1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

""" 

Interpolation inside triangular grids. 

""" 

 

import warnings 

 

import numpy as np 

 

from matplotlib.tri import Triangulation 

from matplotlib.tri.trifinder import TriFinder 

from matplotlib.tri.tritools import TriAnalyzer 

 

__all__ = ('TriInterpolator', 'LinearTriInterpolator', 'CubicTriInterpolator') 

 

 

class TriInterpolator(object): 

""" 

Abstract base class for classes used to perform interpolation on 

triangular grids. 

 

Derived classes implement the following methods: 

 

- ``__call__(x, y)`` , 

where x, y are array_like point coordinates of the same shape, and 

that returns a masked array of the same shape containing the 

interpolated z-values. 

 

- ``gradient(x, y)`` , 

where x, y are array_like point coordinates of the same 

shape, and that returns a list of 2 masked arrays of the same shape 

containing the 2 derivatives of the interpolator (derivatives of 

interpolated z values with respect to x and y). 

 

""" 

def __init__(self, triangulation, z, trifinder=None): 

if not isinstance(triangulation, Triangulation): 

raise ValueError("Expected a Triangulation object") 

self._triangulation = triangulation 

 

self._z = np.asarray(z) 

if self._z.shape != self._triangulation.x.shape: 

raise ValueError("z array must have same length as triangulation x" 

" and y arrays") 

 

if trifinder is not None and not isinstance(trifinder, TriFinder): 

raise ValueError("Expected a TriFinder object") 

self._trifinder = trifinder or self._triangulation.get_trifinder() 

 

# Default scaling factors : 1.0 (= no scaling) 

# Scaling may be used for interpolations for which the order of 

# magnitude of x, y has an impact on the interpolant definition. 

# Please refer to :meth:`_interpolate_multikeys` for details. 

self._unit_x = 1.0 

self._unit_y = 1.0 

 

# Default triangle renumbering: None (= no renumbering) 

# Renumbering may be used to avoid unnecessary computations 

# if complex calculations are done inside the Interpolator. 

# Please refer to :meth:`_interpolate_multikeys` for details. 

self._tri_renum = None 

 

# __call__ and gradient docstrings are shared by all subclasses 

# (except, if needed, relevant additions). 

# However these methods are only implemented in subclasses to avoid 

# confusion in the documentation. 

_docstring__call__ = """ 

Returns a masked array containing interpolated values at the specified 

x,y points. 

 

Parameters 

---------- 

x, y : array-like 

x and y coordinates of the same shape and any number of 

dimensions. 

 

Returns 

------- 

z : np.ma.array 

Masked array of the same shape as *x* and *y*; values corresponding 

to (*x*, *y*) points outside of the triangulation are masked out. 

 

""" 

 

_docstringgradient = r""" 

Returns a list of 2 masked arrays containing interpolated derivatives 

at the specified x,y points. 

 

Parameters 

---------- 

x, y : array-like 

x and y coordinates of the same shape and any number of 

dimensions. 

 

Returns 

------- 

dzdx, dzdy : np.ma.array 

2 masked arrays of the same shape as *x* and *y*; values 

corresponding to (x,y) points outside of the triangulation 

are masked out. 

The first returned array contains the values of 

:math:`\frac{\partial z}{\partial x}` and the second those of 

:math:`\frac{\partial z}{\partial y}`. 

 

""" 

 

def _interpolate_multikeys(self, x, y, tri_index=None, 

return_keys=('z',)): 

""" 

Versatile (private) method defined for all TriInterpolators. 

 

:meth:`_interpolate_multikeys` is a wrapper around method 

:meth:`_interpolate_single_key` (to be defined in the child 

subclasses). 

:meth:`_interpolate_single_key actually performs the interpolation, 

but only for 1-dimensional inputs and at valid locations (inside 

unmasked triangles of the triangulation). 

 

The purpose of :meth:`_interpolate_multikeys` is to implement the 

following common tasks needed in all subclasses implementations: 

 

- calculation of containing triangles 

- dealing with more than one interpolation request at the same 

location (e.g., if the 2 derivatives are requested, it is 

unnecessary to compute the containing triangles twice) 

- scaling according to self._unit_x, self._unit_y 

- dealing with points outside of the grid (with fill value np.nan) 

- dealing with multi-dimensionnal *x*, *y* arrays: flattening for 

:meth:`_interpolate_params` call and final reshaping. 

 

(Note that np.vectorize could do most of those things very well for 

you, but it does it by function evaluations over successive tuples of 

the input arrays. Therefore, this tends to be more time consuming than 

using optimized numpy functions - e.g., np.dot - which can be used 

easily on the flattened inputs, in the child-subclass methods 

:meth:`_interpolate_single_key`.) 

 

It is guaranteed that the calls to :meth:`_interpolate_single_key` 

will be done with flattened (1-d) array_like input parameters `x`, `y` 

and with flattened, valid `tri_index` arrays (no -1 index allowed). 

 

Parameters 

---------- 

x, y : array_like 

x and y coordinates indicating where interpolated values are 

requested. 

tri_index : integer array_like, optional 

Array of the containing triangle indices, same shape as 

*x* and *y*. Defaults to None. If None, these indices 

will be computed by a TriFinder instance. 

(Note: For point outside the grid, tri_index[ipt] shall be -1). 

return_keys : tuple of keys from {'z', 'dzdx', 'dzdy'} 

Defines the interpolation arrays to return, and in which order. 

 

Returns 

------- 

ret : list of arrays 

Each array-like contains the expected interpolated values in the 

order defined by *return_keys* parameter. 

""" 

# Flattening and rescaling inputs arrays x, y 

# (initial shape is stored for output) 

x = np.asarray(x, dtype=np.float64) 

y = np.asarray(y, dtype=np.float64) 

sh_ret = x.shape 

if x.shape != y.shape: 

raise ValueError("x and y shall have same shapes." 

" Given: {0} and {1}".format(x.shape, y.shape)) 

x = np.ravel(x) 

y = np.ravel(y) 

x_scaled = x/self._unit_x 

y_scaled = y/self._unit_y 

size_ret = np.size(x_scaled) 

 

# Computes & ravels the element indexes, extract the valid ones. 

if tri_index is None: 

tri_index = self._trifinder(x, y) 

else: 

if tri_index.shape != sh_ret: 

raise ValueError( 

"tri_index array is provided and shall" 

" have same shape as x and y. Given: " 

"{0} and {1}".format(tri_index.shape, sh_ret)) 

tri_index = np.ravel(tri_index) 

 

mask_in = (tri_index != -1) 

if self._tri_renum is None: 

valid_tri_index = tri_index[mask_in] 

else: 

valid_tri_index = self._tri_renum[tri_index[mask_in]] 

valid_x = x_scaled[mask_in] 

valid_y = y_scaled[mask_in] 

 

ret = [] 

for return_key in return_keys: 

# Find the return index associated with the key. 

try: 

return_index = {'z': 0, 'dzdx': 1, 'dzdy': 2}[return_key] 

except KeyError: 

raise ValueError("return_keys items shall take values in" 

" {'z', 'dzdx', 'dzdy'}") 

 

# Sets the scale factor for f & df components 

scale = [1., 1./self._unit_x, 1./self._unit_y][return_index] 

 

# Computes the interpolation 

ret_loc = np.empty(size_ret, dtype=np.float64) 

ret_loc[~mask_in] = np.nan 

ret_loc[mask_in] = self._interpolate_single_key( 

return_key, valid_tri_index, valid_x, valid_y) * scale 

ret += [np.ma.masked_invalid(ret_loc.reshape(sh_ret), copy=False)] 

 

return ret 

 

def _interpolate_single_key(self, return_key, tri_index, x, y): 

""" 

Performs the interpolation at points belonging to the triangulation 

(inside an unmasked triangles). 

 

Parameters 

---------- 

return_index : string key from {'z', 'dzdx', 'dzdy'} 

Identifies the requested values (z or its derivatives) 

tri_index : 1d integer array 

Valid triangle index (-1 prohibited) 

x, y : 1d arrays, same shape as `tri_index` 

Valid locations where interpolation is requested. 

 

Returns 

------- 

ret : 1-d array 

Returned array of the same size as *tri_index* 

""" 

raise NotImplementedError("TriInterpolator subclasses" + 

"should implement _interpolate_single_key!") 

 

 

class LinearTriInterpolator(TriInterpolator): 

""" 

A LinearTriInterpolator performs linear interpolation on a triangular grid. 

 

Each triangle is represented by a plane so that an interpolated value at 

point (x,y) lies on the plane of the triangle containing (x,y). 

Interpolated values are therefore continuous across the triangulation, but 

their first derivatives are discontinuous at edges between triangles. 

 

Parameters 

---------- 

triangulation : :class:`~matplotlib.tri.Triangulation` object 

The triangulation to interpolate over. 

z : array_like of shape (npoints,) 

Array of values, defined at grid points, to interpolate between. 

trifinder : :class:`~matplotlib.tri.TriFinder` object, optional 

If this is not specified, the Triangulation's default TriFinder will 

be used by calling 

:func:`matplotlib.tri.Triangulation.get_trifinder`. 

 

Methods 

------- 

`__call__` (x, y) : Returns interpolated values at x,y points 

`gradient` (x, y) : Returns interpolated derivatives at x,y points 

 

""" 

def __init__(self, triangulation, z, trifinder=None): 

TriInterpolator.__init__(self, triangulation, z, trifinder) 

 

# Store plane coefficients for fast interpolation calculations. 

self._plane_coefficients = \ 

self._triangulation.calculate_plane_coefficients(self._z) 

 

def __call__(self, x, y): 

return self._interpolate_multikeys(x, y, tri_index=None, 

return_keys=('z',))[0] 

__call__.__doc__ = TriInterpolator._docstring__call__ 

 

def gradient(self, x, y): 

return self._interpolate_multikeys(x, y, tri_index=None, 

return_keys=('dzdx', 'dzdy')) 

gradient.__doc__ = TriInterpolator._docstringgradient 

 

def _interpolate_single_key(self, return_key, tri_index, x, y): 

if return_key == 'z': 

return (self._plane_coefficients[tri_index, 0]*x + 

self._plane_coefficients[tri_index, 1]*y + 

self._plane_coefficients[tri_index, 2]) 

elif return_key == 'dzdx': 

return self._plane_coefficients[tri_index, 0] 

elif return_key == 'dzdy': 

return self._plane_coefficients[tri_index, 1] 

else: 

raise ValueError("Invalid return_key: " + return_key) 

 

 

class CubicTriInterpolator(TriInterpolator): 

r""" 

A CubicTriInterpolator performs cubic interpolation on triangular grids. 

 

In one-dimension - on a segment - a cubic interpolating function is 

defined by the values of the function and its derivative at both ends. 

This is almost the same in 2-d inside a triangle, except that the values 

of the function and its 2 derivatives have to be defined at each triangle 

node. 

 

The CubicTriInterpolator takes the value of the function at each node - 

provided by the user - and internally computes the value of the 

derivatives, resulting in a smooth interpolation. 

(As a special feature, the user can also impose the value of the 

derivatives at each node, but this is not supposed to be the common 

usage.) 

 

Parameters 

---------- 

triangulation : :class:`~matplotlib.tri.Triangulation` object 

The triangulation to interpolate over. 

z : array_like of shape (npoints,) 

Array of values, defined at grid points, to interpolate between. 

kind : {'min_E', 'geom', 'user'}, optional 

Choice of the smoothing algorithm, in order to compute 

the interpolant derivatives (defaults to 'min_E'): 

 

- if 'min_E': (default) The derivatives at each node is computed 

to minimize a bending energy. 

- if 'geom': The derivatives at each node is computed as a 

weighted average of relevant triangle normals. To be used for 

speed optimization (large grids). 

- if 'user': The user provides the argument `dz`, no computation 

is hence needed. 

 

trifinder : :class:`~matplotlib.tri.TriFinder` object, optional 

If not specified, the Triangulation's default TriFinder will 

be used by calling 

:func:`matplotlib.tri.Triangulation.get_trifinder`. 

dz : tuple of array_likes (dzdx, dzdy), optional 

Used only if *kind* ='user'. In this case *dz* must be provided as 

(dzdx, dzdy) where dzdx, dzdy are arrays of the same shape as *z* and 

are the interpolant first derivatives at the *triangulation* points. 

 

Methods 

------- 

`__call__` (x, y) : Returns interpolated values at x,y points 

`gradient` (x, y) : Returns interpolated derivatives at x,y points 

 

Notes 

----- 

This note is a bit technical and details the way a 

:class:`~matplotlib.tri.CubicTriInterpolator` computes a cubic 

interpolation. 

 

The interpolation is based on a Clough-Tocher subdivision scheme of 

the *triangulation* mesh (to make it clearer, each triangle of the 

grid will be divided in 3 child-triangles, and on each child triangle 

the interpolated function is a cubic polynomial of the 2 coordinates). 

This technique originates from FEM (Finite Element Method) analysis; 

the element used is a reduced Hsieh-Clough-Tocher (HCT) 

element. Its shape functions are described in [1]_. 

The assembled function is guaranteed to be C1-smooth, i.e. it is 

continuous and its first derivatives are also continuous (this 

is easy to show inside the triangles but is also true when crossing the 

edges). 

 

In the default case (*kind* ='min_E'), the interpolant minimizes a 

curvature energy on the functional space generated by the HCT element 

shape functions - with imposed values but arbitrary derivatives at each 

node. The minimized functional is the integral of the so-called total 

curvature (implementation based on an algorithm from [2]_ - PCG sparse 

solver): 

 

.. math:: 

 

E(z) = \frac{1}{2} \int_{\Omega} \left( 

\left( \frac{\partial^2{z}}{\partial{x}^2} \right)^2 + 

\left( \frac{\partial^2{z}}{\partial{y}^2} \right)^2 + 

2\left( \frac{\partial^2{z}}{\partial{y}\partial{x}} \right)^2 

\right) dx\,dy 

 

If the case *kind* ='geom' is chosen by the user, a simple geometric 

approximation is used (weighted average of the triangle normal 

vectors), which could improve speed on very large grids. 

 

References 

---------- 

.. [1] Michel Bernadou, Kamal Hassan, "Basis functions for general 

Hsieh-Clough-Tocher triangles, complete or reduced.", 

International Journal for Numerical Methods in Engineering, 

17(5):784 - 789. 2.01. 

.. [2] C.T. Kelley, "Iterative Methods for Optimization". 

 

""" 

def __init__(self, triangulation, z, kind='min_E', trifinder=None, 

dz=None): 

TriInterpolator.__init__(self, triangulation, z, trifinder) 

 

# Loads the underlying c++ _triangulation. 

# (During loading, reordering of triangulation._triangles may occur so 

# that all final triangles are now anti-clockwise) 

self._triangulation.get_cpp_triangulation() 

 

# To build the stiffness matrix and avoid zero-energy spurious modes 

# we will only store internally the valid (unmasked) triangles and 

# the necessary (used) points coordinates. 

# 2 renumbering tables need to be computed and stored: 

# - a triangle renum table in order to translate the result from a 

# TriFinder instance into the internal stored triangle number. 

# - a node renum table to overwrite the self._z values into the new 

# (used) node numbering. 

tri_analyzer = TriAnalyzer(self._triangulation) 

(compressed_triangles, compressed_x, compressed_y, tri_renum, 

node_renum) = tri_analyzer._get_compressed_triangulation(True, True) 

self._triangles = compressed_triangles 

self._tri_renum = tri_renum 

# Taking into account the node renumbering in self._z: 

node_mask = (node_renum == -1) 

self._z[node_renum[~node_mask]] = self._z 

self._z = self._z[~node_mask] 

 

# Computing scale factors 

self._unit_x = np.ptp(compressed_x) 

self._unit_y = np.ptp(compressed_y) 

self._pts = np.column_stack([compressed_x / self._unit_x, 

compressed_y / self._unit_y]) 

# Computing triangle points 

self._tris_pts = self._pts[self._triangles] 

# Computing eccentricities 

self._eccs = self._compute_tri_eccentricities(self._tris_pts) 

# Computing dof estimations for HCT triangle shape function 

self._dof = self._compute_dof(kind, dz=dz) 

# Loading HCT element 

self._ReferenceElement = _ReducedHCT_Element() 

 

def __call__(self, x, y): 

return self._interpolate_multikeys(x, y, tri_index=None, 

return_keys=('z',))[0] 

__call__.__doc__ = TriInterpolator._docstring__call__ 

 

def gradient(self, x, y): 

return self._interpolate_multikeys(x, y, tri_index=None, 

return_keys=('dzdx', 'dzdy')) 

gradient.__doc__ = TriInterpolator._docstringgradient 

 

def _interpolate_single_key(self, return_key, tri_index, x, y): 

tris_pts = self._tris_pts[tri_index] 

alpha = self._get_alpha_vec(x, y, tris_pts) 

ecc = self._eccs[tri_index] 

dof = np.expand_dims(self._dof[tri_index], axis=1) 

if return_key == 'z': 

return self._ReferenceElement.get_function_values( 

alpha, ecc, dof) 

elif return_key in ['dzdx', 'dzdy']: 

J = self._get_jacobian(tris_pts) 

dzdx = self._ReferenceElement.get_function_derivatives( 

alpha, J, ecc, dof) 

if return_key == 'dzdx': 

return dzdx[:, 0, 0] 

else: 

return dzdx[:, 1, 0] 

else: 

raise ValueError("Invalid return_key: " + return_key) 

 

def _compute_dof(self, kind, dz=None): 

""" 

Computes and returns nodal dofs according to kind 

 

Parameters 

---------- 

kind: {'min_E', 'geom', 'user'} 

Choice of the _DOF_estimator subclass to perform the gradient 

estimation. 

dz: tuple of array_likes (dzdx, dzdy), optional 

Used only if *kind*=user; in this case passed to the 

:class:`_DOF_estimator_user`. 

 

Returns 

------- 

dof : array_like, shape (npts,2) 

Estimation of the gradient at triangulation nodes (stored as 

degree of freedoms of reduced-HCT triangle elements). 

""" 

if kind == 'user': 

if dz is None: 

raise ValueError("For a CubicTriInterpolator with " 

"*kind*='user', a valid *dz* " 

"argument is expected.") 

TE = _DOF_estimator_user(self, dz=dz) 

elif kind == 'geom': 

TE = _DOF_estimator_geom(self) 

elif kind == 'min_E': 

TE = _DOF_estimator_min_E(self) 

else: 

raise ValueError("CubicTriInterpolator *kind* proposed: {0}; " 

"should be one of: " 

"'user', 'geom', 'min_E'".format(kind)) 

return TE.compute_dof_from_df() 

 

@staticmethod 

def _get_alpha_vec(x, y, tris_pts): 

""" 

Fast (vectorized) function to compute barycentric coordinates alpha. 

 

Parameters 

---------- 

x, y : array-like of dim 1 (shape (nx,)) 

Coordinates of the points whose points barycentric 

coordinates are requested 

tris_pts : array like of dim 3 (shape: (nx,3,2)) 

Coordinates of the containing triangles apexes. 

 

Returns 

------- 

alpha : array of dim 2 (shape (nx,3)) 

Barycentric coordinates of the points inside the containing 

triangles. 

""" 

ndim = tris_pts.ndim-2 

 

a = tris_pts[:, 1, :] - tris_pts[:, 0, :] 

b = tris_pts[:, 2, :] - tris_pts[:, 0, :] 

abT = np.stack([a, b], axis=-1) 

ab = _transpose_vectorized(abT) 

OM = np.stack([x, y], axis=1) - tris_pts[:, 0, :] 

 

metric = _prod_vectorized(ab, abT) 

# Here we try to deal with the colinear cases. 

# metric_inv is in this case set to the Moore-Penrose pseudo-inverse 

# meaning that we will still return a set of valid barycentric 

# coordinates. 

metric_inv = _pseudo_inv22sym_vectorized(metric) 

Covar = _prod_vectorized(ab, _transpose_vectorized( 

np.expand_dims(OM, ndim))) 

ksi = _prod_vectorized(metric_inv, Covar) 

alpha = _to_matrix_vectorized([ 

[1-ksi[:, 0, 0]-ksi[:, 1, 0]], [ksi[:, 0, 0]], [ksi[:, 1, 0]]]) 

return alpha 

 

@staticmethod 

def _get_jacobian(tris_pts): 

""" 

Fast (vectorized) function to compute triangle jacobian matrix. 

 

Parameters 

---------- 

tris_pts : array like of dim 3 (shape: (nx,3,2)) 

Coordinates of the containing triangles apexes. 

 

Returns 

------- 

J : array of dim 3 (shape (nx,2,2)) 

Barycentric coordinates of the points inside the containing 

triangles. 

J[itri,:,:] is the jacobian matrix at apex 0 of the triangle 

itri, so that the following (matrix) relationship holds: 

[dz/dksi] = [J] x [dz/dx] 

with x: global coordinates 

ksi: element parametric coordinates in triangle first apex 

local basis. 

""" 

a = np.array(tris_pts[:, 1, :] - tris_pts[:, 0, :]) 

b = np.array(tris_pts[:, 2, :] - tris_pts[:, 0, :]) 

J = _to_matrix_vectorized([[a[:, 0], a[:, 1]], 

[b[:, 0], b[:, 1]]]) 

return J 

 

@staticmethod 

def _compute_tri_eccentricities(tris_pts): 

""" 

Computes triangle eccentricities 

 

Parameters 

---------- 

tris_pts : array like of dim 3 (shape: (nx,3,2)) 

Coordinates of the triangles apexes. 

 

Returns 

------- 

ecc : array like of dim 2 (shape: (nx,3)) 

The so-called eccentricity parameters [1] needed for 

HCT triangular element. 

""" 

a = np.expand_dims(tris_pts[:, 2, :] - tris_pts[:, 1, :], axis=2) 

b = np.expand_dims(tris_pts[:, 0, :] - tris_pts[:, 2, :], axis=2) 

c = np.expand_dims(tris_pts[:, 1, :] - tris_pts[:, 0, :], axis=2) 

# Do not use np.squeeze, this is dangerous if only one triangle 

# in the triangulation... 

dot_a = _prod_vectorized(_transpose_vectorized(a), a)[:, 0, 0] 

dot_b = _prod_vectorized(_transpose_vectorized(b), b)[:, 0, 0] 

dot_c = _prod_vectorized(_transpose_vectorized(c), c)[:, 0, 0] 

# Note that this line will raise a warning for dot_a, dot_b or dot_c 

# zeros, but we choose not to support triangles with duplicate points. 

return _to_matrix_vectorized([[(dot_c-dot_b) / dot_a], 

[(dot_a-dot_c) / dot_b], 

[(dot_b-dot_a) / dot_c]]) 

 

 

# FEM element used for interpolation and for solving minimisation 

# problem (Reduced HCT element) 

class _ReducedHCT_Element(): 

""" 

Implementation of reduced HCT triangular element with explicit shape 

functions. 

 

Computes z, dz, d2z and the element stiffness matrix for bending energy: 

E(f) = integral( (d2z/dx2 + d2z/dy2)**2 dA) 

 

*** Reference for the shape functions: *** 

[1] Basis functions for general Hsieh-Clough-Tocher _triangles, complete or 

reduced. 

Michel Bernadou, Kamal Hassan 

International Journal for Numerical Methods in Engineering. 

17(5):784 - 789. 2.01 

 

*** Element description: *** 

9 dofs: z and dz given at 3 apex 

C1 (conform) 

 

""" 

# 1) Loads matrices to generate shape functions as a function of 

# triangle eccentricities - based on [1] p.11 ''' 

M = np.array([ 

[ 0.00, 0.00, 0.00, 4.50, 4.50, 0.00, 0.00, 0.00, 0.00, 0.00], 

[-0.25, 0.00, 0.00, 0.50, 1.25, 0.00, 0.00, 0.00, 0.00, 0.00], 

[-0.25, 0.00, 0.00, 1.25, 0.50, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.50, 1.00, 0.00, -1.50, 0.00, 3.00, 3.00, 0.00, 0.00, 3.00], 

[ 0.00, 0.00, 0.00, -0.25, 0.25, 0.00, 1.00, 0.00, 0.00, 0.50], 

[ 0.25, 0.00, 0.00, -0.50, -0.25, 1.00, 0.00, 0.00, 0.00, 1.00], 

[ 0.50, 0.00, 1.00, 0.00, -1.50, 0.00, 0.00, 3.00, 3.00, 3.00], 

[ 0.25, 0.00, 0.00, -0.25, -0.50, 0.00, 0.00, 0.00, 1.00, 1.00], 

[ 0.00, 0.00, 0.00, 0.25, -0.25, 0.00, 0.00, 1.00, 0.00, 0.50]]) 

M0 = np.array([ 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[-1.00, 0.00, 0.00, 1.50, 1.50, 0.00, 0.00, 0.00, 0.00, -3.00], 

[-0.50, 0.00, 0.00, 0.75, 0.75, 0.00, 0.00, 0.00, 0.00, -1.50], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 1.00, 0.00, 0.00, -1.50, -1.50, 0.00, 0.00, 0.00, 0.00, 3.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.50, 0.00, 0.00, -0.75, -0.75, 0.00, 0.00, 0.00, 0.00, 1.50]]) 

M1 = np.array([ 

[-0.50, 0.00, 0.00, 1.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[-0.25, 0.00, 0.00, 0.75, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.50, 0.00, 0.00, -1.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.25, 0.00, 0.00, -0.75, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]]) 

M2 = np.array([ 

[ 0.50, 0.00, 0.00, 0.00, -1.50, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.25, 0.00, 0.00, 0.00, -0.75, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[-0.50, 0.00, 0.00, 0.00, 1.50, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[-0.25, 0.00, 0.00, 0.00, 0.75, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], 

[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]]) 

 

# 2) Loads matrices to rotate components of gradient & Hessian 

# vectors in the reference basis of triangle first apex (a0) 

rotate_dV = np.array([[ 1., 0.], [ 0., 1.], 

[ 0., 1.], [-1., -1.], 

[-1., -1.], [ 1., 0.]]) 

 

rotate_d2V = np.array([[1., 0., 0.], [0., 1., 0.], [ 0., 0., 1.], 

[0., 1., 0.], [1., 1., 1.], [ 0., -2., -1.], 

[1., 1., 1.], [1., 0., 0.], [-2., 0., -1.]]) 

 

# 3) Loads Gauss points & weights on the 3 sub-_triangles for P2 

# exact integral - 3 points on each subtriangles. 

# NOTE: as the 2nd derivative is discontinuous , we really need those 9 

# points! 

n_gauss = 9 

gauss_pts = np.array([[13./18., 4./18., 1./18.], 

[ 4./18., 13./18., 1./18.], 

[ 7./18., 7./18., 4./18.], 

[ 1./18., 13./18., 4./18.], 

[ 1./18., 4./18., 13./18.], 

[ 4./18., 7./18., 7./18.], 

[ 4./18., 1./18., 13./18.], 

[13./18., 1./18., 4./18.], 

[ 7./18., 4./18., 7./18.]], dtype=np.float64) 

gauss_w = np.ones([9], dtype=np.float64) / 9. 

 

# 4) Stiffness matrix for curvature energy 

E = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 2.]]) 

 

# 5) Loads the matrix to compute DOF_rot from tri_J at apex 0 

J0_to_J1 = np.array([[-1., 1.], [-1., 0.]]) 

J0_to_J2 = np.array([[ 0., -1.], [ 1., -1.]]) 

 

def get_function_values(self, alpha, ecc, dofs): 

""" 

Parameters 

---------- 

alpha : is a (N x 3 x 1) array (array of column-matrices) of 

barycentric coordinates, 

ecc : is a (N x 3 x 1) array (array of column-matrices) of triangle 

eccentricities, 

dofs : is a (N x 1 x 9) arrays (arrays of row-matrices) of computed 

degrees of freedom. 

 

Returns 

------- 

Returns the N-array of interpolated function values. 

""" 

subtri = np.argmin(alpha, axis=1)[:, 0] 

ksi = _roll_vectorized(alpha, -subtri, axis=0) 

E = _roll_vectorized(ecc, -subtri, axis=0) 

x = ksi[:, 0, 0] 

y = ksi[:, 1, 0] 

z = ksi[:, 2, 0] 

x_sq = x*x 

y_sq = y*y 

z_sq = z*z 

V = _to_matrix_vectorized([ 

[x_sq*x], [y_sq*y], [z_sq*z], [x_sq*z], [x_sq*y], [y_sq*x], 

[y_sq*z], [z_sq*y], [z_sq*x], [x*y*z]]) 

prod = _prod_vectorized(self.M, V) 

prod += _scalar_vectorized(E[:, 0, 0], 

_prod_vectorized(self.M0, V)) 

prod += _scalar_vectorized(E[:, 1, 0], 

_prod_vectorized(self.M1, V)) 

prod += _scalar_vectorized(E[:, 2, 0], 

_prod_vectorized(self.M2, V)) 

s = _roll_vectorized(prod, 3*subtri, axis=0) 

return _prod_vectorized(dofs, s)[:, 0, 0] 

 

def get_function_derivatives(self, alpha, J, ecc, dofs): 

""" 

Parameters 

---------- 

*alpha* is a (N x 3 x 1) array (array of column-matrices of 

barycentric coordinates) 

*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at 

triangle first apex) 

*ecc* is a (N x 3 x 1) array (array of column-matrices of triangle 

eccentricities) 

*dofs* is a (N x 1 x 9) arrays (arrays of row-matrices) of computed 

degrees of freedom. 

 

Returns 

------- 

Returns the values of interpolated function derivatives [dz/dx, dz/dy] 

in global coordinates at locations alpha, as a column-matrices of 

shape (N x 2 x 1). 

""" 

subtri = np.argmin(alpha, axis=1)[:, 0] 

ksi = _roll_vectorized(alpha, -subtri, axis=0) 

E = _roll_vectorized(ecc, -subtri, axis=0) 

x = ksi[:, 0, 0] 

y = ksi[:, 1, 0] 

z = ksi[:, 2, 0] 

x_sq = x*x 

y_sq = y*y 

z_sq = z*z 

dV = _to_matrix_vectorized([ 

[ -3.*x_sq, -3.*x_sq], 

[ 3.*y_sq, 0.], 

[ 0., 3.*z_sq], 

[ -2.*x*z, -2.*x*z+x_sq], 

[-2.*x*y+x_sq, -2.*x*y], 

[ 2.*x*y-y_sq, -y_sq], 

[ 2.*y*z, y_sq], 

[ z_sq, 2.*y*z], 

[ -z_sq, 2.*x*z-z_sq], 

[ x*z-y*z, x*y-y*z]]) 

# Puts back dV in first apex basis 

dV = _prod_vectorized(dV, _extract_submatrices( 

self.rotate_dV, subtri, block_size=2, axis=0)) 

 

prod = _prod_vectorized(self.M, dV) 

prod += _scalar_vectorized(E[:, 0, 0], 

_prod_vectorized(self.M0, dV)) 

prod += _scalar_vectorized(E[:, 1, 0], 

_prod_vectorized(self.M1, dV)) 

prod += _scalar_vectorized(E[:, 2, 0], 

_prod_vectorized(self.M2, dV)) 

dsdksi = _roll_vectorized(prod, 3*subtri, axis=0) 

dfdksi = _prod_vectorized(dofs, dsdksi) 

# In global coordinates: 

# Here we try to deal with the simplest colinear cases, returning a 

# null matrix. 

J_inv = _safe_inv22_vectorized(J) 

dfdx = _prod_vectorized(J_inv, _transpose_vectorized(dfdksi)) 

return dfdx 

 

def get_function_hessians(self, alpha, J, ecc, dofs): 

""" 

Parameters 

---------- 

*alpha* is a (N x 3 x 1) array (array of column-matrices) of 

barycentric coordinates 

*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at 

triangle first apex) 

*ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle 

eccentricities 

*dofs* is a (N x 1 x 9) arrays (arrays of row-matrices) of computed 

degrees of freedom. 

 

Returns 

------- 

Returns the values of interpolated function 2nd-derivatives 

[d2z/dx2, d2z/dy2, d2z/dxdy] in global coordinates at locations alpha, 

as a column-matrices of shape (N x 3 x 1). 

""" 

d2sdksi2 = self.get_d2Sidksij2(alpha, ecc) 

d2fdksi2 = _prod_vectorized(dofs, d2sdksi2) 

H_rot = self.get_Hrot_from_J(J) 

d2fdx2 = _prod_vectorized(d2fdksi2, H_rot) 

return _transpose_vectorized(d2fdx2) 

 

def get_d2Sidksij2(self, alpha, ecc): 

""" 

Parameters 

---------- 

*alpha* is a (N x 3 x 1) array (array of column-matrices) of 

barycentric coordinates 

*ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle 

eccentricities 

 

Returns 

------- 

Returns the arrays d2sdksi2 (N x 3 x 1) Hessian of shape functions 

expressed in covariante coordinates in first apex basis. 

""" 

subtri = np.argmin(alpha, axis=1)[:, 0] 

ksi = _roll_vectorized(alpha, -subtri, axis=0) 

E = _roll_vectorized(ecc, -subtri, axis=0) 

x = ksi[:, 0, 0] 

y = ksi[:, 1, 0] 

z = ksi[:, 2, 0] 

d2V = _to_matrix_vectorized([ 

[ 6.*x, 6.*x, 6.*x], 

[ 6.*y, 0., 0.], 

[ 0., 6.*z, 0.], 

[ 2.*z, 2.*z-4.*x, 2.*z-2.*x], 

[2.*y-4.*x, 2.*y, 2.*y-2.*x], 

[2.*x-4.*y, 0., -2.*y], 

[ 2.*z, 0., 2.*y], 

[ 0., 2.*y, 2.*z], 

[ 0., 2.*x-4.*z, -2.*z], 

[ -2.*z, -2.*y, x-y-z]]) 

# Puts back d2V in first apex basis 

d2V = _prod_vectorized(d2V, _extract_submatrices( 

self.rotate_d2V, subtri, block_size=3, axis=0)) 

prod = _prod_vectorized(self.M, d2V) 

prod += _scalar_vectorized(E[:, 0, 0], 

_prod_vectorized(self.M0, d2V)) 

prod += _scalar_vectorized(E[:, 1, 0], 

_prod_vectorized(self.M1, d2V)) 

prod += _scalar_vectorized(E[:, 2, 0], 

_prod_vectorized(self.M2, d2V)) 

d2sdksi2 = _roll_vectorized(prod, 3*subtri, axis=0) 

return d2sdksi2 

 

def get_bending_matrices(self, J, ecc): 

""" 

Parameters 

---------- 

*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at 

triangle first apex) 

*ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle 

eccentricities 

 

Returns 

------- 

Returns the element K matrices for bending energy expressed in 

GLOBAL nodal coordinates. 

K_ij = integral [ (d2zi/dx2 + d2zi/dy2) * (d2zj/dx2 + d2zj/dy2) dA] 

tri_J is needed to rotate dofs from local basis to global basis 

""" 

n = np.size(ecc, 0) 

 

# 1) matrix to rotate dofs in global coordinates 

J1 = _prod_vectorized(self.J0_to_J1, J) 

J2 = _prod_vectorized(self.J0_to_J2, J) 

DOF_rot = np.zeros([n, 9, 9], dtype=np.float64) 

DOF_rot[:, 0, 0] = 1 

DOF_rot[:, 3, 3] = 1 

DOF_rot[:, 6, 6] = 1 

DOF_rot[:, 1:3, 1:3] = J 

DOF_rot[:, 4:6, 4:6] = J1 

DOF_rot[:, 7:9, 7:9] = J2 

 

# 2) matrix to rotate Hessian in global coordinates. 

H_rot, area = self.get_Hrot_from_J(J, return_area=True) 

 

# 3) Computes stiffness matrix 

# Gauss quadrature. 

K = np.zeros([n, 9, 9], dtype=np.float64) 

weights = self.gauss_w 

pts = self.gauss_pts 

for igauss in range(self.n_gauss): 

alpha = np.tile(pts[igauss, :], n).reshape(n, 3) 

alpha = np.expand_dims(alpha, 2) 

weight = weights[igauss] 

d2Skdksi2 = self.get_d2Sidksij2(alpha, ecc) 

d2Skdx2 = _prod_vectorized(d2Skdksi2, H_rot) 

K += weight * _prod_vectorized(_prod_vectorized(d2Skdx2, self.E), 

_transpose_vectorized(d2Skdx2)) 

 

# 4) With nodal (not elem) dofs 

K = _prod_vectorized(_prod_vectorized(_transpose_vectorized(DOF_rot), 

K), DOF_rot) 

 

# 5) Need the area to compute total element energy 

return _scalar_vectorized(area, K) 

 

def get_Hrot_from_J(self, J, return_area=False): 

""" 

Parameters 

---------- 

*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at 

triangle first apex) 

 

Returns 

------- 

Returns H_rot used to rotate Hessian from local basis of first apex, 

to global coordinates. 

if *return_area* is True, returns also the triangle area (0.5*det(J)) 

""" 

# Here we try to deal with the simplest colinear cases; a null 

# energy and area is imposed. 

J_inv = _safe_inv22_vectorized(J) 

Ji00 = J_inv[:, 0, 0] 

Ji11 = J_inv[:, 1, 1] 

Ji10 = J_inv[:, 1, 0] 

Ji01 = J_inv[:, 0, 1] 

H_rot = _to_matrix_vectorized([ 

[Ji00*Ji00, Ji10*Ji10, Ji00*Ji10], 

[Ji01*Ji01, Ji11*Ji11, Ji01*Ji11], 

[2*Ji00*Ji01, 2*Ji11*Ji10, Ji00*Ji11+Ji10*Ji01]]) 

if not return_area: 

return H_rot 

else: 

area = 0.5 * (J[:, 0, 0]*J[:, 1, 1] - J[:, 0, 1]*J[:, 1, 0]) 

return H_rot, area 

 

def get_Kff_and_Ff(self, J, ecc, triangles, Uc): 

""" 

Builds K and F for the following elliptic formulation: 

minimization of curvature energy with value of function at node 

imposed and derivatives 'free'. 

Builds the global Kff matrix in cco format. 

Builds the full Ff vec Ff = - Kfc x Uc 

 

Parameters 

---------- 

*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at 

triangle first apex) 

*ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle 

eccentricities 

*triangles* is a (N x 3) array of nodes indexes. 

*Uc* is (N x 3) array of imposed displacements at nodes 

 

Returns 

------- 

(Kff_rows, Kff_cols, Kff_vals) Kff matrix in coo format - Duplicate 

(row, col) entries must be summed. 

Ff: force vector - dim npts * 3 

""" 

ntri = np.size(ecc, 0) 

vec_range = np.arange(ntri, dtype=np.int32) 

c_indices = -np.ones(ntri, dtype=np.int32) # for unused dofs, -1 

f_dof = [1, 2, 4, 5, 7, 8] 

c_dof = [0, 3, 6] 

 

# vals, rows and cols indices in global dof numbering 

f_dof_indices = _to_matrix_vectorized([[ 

c_indices, triangles[:, 0]*2, triangles[:, 0]*2+1, 

c_indices, triangles[:, 1]*2, triangles[:, 1]*2+1, 

c_indices, triangles[:, 2]*2, triangles[:, 2]*2+1]]) 

 

expand_indices = np.ones([ntri, 9, 1], dtype=np.int32) 

f_row_indices = _prod_vectorized(_transpose_vectorized(f_dof_indices), 

_transpose_vectorized(expand_indices)) 

f_col_indices = _prod_vectorized(expand_indices, f_dof_indices) 

K_elem = self.get_bending_matrices(J, ecc) 

 

# Extracting sub-matrices 

# Explanation & notations: 

# * Subscript f denotes 'free' degrees of freedom (i.e. dz/dx, dz/dx) 

# * Subscript c denotes 'condensated' (imposed) degrees of freedom 

# (i.e. z at all nodes) 

# * F = [Ff, Fc] is the force vector 

# * U = [Uf, Uc] is the imposed dof vector 

# [ Kff Kfc ] 

# * K = [ ] is the laplacian stiffness matrix 

# [ Kcf Kff ] 

# * As F = K x U one gets straightforwardly: Ff = - Kfc x Uc 

 

# Computing Kff stiffness matrix in sparse coo format 

Kff_vals = np.ravel(K_elem[np.ix_(vec_range, f_dof, f_dof)]) 

Kff_rows = np.ravel(f_row_indices[np.ix_(vec_range, f_dof, f_dof)]) 

Kff_cols = np.ravel(f_col_indices[np.ix_(vec_range, f_dof, f_dof)]) 

 

# Computing Ff force vector in sparse coo format 

Kfc_elem = K_elem[np.ix_(vec_range, f_dof, c_dof)] 

Uc_elem = np.expand_dims(Uc, axis=2) 

Ff_elem = - _prod_vectorized(Kfc_elem, Uc_elem)[:, :, 0] 

Ff_indices = f_dof_indices[np.ix_(vec_range, [0], f_dof)][:, 0, :] 

 

# Extracting Ff force vector in dense format 

# We have to sum duplicate indices - using bincount 

Ff = np.bincount(np.ravel(Ff_indices), weights=np.ravel(Ff_elem)) 

return Kff_rows, Kff_cols, Kff_vals, Ff 

 

 

# :class:_DOF_estimator, _DOF_estimator_user, _DOF_estimator_geom, 

# _DOF_estimator_min_E 

# Private classes used to compute the degree of freedom of each triangular 

# element for the TriCubicInterpolator. 

class _DOF_estimator(): 

""" 

Abstract base class for classes used to perform estimation of a function 

first derivatives, and deduce the dofs for a CubicTriInterpolator using a 

reduced HCT element formulation. 

Derived classes implement compute_df(self,**kwargs), returning 

np.vstack([dfx,dfy]).T where : dfx, dfy are the estimation of the 2 

gradient coordinates. 

""" 

def __init__(self, interpolator, **kwargs): 

if not isinstance(interpolator, CubicTriInterpolator): 

raise ValueError("Expected a CubicTriInterpolator object") 

self._pts = interpolator._pts 

self._tris_pts = interpolator._tris_pts 

self.z = interpolator._z 

self._triangles = interpolator._triangles 

(self._unit_x, self._unit_y) = (interpolator._unit_x, 

interpolator._unit_y) 

self.dz = self.compute_dz(**kwargs) 

self.compute_dof_from_df() 

 

def compute_dz(self, **kwargs): 

raise NotImplementedError 

 

def compute_dof_from_df(self): 

""" 

Computes reduced-HCT elements degrees of freedom, knowing the 

gradient. 

""" 

J = CubicTriInterpolator._get_jacobian(self._tris_pts) 

tri_z = self.z[self._triangles] 

tri_dz = self.dz[self._triangles] 

tri_dof = self.get_dof_vec(tri_z, tri_dz, J) 

return tri_dof 

 

@staticmethod 

def get_dof_vec(tri_z, tri_dz, J): 

""" 

Computes the dof vector of a triangle, knowing the value of f, df and 

of the local Jacobian at each node. 

 

*tri_z*: array of shape (3,) of f nodal values 

*tri_dz*: array of shape (3,2) of df/dx, df/dy nodal values 

*J*: Jacobian matrix in local basis of apex 0 

 

Returns dof array of shape (9,) so that for each apex iapex: 

dof[iapex*3+0] = f(Ai) 

dof[iapex*3+1] = df(Ai).(AiAi+) 

dof[iapex*3+2] = df(Ai).(AiAi-)] 

""" 

npt = tri_z.shape[0] 

dof = np.zeros([npt, 9], dtype=np.float64) 

J1 = _prod_vectorized(_ReducedHCT_Element.J0_to_J1, J) 

J2 = _prod_vectorized(_ReducedHCT_Element.J0_to_J2, J) 

 

col0 = _prod_vectorized(J, np.expand_dims(tri_dz[:, 0, :], axis=2)) 

col1 = _prod_vectorized(J1, np.expand_dims(tri_dz[:, 1, :], axis=2)) 

col2 = _prod_vectorized(J2, np.expand_dims(tri_dz[:, 2, :], axis=2)) 

 

dfdksi = _to_matrix_vectorized([ 

[col0[:, 0, 0], col1[:, 0, 0], col2[:, 0, 0]], 

[col0[:, 1, 0], col1[:, 1, 0], col2[:, 1, 0]]]) 

dof[:, 0:7:3] = tri_z 

dof[:, 1:8:3] = dfdksi[:, 0] 

dof[:, 2:9:3] = dfdksi[:, 1] 

return dof 

 

 

class _DOF_estimator_user(_DOF_estimator): 

""" dz is imposed by user / Accounts for scaling if any """ 

def compute_dz(self, dz): 

(dzdx, dzdy) = dz 

dzdx = dzdx * self._unit_x 

dzdy = dzdy * self._unit_y 

return np.vstack([dzdx, dzdy]).T 

 

 

class _DOF_estimator_geom(_DOF_estimator): 

""" Fast 'geometric' approximation, recommended for large arrays. """ 

def compute_dz(self): 

""" 

self.df is computed as weighted average of _triangles sharing a common 

node. On each triangle itri f is first assumed linear (= ~f), which 

allows to compute d~f[itri] 

Then the following approximation of df nodal values is then proposed: 

f[ipt] = SUM ( w[itri] x d~f[itri] , for itri sharing apex ipt) 

The weighted coeff. w[itri] are proportional to the angle of the 

triangle itri at apex ipt 

""" 

el_geom_w = self.compute_geom_weights() 

el_geom_grad = self.compute_geom_grads() 

 

# Sum of weights coeffs 

w_node_sum = np.bincount(np.ravel(self._triangles), 

weights=np.ravel(el_geom_w)) 

 

# Sum of weighted df = (dfx, dfy) 

dfx_el_w = np.empty_like(el_geom_w) 

dfy_el_w = np.empty_like(el_geom_w) 

for iapex in range(3): 

dfx_el_w[:, iapex] = el_geom_w[:, iapex]*el_geom_grad[:, 0] 

dfy_el_w[:, iapex] = el_geom_w[:, iapex]*el_geom_grad[:, 1] 

dfx_node_sum = np.bincount(np.ravel(self._triangles), 

weights=np.ravel(dfx_el_w)) 

dfy_node_sum = np.bincount(np.ravel(self._triangles), 

weights=np.ravel(dfy_el_w)) 

 

# Estimation of df 

dfx_estim = dfx_node_sum/w_node_sum 

dfy_estim = dfy_node_sum/w_node_sum 

return np.vstack([dfx_estim, dfy_estim]).T 

 

def compute_geom_weights(self): 

""" 

Builds the (nelems x 3) weights coeffs of _triangles angles, 

renormalized so that np.sum(weights, axis=1) == np.ones(nelems) 

""" 

weights = np.zeros([np.size(self._triangles, 0), 3]) 

tris_pts = self._tris_pts 

for ipt in range(3): 

p0 = tris_pts[:, (ipt) % 3, :] 

p1 = tris_pts[:, (ipt+1) % 3, :] 

p2 = tris_pts[:, (ipt-1) % 3, :] 

alpha1 = np.arctan2(p1[:, 1]-p0[:, 1], p1[:, 0]-p0[:, 0]) 

alpha2 = np.arctan2(p2[:, 1]-p0[:, 1], p2[:, 0]-p0[:, 0]) 

# In the below formula we could take modulo 2. but 

# modulo 1. is safer regarding round-off errors (flat triangles). 

angle = np.abs(np.mod((alpha2-alpha1) / np.pi, 1.)) 

# Weight proportional to angle up np.pi/2; null weight for 

# degenerated cases 0 and np.pi (note that `angle` is normalized 

# by np.pi). 

weights[:, ipt] = 0.5 - np.abs(angle-0.5) 

return weights 

 

def compute_geom_grads(self): 

""" 

Compute the (global) gradient component of f assumed linear (~f). 

returns array df of shape (nelems,2) 

df[ielem].dM[ielem] = dz[ielem] i.e. df = dz x dM = dM.T^-1 x dz 

""" 

tris_pts = self._tris_pts 

tris_f = self.z[self._triangles] 

 

dM1 = tris_pts[:, 1, :] - tris_pts[:, 0, :] 

dM2 = tris_pts[:, 2, :] - tris_pts[:, 0, :] 

dM = np.dstack([dM1, dM2]) 

# Here we try to deal with the simplest colinear cases: a null 

# gradient is assumed in this case. 

dM_inv = _safe_inv22_vectorized(dM) 

 

dZ1 = tris_f[:, 1] - tris_f[:, 0] 

dZ2 = tris_f[:, 2] - tris_f[:, 0] 

dZ = np.vstack([dZ1, dZ2]).T 

df = np.empty_like(dZ) 

 

# With np.einsum : could be ej,eji -> ej 

df[:, 0] = dZ[:, 0]*dM_inv[:, 0, 0] + dZ[:, 1]*dM_inv[:, 1, 0] 

df[:, 1] = dZ[:, 0]*dM_inv[:, 0, 1] + dZ[:, 1]*dM_inv[:, 1, 1] 

return df 

 

 

class _DOF_estimator_min_E(_DOF_estimator_geom): 

""" 

The 'smoothest' approximation, df is computed through global minimization 

of the bending energy: 

E(f) = integral[(d2z/dx2 + d2z/dy2 + 2 d2z/dxdy)**2 dA] 

""" 

def __init__(self, Interpolator): 

self._eccs = Interpolator._eccs 

_DOF_estimator_geom.__init__(self, Interpolator) 

 

def compute_dz(self): 

""" 

Elliptic solver for bending energy minimization. 

Uses a dedicated 'toy' sparse Jacobi PCG solver. 

""" 

# Initial guess for iterative PCG solver. 

dz_init = _DOF_estimator_geom.compute_dz(self) 

Uf0 = np.ravel(dz_init) 

 

reference_element = _ReducedHCT_Element() 

J = CubicTriInterpolator._get_jacobian(self._tris_pts) 

eccs = self._eccs 

triangles = self._triangles 

Uc = self.z[self._triangles] 

 

# Building stiffness matrix and force vector in coo format 

Kff_rows, Kff_cols, Kff_vals, Ff = reference_element.get_Kff_and_Ff( 

J, eccs, triangles, Uc) 

 

# Building sparse matrix and solving minimization problem 

# We could use scipy.sparse direct solver; however to avoid this 

# external dependency an implementation of a simple PCG solver with 

# a simple diagonal Jacobi preconditioner is implemented. 

tol = 1.e-10 

n_dof = Ff.shape[0] 

Kff_coo = _Sparse_Matrix_coo(Kff_vals, Kff_rows, Kff_cols, 

shape=(n_dof, n_dof)) 

Kff_coo.compress_csc() 

Uf, err = _cg(A=Kff_coo, b=Ff, x0=Uf0, tol=tol) 

# If the PCG did not converge, we return the best guess between Uf0 

# and Uf. 

err0 = np.linalg.norm(Kff_coo.dot(Uf0) - Ff) 

if err0 < err: 

# Maybe a good occasion to raise a warning here ? 

warnings.warn("In TriCubicInterpolator initialization, PCG sparse" 

" solver did not converge after 1000 iterations. " 

"`geom` approximation is used instead of `min_E`") 

Uf = Uf0 

 

# Building dz from Uf 

dz = np.empty([self._pts.shape[0], 2], dtype=np.float64) 

dz[:, 0] = Uf[::2] 

dz[:, 1] = Uf[1::2] 

return dz 

 

 

# The following private :class:_Sparse_Matrix_coo and :func:_cg provide 

# a PCG sparse solver for (symmetric) elliptic problems. 

class _Sparse_Matrix_coo(object): 

def __init__(self, vals, rows, cols, shape): 

""" 

Creates a sparse matrix in coo format 

*vals*: arrays of values of non-null entries of the matrix 

*rows*: int arrays of rows of non-null entries of the matrix 

*cols*: int arrays of cols of non-null entries of the matrix 

*shape*: 2-tuple (n,m) of matrix shape 

 

""" 

self.n, self.m = shape 

self.vals = np.asarray(vals, dtype=np.float64) 

self.rows = np.asarray(rows, dtype=np.int32) 

self.cols = np.asarray(cols, dtype=np.int32) 

 

def dot(self, V): 

""" 

Dot product of self by a vector *V* in sparse-dense to dense format 

*V* dense vector of shape (self.m,) 

""" 

assert V.shape == (self.m,) 

return np.bincount(self.rows, 

weights=self.vals*V[self.cols], 

minlength=self.m) 

 

def compress_csc(self): 

""" 

Compress rows, cols, vals / summing duplicates. Sort for csc format. 

""" 

_, unique, indices = np.unique( 

self.rows + self.n*self.cols, 

return_index=True, return_inverse=True) 

self.rows = self.rows[unique] 

self.cols = self.cols[unique] 

self.vals = np.bincount(indices, weights=self.vals) 

 

def compress_csr(self): 

""" 

Compress rows, cols, vals / summing duplicates. Sort for csr format. 

""" 

_, unique, indices = np.unique( 

self.m*self.rows + self.cols, 

return_index=True, return_inverse=True) 

self.rows = self.rows[unique] 

self.cols = self.cols[unique] 

self.vals = np.bincount(indices, weights=self.vals) 

 

def to_dense(self): 

""" 

Returns a dense matrix representing self. 

Mainly for debugging purposes. 

""" 

ret = np.zeros([self.n, self.m], dtype=np.float64) 

nvals = self.vals.size 

for i in range(nvals): 

ret[self.rows[i], self.cols[i]] += self.vals[i] 

return ret 

 

def __str__(self): 

return self.to_dense().__str__() 

 

@property 

def diag(self): 

""" 

Returns the (dense) vector of the diagonal elements. 

""" 

in_diag = (self.rows == self.cols) 

diag = np.zeros(min(self.n, self.n), dtype=np.float64) # default 0. 

diag[self.rows[in_diag]] = self.vals[in_diag] 

return diag 

 

 

def _cg(A, b, x0=None, tol=1.e-10, maxiter=1000): 

""" 

Use Preconditioned Conjugate Gradient iteration to solve A x = b 

A simple Jacobi (diagonal) preconditionner is used. 

 

Parameters 

---------- 

A: _Sparse_Matrix_coo 

*A* must have been compressed before by compress_csc or 

compress_csr method. 

 

b: array 

Right hand side of the linear system. 

 

Returns 

------- 

x: array. 

The converged solution. 

err: float 

The absolute error np.linalg.norm(A.dot(x) - b) 

 

Other parameters 

---------------- 

x0: array. 

Starting guess for the solution. 

tol: float. 

Tolerance to achieve. The algorithm terminates when the relative 

residual is below tol. 

maxiter: integer. 

Maximum number of iterations. Iteration will stop 

after maxiter steps even if the specified tolerance has not 

been achieved. 

""" 

n = b.size 

assert A.n == n 

assert A.m == n 

b_norm = np.linalg.norm(b) 

 

# Jacobi pre-conditioner 

kvec = A.diag 

# For diag elem < 1e-6 we keep 1e-6. 

kvec = np.where(kvec > 1.e-6, kvec, 1.e-6) 

 

# Initial guess 

if x0 is None: 

x = np.zeros(n) 

else: 

x = x0 

 

r = b - A.dot(x) 

w = r/kvec 

 

p = np.zeros(n) 

beta = 0.0 

rho = np.dot(r, w) 

k = 0 

 

# Following C. T. Kelley 

while (np.sqrt(abs(rho)) > tol*b_norm) and (k < maxiter): 

p = w + beta*p 

z = A.dot(p) 

alpha = rho/np.dot(p, z) 

r = r - alpha*z 

w = r/kvec 

rhoold = rho 

rho = np.dot(r, w) 

x = x + alpha*p 

beta = rho/rhoold 

#err = np.linalg.norm(A.dot(x) - b) # absolute accuracy - not used 

k += 1 

err = np.linalg.norm(A.dot(x) - b) 

return x, err 

 

 

# The following private functions: 

# :func:`_safe_inv22_vectorized` 

# :func:`_pseudo_inv22sym_vectorized` 

# :func:`_prod_vectorized` 

# :func:`_scalar_vectorized` 

# :func:`_transpose_vectorized` 

# :func:`_roll_vectorized` 

# :func:`_to_matrix_vectorized` 

# :func:`_extract_submatrices` 

# provide fast numpy implementation of some standard operations on arrays of 

# matrices - stored as (:, n_rows, n_cols)-shaped np.arrays. 

 

# Development note: Dealing with pathologic 'flat' triangles in the 

# CubicTriInterpolator code and impact on (2,2)-matrix inversion functions 

# :func:`_safe_inv22_vectorized` and :func:`_pseudo_inv22sym_vectorized`. 

# 

# Goals: 

# 1) The CubicTriInterpolator should be able to handle flat or almost flat 

# triangles without raising an error, 

# 2) These degenerated triangles should have no impact on the automatic dof 

# calculation (associated with null weight for the _DOF_estimator_geom and 

# with null energy for the _DOF_estimator_min_E), 

# 3) Linear patch test should be passed exactly on degenerated meshes, 

# 4) Interpolation (with :meth:`_interpolate_single_key` or 

# :meth:`_interpolate_multi_key`) shall be correctly handled even *inside* 

# the pathologic triangles, to interact correctly with a TriRefiner class. 

# 

# Difficulties: 

# Flat triangles have rank-deficient *J* (so-called jacobian matrix) and 

# *metric* (the metric tensor = J x J.T). Computation of the local 

# tangent plane is also problematic. 

# 

# Implementation: 

# Most of the time, when computing the inverse of a rank-deficient matrix it 

# is safe to simply return the null matrix (which is the implementation in 

# :func:`_safe_inv22_vectorized`). This is because of point 2), itself 

# enforced by: 

# - null area hence null energy in :class:`_DOF_estimator_min_E` 

# - angles close or equal to 0 or np.pi hence null weight in 

# :class:`_DOF_estimator_geom`. 

# Note that the function angle -> weight is continuous and maximum for an 

# angle np.pi/2 (refer to :meth:`compute_geom_weights`) 

# The exception is the computation of barycentric coordinates, which is done 

# by inversion of the *metric* matrix. In this case, we need to compute a set 

# of valid coordinates (1 among numerous possibilities), to ensure point 4). 

# We benefit here from the symmetry of metric = J x J.T, which makes it easier 

# to compute a pseudo-inverse in :func:`_pseudo_inv22sym_vectorized` 

def _safe_inv22_vectorized(M): 

""" 

Inversion of arrays of (2,2) matrices, returns 0 for rank-deficient 

matrices. 

 

*M* : array of (2,2) matrices to inverse, shape (n,2,2) 

""" 

assert M.ndim == 3 

assert M.shape[-2:] == (2, 2) 

M_inv = np.empty_like(M) 

prod1 = M[:, 0, 0]*M[:, 1, 1] 

delta = prod1 - M[:, 0, 1]*M[:, 1, 0] 

 

# We set delta_inv to 0. in case of a rank deficient matrix; a 

# rank-deficient input matrix *M* will lead to a null matrix in output 

rank2 = (np.abs(delta) > 1e-8*np.abs(prod1)) 

if np.all(rank2): 

# Normal 'optimized' flow. 

delta_inv = 1./delta 

else: 

# 'Pathologic' flow. 

delta_inv = np.zeros(M.shape[0]) 

delta_inv[rank2] = 1./delta[rank2] 

 

M_inv[:, 0, 0] = M[:, 1, 1]*delta_inv 

M_inv[:, 0, 1] = -M[:, 0, 1]*delta_inv 

M_inv[:, 1, 0] = -M[:, 1, 0]*delta_inv 

M_inv[:, 1, 1] = M[:, 0, 0]*delta_inv 

return M_inv 

 

 

def _pseudo_inv22sym_vectorized(M): 

""" 

Inversion of arrays of (2,2) SYMMETRIC matrices; returns the 

(Moore-Penrose) pseudo-inverse for rank-deficient matrices. 

 

In case M is of rank 1, we have M = trace(M) x P where P is the orthogonal 

projection on Im(M), and we return trace(M)^-1 x P == M / trace(M)**2 

In case M is of rank 0, we return the null matrix. 

 

*M* : array of (2,2) matrices to inverse, shape (n,2,2) 

""" 

assert M.ndim == 3 

assert M.shape[-2:] == (2, 2) 

M_inv = np.empty_like(M) 

prod1 = M[:, 0, 0]*M[:, 1, 1] 

delta = prod1 - M[:, 0, 1]*M[:, 1, 0] 

rank2 = (np.abs(delta) > 1e-8*np.abs(prod1)) 

 

if np.all(rank2): 

# Normal 'optimized' flow. 

M_inv[:, 0, 0] = M[:, 1, 1] / delta 

M_inv[:, 0, 1] = -M[:, 0, 1] / delta 

M_inv[:, 1, 0] = -M[:, 1, 0] / delta 

M_inv[:, 1, 1] = M[:, 0, 0] / delta 

else: 

# 'Pathologic' flow. 

# Here we have to deal with 2 sub-cases 

# 1) First sub-case: matrices of rank 2: 

delta = delta[rank2] 

M_inv[rank2, 0, 0] = M[rank2, 1, 1] / delta 

M_inv[rank2, 0, 1] = -M[rank2, 0, 1] / delta 

M_inv[rank2, 1, 0] = -M[rank2, 1, 0] / delta 

M_inv[rank2, 1, 1] = M[rank2, 0, 0] / delta 

# 2) Second sub-case: rank-deficient matrices of rank 0 and 1: 

rank01 = ~rank2 

tr = M[rank01, 0, 0] + M[rank01, 1, 1] 

tr_zeros = (np.abs(tr) < 1.e-8) 

sq_tr_inv = (1.-tr_zeros) / (tr**2+tr_zeros) 

#sq_tr_inv = 1. / tr**2 

M_inv[rank01, 0, 0] = M[rank01, 0, 0] * sq_tr_inv 

M_inv[rank01, 0, 1] = M[rank01, 0, 1] * sq_tr_inv 

M_inv[rank01, 1, 0] = M[rank01, 1, 0] * sq_tr_inv 

M_inv[rank01, 1, 1] = M[rank01, 1, 1] * sq_tr_inv 

 

return M_inv 

 

 

def _prod_vectorized(M1, M2): 

""" 

Matrix product between arrays of matrices, or a matrix and an array of 

matrices (*M1* and *M2*) 

""" 

sh1 = M1.shape 

sh2 = M2.shape 

assert len(sh1) >= 2 

assert len(sh2) >= 2 

assert sh1[-1] == sh2[-2] 

 

ndim1 = len(sh1) 

t1_index = [*range(ndim1-2), ndim1-1, ndim1-2] 

return np.sum(np.transpose(M1, t1_index)[..., np.newaxis] * 

M2[..., np.newaxis, :], -3) 

 

 

def _scalar_vectorized(scalar, M): 

""" 

Scalar product between scalars and matrices. 

""" 

return scalar[:, np.newaxis, np.newaxis]*M 

 

 

def _transpose_vectorized(M): 

""" 

Transposition of an array of matrices *M*. 

""" 

return np.transpose(M, [0, 2, 1]) 

 

 

def _roll_vectorized(M, roll_indices, axis): 

""" 

Rolls an array of matrices along an axis according to an array of indices 

*roll_indices* 

*axis* can be either 0 (rolls rows) or 1 (rolls columns). 

""" 

assert axis in [0, 1] 

ndim = M.ndim 

assert ndim == 3 

ndim_roll = roll_indices.ndim 

assert ndim_roll == 1 

sh = M.shape 

r, c = sh[-2:] 

assert sh[0] == roll_indices.shape[0] 

vec_indices = np.arange(sh[0], dtype=np.int32) 

 

# Builds the rolled matrix 

M_roll = np.empty_like(M) 

if axis == 0: 

for ir in range(r): 

for ic in range(c): 

M_roll[:, ir, ic] = M[vec_indices, (-roll_indices+ir) % r, ic] 

elif axis == 1: 

for ir in range(r): 

for ic in range(c): 

M_roll[:, ir, ic] = M[vec_indices, ir, (-roll_indices+ic) % c] 

return M_roll 

 

 

def _to_matrix_vectorized(M): 

""" 

Builds an array of matrices from individuals np.arrays of identical 

shapes. 

*M*: ncols-list of nrows-lists of shape sh. 

 

Returns M_res np.array of shape (sh, nrow, ncols) so that: 

M_res[...,i,j] = M[i][j] 

""" 

assert isinstance(M, (tuple, list)) 

assert all(isinstance(item, (tuple, list)) for item in M) 

c_vec = np.asarray([len(item) for item in M]) 

assert np.all(c_vec-c_vec[0] == 0) 

r = len(M) 

c = c_vec[0] 

M00 = np.asarray(M[0][0]) 

dt = M00.dtype 

sh = [M00.shape[0], r, c] 

M_ret = np.empty(sh, dtype=dt) 

for irow in range(r): 

for icol in range(c): 

M_ret[:, irow, icol] = np.asarray(M[irow][icol]) 

return M_ret 

 

 

def _extract_submatrices(M, block_indices, block_size, axis): 

""" 

Extracts selected blocks of a matrices *M* depending on parameters 

*block_indices* and *block_size*. 

 

Returns the array of extracted matrices *Mres* so that: 

M_res[...,ir,:] = M[(block_indices*block_size+ir), :] 

""" 

assert block_indices.ndim == 1 

assert axis in [0, 1] 

 

r, c = M.shape 

if axis == 0: 

sh = [block_indices.shape[0], block_size, c] 

elif axis == 1: 

sh = [block_indices.shape[0], r, block_size] 

 

dt = M.dtype 

M_res = np.empty(sh, dtype=dt) 

if axis == 0: 

for ir in range(block_size): 

M_res[:, ir, :] = M[(block_indices*block_size+ir), :] 

elif axis == 1: 

for ic in range(block_size): 

M_res[:, :, ic] = M[:, (block_indices*block_size+ic)] 

 

return M_res