1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

import numpy as np 

 

import matplotlib._tri as _tri 

import matplotlib._qhull as _qhull 

 

 

class Triangulation(object): 

""" 

An unstructured triangular grid consisting of npoints points and 

ntri triangles. The triangles can either be specified by the user 

or automatically generated using a Delaunay triangulation. 

 

Parameters 

---------- 

x, y : array-like of shape (npoints) 

Coordinates of grid points. 

triangles : integer array_like of shape (ntri, 3), optional 

For each triangle, the indices of the three points that make 

up the triangle, ordered in an anticlockwise manner. If not 

specified, the Delaunay triangulation is calculated. 

mask : boolean array-like of shape (ntri), optional 

Which triangles are masked out. 

 

Attributes 

---------- 

edges : int array of shape (nedges, 2) 

See `~.Triangulation.edges` 

neighbors : int array of shape (ntri, 3) 

See `~.Triangulation.neighbors` 

mask : bool array of shape (ntri, 3) 

Masked out triangles. 

is_delaunay : bool 

Whether the Triangulation is a calculated Delaunay 

triangulation (where `triangles` was not specified) or not. 

 

Notes 

----- 

For a Triangulation to be valid it must not have duplicate points, 

triangles formed from colinear points, or overlapping triangles. 

""" 

def __init__(self, x, y, triangles=None, mask=None): 

self.x = np.asarray(x, dtype=np.float64) 

self.y = np.asarray(y, dtype=np.float64) 

if self.x.shape != self.y.shape or self.x.ndim != 1: 

raise ValueError("x and y must be equal-length 1-D arrays") 

 

self.mask = None 

self._edges = None 

self._neighbors = None 

self.is_delaunay = False 

 

if triangles is None: 

# No triangulation specified, so use matplotlib._qhull to obtain 

# Delaunay triangulation. 

self.triangles, self._neighbors = _qhull.delaunay(x, y) 

self.is_delaunay = True 

else: 

# Triangulation specified. Copy, since we may correct triangle 

# orientation. 

self.triangles = np.array(triangles, dtype=np.int32, order='C') 

if self.triangles.ndim != 2 or self.triangles.shape[1] != 3: 

raise ValueError('triangles must be a (?,3) array') 

if self.triangles.max() >= len(self.x): 

raise ValueError('triangles max element is out of bounds') 

if self.triangles.min() < 0: 

raise ValueError('triangles min element is out of bounds') 

 

if mask is not None: 

self.mask = np.asarray(mask, dtype=bool) 

if self.mask.shape != (self.triangles.shape[0],): 

raise ValueError('mask array must have same length as ' 

'triangles array') 

 

# Underlying C++ object is not created until first needed. 

self._cpp_triangulation = None 

 

# Default TriFinder not created until needed. 

self._trifinder = None 

 

def calculate_plane_coefficients(self, z): 

""" 

Calculate plane equation coefficients for all unmasked triangles from 

the point (x, y) coordinates and specified z-array of shape (npoints). 

The returned array has shape (npoints, 3) and allows z-value at (x, y) 

position in triangle tri to be calculated using 

``z = array[tri, 0] * x + array[tri, 1] * y + array[tri, 2]``. 

""" 

return self.get_cpp_triangulation().calculate_plane_coefficients(z) 

 

@property 

def edges(self): 

""" 

Return integer array of shape (nedges, 2) containing all edges of 

non-masked triangles. 

 

Each row defines an edge by it's start point index and end point 

index. Each edge appears only once, i.e. for an edge between points 

*i* and *j*, there will only be either *(i, j)* or *(j, i)*. 

""" 

if self._edges is None: 

self._edges = self.get_cpp_triangulation().get_edges() 

return self._edges 

 

def get_cpp_triangulation(self): 

""" 

Return the underlying C++ Triangulation object, creating it 

if necessary. 

""" 

if self._cpp_triangulation is None: 

self._cpp_triangulation = _tri.Triangulation( 

self.x, self.y, self.triangles, self.mask, self._edges, 

self._neighbors, not self.is_delaunay) 

return self._cpp_triangulation 

 

def get_masked_triangles(self): 

""" 

Return an array of triangles that are not masked. 

""" 

if self.mask is not None: 

return self.triangles.compress(1 - self.mask, axis=0) 

else: 

return self.triangles 

 

@staticmethod 

def get_from_args_and_kwargs(*args, **kwargs): 

""" 

Return a Triangulation object from the args and kwargs, and 

the remaining args and kwargs with the consumed values removed. 

 

There are two alternatives: either the first argument is a 

Triangulation object, in which case it is returned, or the args 

and kwargs are sufficient to create a new Triangulation to 

return. In the latter case, see Triangulation.__init__ for 

the possible args and kwargs. 

""" 

if isinstance(args[0], Triangulation): 

triangulation = args[0] 

args = args[1:] 

else: 

x = args[0] 

y = args[1] 

args = args[2:] # Consumed first two args. 

 

# Check triangles in kwargs then args. 

triangles = kwargs.pop('triangles', None) 

from_args = False 

if triangles is None and args: 

triangles = args[0] 

from_args = True 

 

if triangles is not None: 

try: 

triangles = np.asarray(triangles, dtype=np.int32) 

except ValueError: 

triangles = None 

 

if triangles is not None and (triangles.ndim != 2 or 

triangles.shape[1] != 3): 

triangles = None 

 

if triangles is not None and from_args: 

args = args[1:] # Consumed first item in args. 

 

# Check for mask in kwargs. 

mask = kwargs.pop('mask', None) 

 

triangulation = Triangulation(x, y, triangles, mask) 

return triangulation, args, kwargs 

 

def get_trifinder(self): 

""" 

Return the default :class:`matplotlib.tri.TriFinder` of this 

triangulation, creating it if necessary. This allows the same 

TriFinder object to be easily shared. 

""" 

if self._trifinder is None: 

# Default TriFinder class. 

from matplotlib.tri.trifinder import TrapezoidMapTriFinder 

self._trifinder = TrapezoidMapTriFinder(self) 

return self._trifinder 

 

@property 

def neighbors(self): 

""" 

Return integer array of shape (ntri, 3) containing neighbor 

triangles. 

 

For each triangle, the indices of the three triangles that 

share the same edges, or -1 if there is no such neighboring 

triangle. neighbors[i,j] is the triangle that is the neighbor 

to the edge from point index triangles[i,j] to point index 

triangles[i,(j+1)%3]. 

""" 

if self._neighbors is None: 

self._neighbors = self.get_cpp_triangulation().get_neighbors() 

return self._neighbors 

 

def set_mask(self, mask): 

""" 

Set or clear the mask array. This is either None, or a boolean 

array of shape (ntri). 

""" 

if mask is None: 

self.mask = None 

else: 

self.mask = np.asarray(mask, dtype=bool) 

if self.mask.shape != (self.triangles.shape[0],): 

raise ValueError('mask array must have same length as ' 

'triangles array') 

 

# Set mask in C++ Triangulation. 

if self._cpp_triangulation is not None: 

self._cpp_triangulation.set_mask(self.mask) 

 

# Clear derived fields so they are recalculated when needed. 

self._edges = None 

self._neighbors = None 

 

# Recalculate TriFinder if it exists. 

if self._trifinder is not None: 

self._trifinder._initialize()