component.") 

return remainder.inverted() 

 

# if we have got this far, then there was no shortcut possible 

if other.has_inverse: 

return self + other.inverted() 

else: 

raise ValueError('It is not possible to compute transA - transB ' 

'since transB cannot be inverted and there is no ' 

'shortcut possible.') 

 

def __array__(self, *args, **kwargs): 

""" 

Array interface to get at this Transform's affine matrix. 

""" 

return self.get_affine().get_matrix() 

 

def transform(self, values): 

""" 

Performs the transformation on the given array of values. 

 

Accepts a numpy array of shape (N x :attr:`input_dims`) and 

returns a numpy array of shape (N x :attr:`output_dims`). 

 

Alternatively, accepts a numpy array of length :attr:`input_dims` 

and returns a numpy array of length :attr:`output_dims`. 

""" 

# Ensure that values is a 2d array (but remember whether 

# we started with a 1d or 2d array). 

values = np.asanyarray(values) 

ndim = values.ndim 

values = values.reshape((-1, self.input_dims)) 

 

# Transform the values 

res = self.transform_affine(self.transform_non_affine(values)) 

 

# Convert the result back to the shape of the input values. 

if ndim == 0: 

assert not np.ma.is_masked(res) # just to be on the safe side 

return res[0, 0] 

if ndim == 1: 

return res.reshape(-1) 

elif ndim == 2: 

return res 

raise ValueError( 

"Input values must have shape (N x {dims}) " 

"or ({dims}).".format(dims=self.input_dims)) 

 

def transform_affine(self, values): 

""" 

Performs only the affine part of this transformation on the 

given array of values. 

 

``transform(values)`` is always equivalent to 

``transform_affine(transform_non_affine(values))``. 

 

In non-affine transformations, this is generally a no-op. In 

affine transformations, this is equivalent to 

``transform(values)``. 

 

Accepts a numpy array of shape (N x :attr:`input_dims`) and 

returns a numpy array of shape (N x :attr:`output_dims`). 

 

Alternatively, accepts a numpy array of length :attr:`input_dims` 

and returns a numpy array of length :attr:`output_dims`. 

""" 

return self.get_affine().transform(values) 

 

def transform_non_affine(self, values): 

""" 

Performs only the non-affine part of the transformation. 

 

``transform(values)`` is always equivalent to 

``transform_affine(transform_non_affine(values))``. 

 

In non-affine transformations, this is generally equivalent to 

``transform(values)``. In affine transformations, this is 

always a no-op. 

 

Accepts a numpy array of shape (N x :attr:`input_dims`) and 

returns a numpy array of shape (N x :attr:`output_dims`). 

 

Alternatively, accepts a numpy array of length :attr:`input_dims` 

and returns a numpy array of length :attr:`output_dims`. 

""" 

return values 

 

def transform_bbox(self, bbox): 

""" 

Transform the given bounding box. 

 

Note, for smarter transforms including caching (a common 

requirement for matplotlib figures), see :class:`TransformedBbox`. 

""" 

return Bbox(self.transform(bbox.get_points())) 

 

def get_affine(self): 

""" 

Get the affine part of this transform. 

""" 

return IdentityTransform() 

 

def get_matrix(self): 

""" 

Get the Affine transformation array for the affine part 

of this transform. 

 

""" 

return self.get_affine().get_matrix() 

 

def transform_point(self, point): 

""" 

A convenience function that returns the transformed copy of a 

single point. 

 

The point is given as a sequence of length :attr:`input_dims`. 

The transformed point is returned as a sequence of length 

:attr:`output_dims`. 

""" 

if len(point) != self.input_dims: 

raise ValueError("The length of 'point' must be 'self.input_dims'") 

return self.transform(np.asarray([point]))[0] 

 

def transform_path(self, path): 

""" 

Returns a transformed path. 

 

*path*: a :class:`~matplotlib.path.Path` instance. 

 

In some cases, this transform may insert curves into the path 

that began as line segments. 

""" 

return self.transform_path_affine(self.transform_path_non_affine(path)) 

 

def transform_path_affine(self, path): 

""" 

Returns a path, transformed only by the affine part of 

this transform. 

 

*path*: a :class:`~matplotlib.path.Path` instance. 

 

``transform_path(path)`` is equivalent to 

``transform_path_affine(transform_path_non_affine(values))``. 

""" 

return self.get_affine().transform_path_affine(path) 

 

def transform_path_non_affine(self, path): 

""" 

Returns a path, transformed only by the non-affine 

part of this transform. 

 

*path*: a :class:`~matplotlib.path.Path` instance. 

 

``transform_path(path)`` is equivalent to 

``transform_path_affine(transform_path_non_affine(values))``. 

""" 

x = self.transform_non_affine(path.vertices) 

return Path._fast_from_codes_and_verts(x, path.codes, 

{'interpolation_steps': path._interpolation_steps, 

'should_simplify': path.should_simplify}) 

 

def transform_angles(self, angles, pts, radians=False, pushoff=1e-5): 

""" 

Performs transformation on a set of angles anchored at 

specific locations. 

 

The *angles* must be a column vector (i.e., numpy array). 

 

The *pts* must be a two-column numpy array of x,y positions 

(angle transforms currently only work in 2D). This array must 

have the same number of rows as *angles*. 

 

*radians* indicates whether or not input angles are given in 

radians (True) or degrees (False; the default). 

 

*pushoff* is the distance to move away from *pts* for 

determining transformed angles (see discussion of method 

below). 

 

The transformed angles are returned in an array with the same 

size as *angles*. 

 

The generic version of this method uses a very generic 

algorithm that transforms *pts*, as well as locations very 

close to *pts*, to find the angle in the transformed system. 

""" 

# Must be 2D 

if self.input_dims != 2 or self.output_dims != 2: 

raise NotImplementedError('Only defined in 2D') 

 

if pts.shape[1] != 2: 

raise ValueError("'pts' must be array with 2 columns for x,y") 

 

if angles.ndim != 1 or angles.shape[0] != pts.shape[0]: 

raise ValueError("'angles' must be a column vector and have same " 

"number of rows as 'pts'") 

 

# Convert to radians if desired 

if not radians: 

angles = angles / 180.0 * np.pi 

 

# Move a short distance away 

pts2 = pts + pushoff * np.c_[np.cos(angles), np.sin(angles)] 

 

# Transform both sets of points 

tpts = self.transform(pts) 

tpts2 = self.transform(pts2) 

 

# Calculate transformed angles 

d = tpts2 - tpts 

a = np.arctan2(d[:, 1], d[:, 0]) 

 

# Convert back to degrees if desired 

if not radians: 

a = np.rad2deg(a) 

 

return a 

 

def inverted(self): 

""" 

Return the corresponding inverse transformation. 

 

The return value of this method should be treated as 

temporary. An update to *self* does not cause a corresponding 

update to its inverted copy. 

 

``x === self.inverted().transform(self.transform(x))`` 

""" 

raise NotImplementedError() 

 

 

class TransformWrapper(Transform): 

""" 

A helper class that holds a single child transform and acts 

equivalently to it. 

 

This is useful if a node of the transform tree must be replaced at 

run time with a transform of a different type. This class allows 

that replacement to correctly trigger invalidation. 

 

Note that :class:`TransformWrapper` instances must have the same 

input and output dimensions during their entire lifetime, so the 

child transform may only be replaced with another child transform 

of the same dimensions. 

""" 

pass_through = True 

 

def __init__(self, child): 

""" 

*child*: A class:`Transform` instance. This child may later 

be replaced with :meth:`set`. 

""" 

if not isinstance(child, Transform): 

raise ValueError("'child' must be an instance of " 

"'matplotlib.transform.Transform'") 

self._init(child) 

self.set_children(child) 

 

def _init(self, child): 

Transform.__init__(self) 

self.input_dims = child.input_dims 

self.output_dims = child.output_dims 

self._set(child) 

self._invalid = 0 

 

def __eq__(self, other): 

return self._child.__eq__(other) 

 

def __str__(self): 

return ("{}(\n" 

"{})" 

.format(type(self).__name__, 

_indent_str(self._child))) 

 

def frozen(self): 

return self._child.frozen() 

frozen.__doc__ = Transform.frozen.__doc__ 

 

def _set(self, child): 

self._child = child 

 

self.transform = child.transform 

self.transform_affine = child.transform_affine 

self.transform_non_affine = child.transform_non_affine 

self.transform_path = child.transform_path 

self.transform_path_affine = child.transform_path_affine 

self.transform_path_non_affine = child.transform_path_non_affine 

self.get_affine = child.get_affine 

self.inverted = child.inverted 

self.get_matrix = child.get_matrix 

 

# note we do not wrap other properties here since the transform's 

# child can be changed with WrappedTransform.set and so checking 

# is_affine and other such properties may be dangerous. 

 

def set(self, child): 

""" 

Replace the current child of this transform with another one. 

 

The new child must have the same number of input and output 

dimensions as the current child. 

""" 

if (child.input_dims != self.input_dims or 

child.output_dims != self.output_dims): 

raise ValueError( 

"The new child must have the same number of input and output " 

"dimensions as the current child") 

 

self.set_children(child) 

self._set(child) 

 

self._invalid = 0 

self.invalidate() 

self._invalid = 0 

 

def _get_is_affine(self): 

return self._child.is_affine 

is_affine = property(_get_is_affine) 

 

def _get_is_separable(self): 

return self._child.is_separable 

is_separable = property(_get_is_separable) 

 

def _get_has_inverse(self): 

return self._child.has_inverse 

has_inverse = property(_get_has_inverse) 

 

 

class AffineBase(Transform): 

""" 

The base class of all affine transformations of any number of 

dimensions. 

""" 

is_affine = True 

 

def __init__(self, *args, **kwargs): 

Transform.__init__(self, *args, **kwargs) 

self._inverted = None 

 

def __array__(self, *args, **kwargs): 

# optimises the access of the transform matrix vs the superclass 

return self.get_matrix() 

 

@staticmethod 

def _concat(a, b): 

""" 

Concatenates two transformation matrices (represented as numpy 

arrays) together. 

""" 

return np.dot(b, a) 

 

def __eq__(self, other): 

if getattr(other, "is_affine", False): 

return np.all(self.get_matrix() == other.get_matrix()) 

return NotImplemented 

 

def transform(self, values): 

return self.transform_affine(values) 

transform.__doc__ = Transform.transform.__doc__ 

 

def transform_affine(self, values): 

raise NotImplementedError('Affine subclasses should override this ' 

'method.') 

transform_affine.__doc__ = Transform.transform_affine.__doc__ 

 

def transform_non_affine(self, points): 

return points 

transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ 

 

def transform_path(self, path): 

return self.transform_path_affine(path) 

transform_path.__doc__ = Transform.transform_path.__doc__ 

 

def transform_path_affine(self, path): 

return Path(self.transform_affine(path.vertices), 

path.codes, path._interpolation_steps) 

transform_path_affine.__doc__ = Transform.transform_path_affine.__doc__ 

 

def transform_path_non_affine(self, path): 

return path 

transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ 

 

def get_affine(self): 

return self 

get_affine.__doc__ = Transform.get_affine.__doc__ 

 

 

class Affine2DBase(AffineBase): 

""" 

The base class of all 2D affine transformations. 

 

2D affine transformations are performed using a 3x3 numpy array:: 

 

a c e 

b d f 

0 0 1 

 

This class provides the read-only interface. For a mutable 2D 

affine transformation, use :class:`Affine2D`. 

 

Subclasses of this class will generally only need to override a 

constructor and :meth:`get_matrix` that generates a custom 3x3 matrix. 

""" 

has_inverse = True 

 

input_dims = 2 

output_dims = 2 

 

def frozen(self): 

return Affine2D(self.get_matrix().copy()) 

frozen.__doc__ = AffineBase.frozen.__doc__ 

 

def _get_is_separable(self): 

mtx = self.get_matrix() 

return mtx[0, 1] == 0.0 and mtx[1, 0] == 0.0 

is_separable = property(_get_is_separable) 

 

def to_values(self): 

""" 

Return the values of the matrix as a sequence (a,b,c,d,e,f) 

""" 

mtx = self.get_matrix() 

return tuple(mtx[:2].swapaxes(0, 1).flatten()) 

 

@staticmethod 

def matrix_from_values(a, b, c, d, e, f): 

""" 

(staticmethod) Create a new transformation matrix as a 3x3 

numpy array of the form:: 

 

a c e 

b d f 

0 0 1 

""" 

return np.array([[a, c, e], [b, d, f], [0.0, 0.0, 1.0]], float) 

 

def transform_affine(self, points): 

mtx = self.get_matrix() 

if isinstance(points, np.ma.MaskedArray): 

tpoints = affine_transform(points.data, mtx) 

return np.ma.MaskedArray(tpoints, mask=np.ma.getmask(points)) 

return affine_transform(points, mtx) 

 

def transform_point(self, point): 

mtx = self.get_matrix() 

return affine_transform([point], mtx)[0] 

transform_point.__doc__ = AffineBase.transform_point.__doc__ 

 

if DEBUG: 

_transform_affine = transform_affine 

 

def transform_affine(self, points): 

# The major speed trap here is just converting to the 

# points to an array in the first place. If we can use 

# more arrays upstream, that should help here. 

if not isinstance(points, (np.ma.MaskedArray, np.ndarray)): 

warnings.warn( 

('A non-numpy array of type %s was passed in for ' + 

'transformation. Please correct this.') 

% type(points)) 

return self._transform_affine(points) 

transform_affine.__doc__ = AffineBase.transform_affine.__doc__ 

 

def inverted(self): 

if self._inverted is None or self._invalid: 

mtx = self.get_matrix() 

shorthand_name = None 

if self._shorthand_name: 

shorthand_name = '(%s)-1' % self._shorthand_name 

self._inverted = Affine2D(inv(mtx), shorthand_name=shorthand_name) 

self._invalid = 0 

return self._inverted 

inverted.__doc__ = AffineBase.inverted.__doc__ 

 

 

class Affine2D(Affine2DBase): 

""" 

A mutable 2D affine transformation. 

""" 

 

def __init__(self, matrix=None, **kwargs): 

""" 

Initialize an Affine transform from a 3x3 numpy float array:: 

 

a c e 

b d f 

0 0 1 

 

If *matrix* is None, initialize with the identity transform. 

""" 

Affine2DBase.__init__(self, **kwargs) 

if matrix is None: 

# A bit faster than np.identity(3). 

matrix = IdentityTransform._mtx.copy() 

self._mtx = matrix 

self._invalid = 0 

 

def __str__(self): 

return ("{}(\n" 

"{})" 

.format(type(self).__name__, 

_indent_str(self._mtx))) 

 

@staticmethod 

def from_values(a, b, c, d, e, f): 

""" 

(staticmethod) Create a new Affine2D instance from the given 

values:: 

 

a c e 

b d f 

0 0 1 

 

. 

""" 

return Affine2D( 

np.array([a, c, e, b, d, f, 0.0, 0.0, 1.0], float).reshape((3, 3))) 

 

def get_matrix(self): 

""" 

Get the underlying transformation matrix as a 3x3 numpy array:: 

 

a c e 

b d f 

0 0 1 

 

. 

""" 

self._invalid = 0 

return self._mtx 

 

def set_matrix(self, mtx): 

""" 

Set the underlying transformation matrix from a 3x3 numpy array:: 

 

a c e 

b d f 

0 0 1 

 

. 

""" 

self._mtx = mtx 

self.invalidate() 

 

def set(self, other): 

""" 

Set this transformation from the frozen copy of another 

:class:`Affine2DBase` object. 

""" 

if not isinstance(other, Affine2DBase): 

raise ValueError("'other' must be an instance of " 

"'matplotlib.transform.Affine2DBase'") 

self._mtx = other.get_matrix() 

self.invalidate() 

 

@staticmethod 

def identity(): 

""" 

(staticmethod) Return a new :class:`Affine2D` object that is 

the identity transform. 

 

Unless this transform will be mutated later on, consider using 

the faster :class:`IdentityTransform` class instead. 

""" 

return Affine2D() 

 

def clear(self): 

""" 

Reset the underlying matrix to the identity transform. 

""" 

# A bit faster than np.identity(3). 

self._mtx = IdentityTransform._mtx.copy() 

self.invalidate() 

return self 

 

def rotate(self, theta): 

""" 

Add a rotation (in radians) to this transform in place. 

 

Returns *self*, so this method can easily be chained with more 

calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` 

and :meth:`scale`. 

""" 

a = np.cos(theta) 

b = np.sin(theta) 

rotate_mtx = np.array([[a, -b, 0.0], [b, a, 0.0], [0.0, 0.0, 1.0]], 

float) 

self._mtx = np.dot(rotate_mtx, self._mtx) 

self.invalidate() 

return self 

 

def rotate_deg(self, degrees): 

""" 

Add a rotation (in degrees) to this transform in place. 

 

Returns *self*, so this method can easily be chained with more 

calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` 

and :meth:`scale`. 

""" 

return self.rotate(np.deg2rad(degrees)) 

 

def rotate_around(self, x, y, theta): 

""" 

Add a rotation (in radians) around the point (x, y) in place. 

 

Returns *self*, so this method can easily be chained with more 

calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` 

and :meth:`scale`. 

""" 

return self.translate(-x, -y).rotate(theta).translate(x, y) 

 

def rotate_deg_around(self, x, y, degrees): 

""" 

Add a rotation (in degrees) around the point (x, y) in place. 

 

Returns *self*, so this method can easily be chained with more 

calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` 

and :meth:`scale`. 

""" 

# Cast to float to avoid wraparound issues with uint8's 

x, y = float(x), float(y) 

return self.translate(-x, -y).rotate_deg(degrees).translate(x, y) 

 

def translate(self, tx, ty): 

""" 

Adds a translation in place. 

 

Returns *self*, so this method can easily be chained with more 

calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` 

and :meth:`scale`. 

""" 

translate_mtx = np.array( 

[[1.0, 0.0, tx], [0.0, 1.0, ty], [0.0, 0.0, 1.0]], float) 

self._mtx = np.dot(translate_mtx, self._mtx) 

self.invalidate() 

return self 

 

def scale(self, sx, sy=None): 

""" 

Adds a scale in place. 

 

If *sy* is None, the same scale is applied in both the *x*- and 

*y*-directions. 

 

Returns *self*, so this method can easily be chained with more 

calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` 

and :meth:`scale`. 

""" 

if sy is None: 

sy = sx 

scale_mtx = np.array( 

[[sx, 0.0, 0.0], [0.0, sy, 0.0], [0.0, 0.0, 1.0]], float) 

self._mtx = np.dot(scale_mtx, self._mtx) 

self.invalidate() 

return self 

 

def skew(self, xShear, yShear): 

""" 

Adds a skew in place. 

 

*xShear* and *yShear* are the shear angles along the *x*- and 

*y*-axes, respectively, in radians. 

 

Returns *self*, so this method can easily be chained with more 

calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` 

and :meth:`scale`. 

""" 

rotX = np.tan(xShear) 

rotY = np.tan(yShear) 

skew_mtx = np.array( 

[[1.0, rotX, 0.0], [rotY, 1.0, 0.0], [0.0, 0.0, 1.0]], float) 

self._mtx = np.dot(skew_mtx, self._mtx) 

self.invalidate() 

return self 

 

def skew_deg(self, xShear, yShear): 

""" 

Adds a skew in place. 

 

*xShear* and *yShear* are the shear angles along the *x*- and 

*y*-axes, respectively, in degrees. 

 

Returns *self*, so this method can easily be chained with more 

calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` 

and :meth:`scale`. 

""" 

return self.skew(np.deg2rad(xShear), np.deg2rad(yShear)) 

 

def _get_is_separable(self): 

mtx = self.get_matrix() 

return mtx[0, 1] == 0.0 and mtx[1, 0] == 0.0 

is_separable = property(_get_is_separable) 

 

 

class IdentityTransform(Affine2DBase): 

""" 

A special class that does one thing, the identity transform, in a 

fast way. 

""" 

_mtx = np.identity(3) 

 

def frozen(self): 

return self 

frozen.__doc__ = Affine2DBase.frozen.__doc__ 

 

def __str__(self): 

return ("{}()" 

.format(type(self).__name__)) 

 

def get_matrix(self): 

return self._mtx 

get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ 

 

def transform(self, points): 

return np.asanyarray(points) 

transform.__doc__ = Affine2DBase.transform.__doc__ 

 

transform_affine = transform 

transform_affine.__doc__ = Affine2DBase.transform_affine.__doc__ 

 

transform_non_affine = transform 

transform_non_affine.__doc__ = Affine2DBase.transform_non_affine.__doc__ 

 

def transform_path(self, path): 

return path 

transform_path.__doc__ = Affine2DBase.transform_path.__doc__ 

 

transform_path_affine = transform_path 

transform_path_affine.__doc__ = Affine2DBase.transform_path_affine.__doc__ 

 

transform_path_non_affine = transform_path 

transform_path_non_affine.__doc__ = Affine2DBase.transform_path_non_affine.__doc__ 

 

def get_affine(self): 

return self 

get_affine.__doc__ = Affine2DBase.get_affine.__doc__ 

 

inverted = get_affine 

inverted.__doc__ = Affine2DBase.inverted.__doc__ 

 

 

class BlendedGenericTransform(Transform): 

""" 

A "blended" transform uses one transform for the *x*-direction, and 

another transform for the *y*-direction. 

 

This "generic" version can handle any given child transform in the 

*x*- and *y*-directions. 

""" 

input_dims = 2 

output_dims = 2 

is_separable = True 

pass_through = True 

 

def __init__(self, x_transform, y_transform, **kwargs): 

""" 

Create a new "blended" transform using *x_transform* to 

transform the *x*-axis and *y_transform* to transform the 

*y*-axis. 

 

You will generally not call this constructor directly but use 

the :func:`blended_transform_factory` function instead, which 

can determine automatically which kind of blended transform to 

create. 

""" 

# Here we ask: "Does it blend?" 

 

Transform.__init__(self, **kwargs) 

self._x = x_transform 

self._y = y_transform 

self.set_children(x_transform, y_transform) 

self._affine = None 

 

def __eq__(self, other): 

# Note, this is an exact copy of BlendedAffine2D.__eq__ 

if isinstance(other, (BlendedAffine2D, BlendedGenericTransform)): 

return (self._x == other._x) and (self._y == other._y) 

elif self._x == self._y: 

return self._x == other 

else: 

return NotImplemented 

 

def contains_branch_seperately(self, transform): 

# Note, this is an exact copy of BlendedAffine2D.contains_branch_seperately 

return self._x.contains_branch(transform), self._y.contains_branch(transform) 

 

@property 

def depth(self): 

return max(self._x.depth, self._y.depth) 

 

def contains_branch(self, other): 

# a blended transform cannot possibly contain a branch from two different transforms. 

return False 

 

def _get_is_affine(self): 

return self._x.is_affine and self._y.is_affine 

is_affine = property(_get_is_affine) 

 

def _get_has_inverse(self): 

return self._x.has_inverse and self._y.has_inverse 

has_inverse = property(_get_has_inverse) 

 

def frozen(self): 

return blended_transform_factory(self._x.frozen(), self._y.frozen()) 

frozen.__doc__ = Transform.frozen.__doc__ 

 

def __str__(self): 

return ("{}(\n" 

"{},\n" 

"{})" 

.format(type(self).__name__, 

_indent_str(self._x), 

_indent_str(self._y))) 

 

def transform_non_affine(self, points): 

if self._x.is_affine and self._y.is_affine: 

return points 

x = self._x 

y = self._y 

 

if x == y and x.input_dims == 2: 

return x.transform_non_affine(points) 

 

if x.input_dims == 2: 

x_points = x.transform_non_affine(points)[:, 0:1] 

else: 

x_points = x.transform_non_affine(points[:, 0]) 

x_points = x_points.reshape((len(x_points), 1)) 

 

if y.input_dims == 2: 

y_points = y.transform_non_affine(points)[:, 1:] 

else: 

y_points = y.transform_non_affine(points[:, 1]) 

y_points = y_points.reshape((len(y_points), 1)) 

 

if (isinstance(x_points, np.ma.MaskedArray) or 

isinstance(y_points, np.ma.MaskedArray)): 

return np.ma.concatenate((x_points, y_points), 1) 

else: 

return np.concatenate((x_points, y_points), 1) 

transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ 

 

def inverted(self): 

return BlendedGenericTransform(self._x.inverted(), self._y.inverted()) 

inverted.__doc__ = Transform.inverted.__doc__ 

 

def get_affine(self): 

if self._invalid or self._affine is None: 

if self._x == self._y: 

self._affine = self._x.get_affine() 

else: 

x_mtx = self._x.get_affine().get_matrix() 

y_mtx = self._y.get_affine().get_matrix() 

# This works because we already know the transforms are 

# separable, though normally one would want to set b and 

# c to zero. 

mtx = np.vstack((x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0])) 

self._affine = Affine2D(mtx) 

self._invalid = 0 

return self._affine 

get_affine.__doc__ = Transform.get_affine.__doc__ 

 

 

class BlendedAffine2D(Affine2DBase): 

""" 

A "blended" transform uses one transform for the *x*-direction, and 

another transform for the *y*-direction. 

 

This version is an optimization for the case where both child 

transforms are of type :class:`Affine2DBase`. 

""" 

is_separable = True 

 

def __init__(self, x_transform, y_transform, **kwargs): 

""" 

Create a new "blended" transform using *x_transform* to 

transform the *x*-axis and *y_transform* to transform the 

*y*-axis. 

 

Both *x_transform* and *y_transform* must be 2D affine 

transforms. 

 

You will generally not call this constructor directly but use 

the :func:`blended_transform_factory` function instead, which 

can determine automatically which kind of blended transform to 

create. 

""" 

is_affine = x_transform.is_affine and y_transform.is_affine 

is_separable = x_transform.is_separable and y_transform.is_separable 

is_correct = is_affine and is_separable 

if not is_correct: 

raise ValueError("Both *x_transform* and *y_transform* must be 2D " 

"affine transforms") 

 

Transform.__init__(self, **kwargs) 

self._x = x_transform 

self._y = y_transform 

self.set_children(x_transform, y_transform) 

 

Affine2DBase.__init__(self) 

self._mtx = None 

 

def __eq__(self, other): 

# Note, this is an exact copy of BlendedGenericTransform.__eq__ 

if isinstance(other, (BlendedAffine2D, BlendedGenericTransform)): 

return (self._x == other._x) and (self._y == other._y) 

elif self._x == self._y: 

return self._x == other 

else: 

return NotImplemented 

 

def contains_branch_seperately(self, transform): 

# Note, this is an exact copy of BlendedTransform.contains_branch_seperately 

return self._x.contains_branch(transform), self._y.contains_branch(transform) 

 

def __str__(self): 

return ("{}(\n" 

"{},\n" 

"{})" 

.format(type(self).__name__, 

_indent_str(self._x), 

_indent_str(self._y))) 

 

def get_matrix(self): 

if self._invalid: 

if self._x == self._y: 

self._mtx = self._x.get_matrix() 

else: 

x_mtx = self._x.get_matrix() 

y_mtx = self._y.get_matrix() 

# This works because we already know the transforms are 

# separable, though normally one would want to set b and 

# c to zero. 

self._mtx = np.vstack((x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0])) 

self._inverted = None 

self._invalid = 0 

return self._mtx 

get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ 

 

 

def blended_transform_factory(x_transform, y_transform): 

""" 

Create a new "blended" transform using *x_transform* to transform 

the *x*-axis and *y_transform* to transform the *y*-axis. 

 

A faster version of the blended transform is returned for the case 

where both child transforms are affine. 

""" 

if (isinstance(x_transform, Affine2DBase) 

and isinstance(y_transform, Affine2DBase)): 

return BlendedAffine2D(x_transform, y_transform) 

return BlendedGenericTransform(x_transform, y_transform) 

 

 

class CompositeGenericTransform(Transform): 

""" 

A composite transform formed by applying transform *a* then 

transform *b*. 

 

This "generic" version can handle any two arbitrary 

transformations. 

""" 

pass_through = True 

 

def __init__(self, a, b, **kwargs): 

""" 

Create a new composite transform that is the result of 

applying transform *a* then transform *b*. 

 

You will generally not call this constructor directly but use 

the :func:`composite_transform_factory` function instead, 

which can automatically choose the best kind of composite 

transform instance to create. 

""" 

if a.output_dims != b.input_dims: 

raise ValueError("The output dimension of 'a' must be equal to " 

"the input dimensions of 'b'") 

self.input_dims = a.input_dims 

self.output_dims = b.output_dims 

 

Transform.__init__(self, **kwargs) 

self._a = a 

self._b = b 

self.set_children(a, b) 

 

is_affine = property(lambda self: self._a.is_affine and self._b.is_affine) 

 

def frozen(self): 

self._invalid = 0 

frozen = composite_transform_factory(self._a.frozen(), self._b.frozen()) 

if not isinstance(frozen, CompositeGenericTransform): 

return frozen.frozen() 

return frozen 

frozen.__doc__ = Transform.frozen.__doc__ 

 

def _invalidate_internal(self, value, invalidating_node): 

# In some cases for a composite transform, an invalidating call to AFFINE_ONLY needs 

# to be extended to invalidate the NON_AFFINE part too. These cases are when the right 

# hand transform is non-affine and either: 

# (a) the left hand transform is non affine 

# (b) it is the left hand node which has triggered the invalidation 

if value == Transform.INVALID_AFFINE \ 

and not self._b.is_affine \ 

and (not self._a.is_affine or invalidating_node is self._a): 

 

value = Transform.INVALID 

 

Transform._invalidate_internal(self, value=value, 

invalidating_node=invalidating_node) 

 

def __eq__(self, other): 

if isinstance(other, (CompositeGenericTransform, CompositeAffine2D)): 

return self is other or (self._a == other._a 

and self._b == other._b) 

else: 

return False 

 

def _iter_break_from_left_to_right(self): 

for left, right in self._a._iter_break_from_left_to_right(): 

yield left, right + self._b 

for left, right in self._b._iter_break_from_left_to_right(): 

yield self._a + left, right 

 

@property 

def depth(self): 

return self._a.depth + self._b.depth 

 

def _get_is_affine(self): 

return self._a.is_affine and self._b.is_affine 

is_affine = property(_get_is_affine) 

 

def _get_is_separable(self): 

return self._a.is_separable and self._b.is_separable 

is_separable = property(_get_is_separable) 

 

def __str__(self): 

return ("{}(\n" 

"{},\n" 

"{})" 

.format(type(self).__name__, 

_indent_str(self._a), 

_indent_str(self._b))) 

 

def transform_affine(self, points): 

return self.get_affine().transform(points) 

transform_affine.__doc__ = Transform.transform_affine.__doc__ 

 

def transform_non_affine(self, points): 

if self._a.is_affine and self._b.is_affine: 

return points 

elif not self._a.is_affine and self._b.is_affine: 

return self._a.transform_non_affine(points) 

else: 

return self._b.transform_non_affine( 

self._a.transform(points)) 

transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ 

 

def transform_path_non_affine(self, path): 

if self._a.is_affine and self._b.is_affine: 

return path 

elif not self._a.is_affine and self._b.is_affine: 

return self._a.transform_path_non_affine(path) 

else: 

return self._b.transform_path_non_affine( 

self._a.transform_path(path)) 

transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ 

 

def get_affine(self): 

if not self._b.is_affine: 

return self._b.get_affine() 

else: 

return Affine2D(np.dot(self._b.get_affine().get_matrix(), 

self._a.get_affine().get_matrix())) 

get_affine.__doc__ = Transform.get_affine.__doc__ 

 

def inverted(self): 

return CompositeGenericTransform(self._b.inverted(), self._a.inverted()) 

inverted.__doc__ = Transform.inverted.__doc__ 

 

def _get_has_inverse(self): 

return self._a.has_inverse and self._b.has_inverse 

has_inverse = property(_get_has_inverse) 

 

 

class CompositeAffine2D(Affine2DBase): 

""" 

A composite transform formed by applying transform *a* then transform *b*. 

 

This version is an optimization that handles the case where both *a* 

and *b* are 2D affines. 

""" 

def __init__(self, a, b, **kwargs): 

""" 

Create a new composite transform that is the result of 

applying transform *a* then transform *b*. 

 

Both *a* and *b* must be instances of :class:`Affine2DBase`. 

 

You will generally not call this constructor directly but use 

the :func:`composite_transform_factory` function instead, 

which can automatically choose the best kind of composite 

transform instance to create. 

""" 

if not a.is_affine or not b.is_affine: 

raise ValueError("'a' and 'b' must be affine transforms") 

if a.output_dims != b.input_dims: 

raise ValueError("The output dimension of 'a' must be equal to " 

"the input dimensions of 'b'") 

self.input_dims = a.input_dims 

self.output_dims = b.output_dims 

 

Affine2DBase.__init__(self, **kwargs) 

self._a = a 

self._b = b 

self.set_children(a, b) 

self._mtx = None 

 

@property 

def depth(self): 

return self._a.depth + self._b.depth 

 

def _iter_break_from_left_to_right(self): 

for left, right in self._a._iter_break_from_left_to_right(): 

yield left, right + self._b 

for left, right in self._b._iter_break_from_left_to_right(): 

yield self._a + left, right 

 

def __str__(self): 

return ("{}(\n" 

"{},\n" 

"{})" 

.format(type(self).__name__, 

_indent_str(self._a), 

_indent_str(self._b))) 

 

def get_matrix(self): 

if self._invalid: 

self._mtx = np.dot( 

self._b.get_matrix(), 

self._a.get_matrix()) 

self._inverted = None 

self._invalid = 0 

return self._mtx 

get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ 

 

 

def composite_transform_factory(a, b): 

""" 

Create a new composite transform that is the result of applying 

transform a then transform b. 

 

Shortcut versions of the blended transform are provided for the 

case where both child transforms are affine, or one or the other 

is the identity transform. 

 

Composite transforms may also be created using the '+' operator, 

e.g.:: 

 

c = a + b 

""" 

# check to see if any of a or b are IdentityTransforms. We use 

# isinstance here to guarantee that the transforms will *always* 

# be IdentityTransforms. Since TransformWrappers are mutable, 

# use of equality here would be wrong. 

if isinstance(a, IdentityTransform): 

return b 

elif isinstance(b, IdentityTransform): 

return a 

elif isinstance(a, Affine2D) and isinstance(b, Affine2D): 

return CompositeAffine2D(a, b) 

return CompositeGenericTransform(a, b) 

 

 

class BboxTransform(Affine2DBase): 

""" 

:class:`BboxTransform` linearly transforms points from one 

:class:`Bbox` to another :class:`Bbox`. 

""" 

is_separable = True 

 

def __init__(self, boxin, boxout, **kwargs): 

""" 

Create a new :class:`BboxTransform` that linearly transforms 

points from *boxin* to *boxout*. 

""" 

if not boxin.is_bbox or not boxout.is_bbox: 

raise ValueError("'boxin' and 'boxout' must be bbox") 

 

Affine2DBase.__init__(self, **kwargs) 

self._boxin = boxin 

self._boxout = boxout 

self.set_children(boxin, boxout) 

self._mtx = None 

self._inverted = None 

 

def __str__(self): 

return ("{}(\n" 

"{},\n" 

"{})" 

.format(type(self).__name__, 

_indent_str(self._boxin), 

_indent_str(self._boxout))) 

 

def get_matrix(self): 

if self._invalid: 

inl, inb, inw, inh = self._boxin.bounds 

outl, outb, outw, outh = self._boxout.bounds 

x_scale = outw / inw 

y_scale = outh / inh 

if DEBUG and (x_scale == 0 or y_scale == 0): 

raise ValueError("Transforming from or to a singular bounding box.") 

self._mtx = np.array([[x_scale, 0.0 , (-inl*x_scale+outl)], 

[0.0 , y_scale, (-inb*y_scale+outb)], 

[0.0 , 0.0 , 1.0 ]], 

float) 

self._inverted = None 

self._invalid = 0 

return self._mtx 

get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ 

 

 

class BboxTransformTo(Affine2DBase): 

""" 

:class:`BboxTransformTo` is a transformation that linearly 

transforms points from the unit bounding box to a given 

:class:`Bbox`. 

""" 

is_separable = True 

 

def __init__(self, boxout, **kwargs): 

""" 

Create a new :class:`BboxTransformTo` that linearly transforms 

points from the unit bounding box to *boxout*. 

""" 

if not boxout.is_bbox: 

raise ValueError("'boxout' must be bbox") 

 

Affine2DBase.__init__(self, **kwargs) 

self._boxout = boxout 

self.set_children(boxout) 

self._mtx = None 

self._inverted = None 

 

def __str__(self): 

return ("{}(\n" 

"{})" 

.format(type(self).__name__, 

_indent_str(self._boxout))) 

 

def get_matrix(self): 

if self._invalid: 

outl, outb, outw, outh = self._boxout.bounds 

if DEBUG and (outw == 0 or outh == 0): 

raise ValueError("Transforming to a singular bounding box.") 

self._mtx = np.array([[outw, 0.0, outl], 

[ 0.0, outh, outb], 

[ 0.0, 0.0, 1.0]], 

float) 

self._inverted = None 

self._invalid = 0 

return self._mtx 

get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ 

 

 

class BboxTransformToMaxOnly(BboxTransformTo): 

""" 

:class:`BboxTransformTo` is a transformation that linearly 

transforms points from the unit bounding box to a given 

:class:`Bbox` with a fixed upper left of (0, 0). 

""" 

def get_matrix(self): 

if self._invalid: 

xmax, ymax = self._boxout.max 

if DEBUG and (xmax == 0 or ymax == 0): 

raise ValueError("Transforming to a singular bounding box.") 

self._mtx = np.array([[xmax, 0.0, 0.0], 

[ 0.0, ymax, 0.0], 

[ 0.0, 0.0, 1.0]], 

float) 

self._inverted = None 

self._invalid = 0 

return self._mtx 

get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ 

 

 

class BboxTransformFrom(Affine2DBase): 

""" 

:class:`BboxTransformFrom` linearly transforms points from a given 

:class:`Bbox` to the unit bounding box. 

""" 

is_separable = True 

 

def __init__(self, boxin, **kwargs): 

if not boxin.is_bbox: 

raise ValueError("'boxin' must be bbox") 

 

Affine2DBase.__init__(self, **kwargs) 

self._boxin = boxin 

self.set_children(boxin) 

self._mtx = None 

self._inverted = None 

 

def __str__(self): 

return ("{}(\n" 

"{})" 

.format(type(self).__name__, 

_indent_str(self._boxin))) 

 

def get_matrix(self): 

if self._invalid: 

inl, inb, inw, inh = self._boxin.bounds 

if DEBUG and (inw == 0 or inh == 0): 

raise ValueError("Transforming from a singular bounding box.") 

x_scale = 1.0 / inw 

y_scale = 1.0 / inh 

self._mtx = np.array([[x_scale, 0.0 , (-inl*x_scale)], 

[0.0 , y_scale, (-inb*y_scale)], 

[0.0 , 0.0 , 1.0 ]], 

float) 

self._inverted = None 

self._invalid = 0 

return self._mtx 

get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ 

 

 

class ScaledTranslation(Affine2DBase): 

""" 

A transformation that translates by *xt* and *yt*, after *xt* and *yt* 

have been transformad by the given transform *scale_trans*. 

""" 

def __init__(self, xt, yt, scale_trans, **kwargs): 

Affine2DBase.__init__(self, **kwargs) 

self._t = (xt, yt) 

self._scale_trans = scale_trans 

self.set_children(scale_trans) 

self._mtx = None 

self._inverted = None 

 

def __str__(self): 

return ("{}(\n" 

"{})" 

.format(type(self).__name__, 

_indent_str(self._t))) 

 

def get_matrix(self): 

if self._invalid: 

xt, yt = self._scale_trans.transform_point(self._t) 

self._mtx = np.array([[1.0, 0.0, xt], 

[0.0, 1.0, yt], 

[0.0, 0.0, 1.0]], 

float) 

self._invalid = 0 

self._inverted = None 

return self._mtx 

get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ 

 

 

class TransformedPath(TransformNode): 

""" 

A :class:`TransformedPath` caches a non-affine transformed copy of 

the :class:`~matplotlib.path.Path`. This cached copy is 

automatically updated when the non-affine part of the transform 

changes. 

 

.. note:: 

 

Paths are considered immutable by this class. Any update to the 

path's vertices/codes will not trigger a transform recomputation. 

 

""" 

def __init__(self, path, transform): 

""" 

Create a new :class:`TransformedPath` from the given 

:class:`~matplotlib.path.Path` and :class:`Transform`. 

""" 

if not isinstance(transform, Transform): 

raise ValueError("'transform' must be an instance of " 

"'matplotlib.transform.Transform'") 

TransformNode.__init__(self) 

 

self._path = path 

self._transform = transform 

self.set_children(transform) 

self._transformed_path = None 

self._transformed_points = None 

 

def _revalidate(self): 

# only recompute if the invalidation includes the non_affine part of the transform 

if ((self._invalid & self.INVALID_NON_AFFINE == self.INVALID_NON_AFFINE) 

or self._transformed_path is None): 

self._transformed_path = \ 

self._transform.transform_path_non_affine(self._path) 

self._transformed_points = \ 

Path._fast_from_codes_and_verts( 

self._transform.transform_non_affine(self._path.vertices), 

None, 

{'interpolation_steps': self._path._interpolation_steps, 

'should_simplify': self._path.should_simplify}) 

self._invalid = 0 

 

def get_transformed_points_and_affine(self): 

""" 

Return a copy of the child path, with the non-affine part of 

the transform already applied, along with the affine part of 

the path necessary to complete the transformation. Unlike 

:meth:`get_transformed_path_and_affine`, no interpolation will 

be performed. 

""" 

self._revalidate() 

return self._transformed_points, self.get_affine() 

 

def get_transformed_path_and_affine(self): 

""" 

Return a copy of the child path, with the non-affine part of 

the transform already applied, along with the affine part of 

the path necessary to complete the transformation. 

""" 

self._revalidate() 

return self._transformed_path, self.get_affine() 

 

def get_fully_transformed_path(self): 

""" 

Return a fully-transformed copy of the child path. 

""" 

self._revalidate() 

return self._transform.transform_path_affine(self._transformed_path) 

 

def get_affine(self): 

return self._transform.get_affine() 

 

 

class TransformedPatchPath(TransformedPath): 

""" 

A :class:`TransformedPatchPath` caches a non-affine transformed copy of 

the :class:`~matplotlib.path.Patch`. This cached copy is automatically 

updated when the non-affine part of the transform or the patch changes. 

""" 

def __init__(self, patch): 

""" 

Create a new :class:`TransformedPatchPath` from the given 

:class:`~matplotlib.path.Patch`. 

""" 

TransformNode.__init__(self) 

 

transform = patch.get_transform() 

self._patch = patch 

self._transform = transform 

self.set_children(transform) 

self._path = patch.get_path() 

self._transformed_path = None 

self._transformed_points = None 

 

def _revalidate(self): 

patch_path = self._patch.get_path() 

# Only recompute if the invalidation includes the non_affine part of 

# the transform, or the Patch's Path has changed. 

if (self._transformed_path is None or self._path != patch_path or 

(self._invalid & self.INVALID_NON_AFFINE == 

self.INVALID_NON_AFFINE)): 

self._path = patch_path 

self._transformed_path = \ 

self._transform.transform_path_non_affine(patch_path) 

self._transformed_points = \ 

Path._fast_from_codes_and_verts( 

self._transform.transform_non_affine(patch_path.vertices), 

None, 

{'interpolation_steps': patch_path._interpolation_steps, 

'should_simplify': patch_path.should_simplify}) 

self._invalid = 0 

 

 

def nonsingular(vmin, vmax, expander=0.001, tiny=1e-15, increasing=True): 

""" 

Modify the endpoints of a range as needed to avoid singularities. 

 

Parameters 

---------- 

vmin, vmax : float 

The initial endpoints. 

expander : float, optional, default: 0.001 

Fractional amount by which *vmin* and *vmax* are expanded if 

the original interval is too small, based on *tiny*. 

tiny : float, optional, default: 1e-15 

Threshold for the ratio of the interval to the maximum absolute 

value of its endpoints. If the interval is smaller than 

this, it will be expanded. This value should be around 

1e-15 or larger; otherwise the interval will be approaching 

the double precision resolution limit. 

increasing : bool, optional, default: True 

If True, swap *vmin*, *vmax* if *vmin* > *vmax*. 

 

Returns 

------- 

vmin, vmax : float 

Endpoints, expanded and/or swapped if necessary. 

If either input is inf or NaN, or if both inputs are 0 or very 

close to zero, it returns -*expander*, *expander*. 

""" 

 

if (not np.isfinite(vmin)) or (not np.isfinite(vmax)): 

return -expander, expander 

 

swapped = False 

if vmax < vmin: 

vmin, vmax = vmax, vmin 

swapped = True 

 

maxabsvalue = max(abs(vmin), abs(vmax)) 

if maxabsvalue < (1e6 / tiny) * np.finfo(float).tiny: 

vmin = -expander 

vmax = expander 

 

elif vmax - vmin <= maxabsvalue * tiny: 

if vmax == 0 and vmin == 0: 

vmin = -expander 

vmax = expander 

else: 

vmin -= expander*abs(vmin) 

vmax += expander*abs(vmax) 

 

if swapped and not increasing: 

vmin, vmax = vmax, vmin 

return vmin, vmax 

 

 

def interval_contains(interval, val): 

""" 

Check, inclusively, whether an interval includes a given value. 

 

Parameters 

---------- 

interval : sequence of scalar 

A 2-length sequence, endpoints that define the interval. 

val : scalar 

Value to check is within interval. 

 

Returns 

------- 

bool 

Returns true if given val is within the interval. 

""" 

a, b = interval 

return a <= val <= b or a >= val >= b 

 

 

def interval_contains_open(interval, val): 

""" 

Check, excluding endpoints, whether an interval includes a given value. 

 

Parameters 

---------- 

interval : sequence of scalar 

A 2-length sequence, endpoints that define the interval. 

val : scalar 

Value to check is within interval. 

 

Returns 

------- 

bool 

Returns true if given val is within the interval. 

""" 

a, b = interval 

return a < val < b or a > val > b 

 

 

def offset_copy(trans, fig=None, x=0.0, y=0.0, units='inches'): 

""" 

Return a new transform with an added offset. 

 

Parameters 

---------- 

trans : :class:`Transform` instance 

Any transform, to which offset will be applied. 

fig : :class:`~matplotlib.figure.Figure`, optional, default: None 

Current figure. It can be None if *units* are 'dots'. 

x, y : float, optional, default: 0.0 

Specifies the offset to apply. 

units : {'inches', 'points', 'dots'}, optional 

Units of the offset. 

 

Returns 

------- 

trans : :class:`Transform` instance 

Transform with applied offset. 

""" 

if units == 'dots': 

return trans + Affine2D().translate(x, y) 

if fig is None: 

raise ValueError('For units of inches or points a fig kwarg is needed') 

if units == 'points': 

x /= 72.0 

y /= 72.0 

elif not units == 'inches': 

raise ValueError('units must be dots, points, or inches') 

return trans + ScaledTranslation(x, y, fig.dpi_scale_trans)