1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

4464

4465

4466

4467

4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

4479

4480

4481

4482

4483

4484

4485

4486

4487

4488

4489

4490

4491

4492

4493

4494

4495

4496

4497

4498

4499

4500

4501

4502

4503

4504

4505

4506

4507

4508

4509

4510

4511

4512

4513

4514

4515

4516

4517

4518

4519

4520

4521

4522

4523

4524

4525

4526

4527

4528

4529

4530

4531

4532

4533

4534

4535

4536

4537

4538

4539

4540

4541

4542

4543

4544

4545

4546

4547

4548

4549

4550

4551

4552

4553

4554

4555

4556

4557

4558

4559

4560

4561

4562

4563

4564

4565

4566

4567

4568

4569

4570

4571

4572

4573

4574

4575

4576

4577

4578

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

4590

4591

4592

4593

4594

4595

4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

4611

4612

4613

4614

4615

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

4627

4628

4629

4630

4631

4632

4633

4634

4635

4636

4637

4638

4639

4640

4641

4642

4643

4644

4645

4646

4647

4648

4649

4650

4651

4652

4653

4654

4655

4656

4657

4658

4659

4660

4661

4662

4663

4664

4665

4666

4667

4668

4669

4670

4671

4672

4673

4674

4675

4676

4677

4678

4679

4680

4681

4682

4683

4684

4685

4686

4687

4688

4689

4690

4691

4692

4693

4694

4695

4696

4697

4698

4699

4700

4701

4702

4703

4704

4705

4706

4707

4708

4709

4710

4711

4712

4713

4714

4715

4716

4717

4718

4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

4737

4738

4739

4740

4741

4742

4743

4744

4745

4746

4747

4748

4749

4750

4751

4752

4753

4754

4755

4756

4757

4758

4759

4760

4761

4762

4763

4764

4765

4766

4767

4768

4769

4770

4771

4772

4773

4774

4775

4776

4777

4778

4779

4780

4781

4782

4783

4784

4785

4786

4787

4788

4789

4790

4791

4792

4793

4794

4795

4796

4797

4798

4799

4800

4801

4802

4803

4804

4805

4806

4807

4808

4809

4810

4811

4812

4813

4814

4815

4816

4817

4818

4819

4820

4821

4822

4823

4824

4825

4826

4827

4828

4829

4830

4831

4832

4833

4834

4835

4836

4837

4838

4839

4840

4841

4842

4843

4844

4845

4846

4847

4848

4849

4850

4851

4852

4853

4854

4855

4856

4857

4858

4859

4860

4861

4862

4863

4864

4865

4866

4867

4868

4869

4870

4871

4872

4873

4874

4875

4876

4877

4878

4879

4880

4881

4882

4883

4884

4885

4886

4887

4888

4889

4890

4891

4892

4893

4894

4895

4896

4897

4898

4899

4900

4901

4902

4903

4904

4905

4906

4907

4908

4909

4910

4911

4912

4913

4914

4915

4916

4917

4918

4919

4920

4921

4922

4923

4924

4925

4926

4927

4928

4929

4930

4931

4932

4933

4934

4935

4936

4937

4938

4939

4940

4941

4942

4943

4944

4945

4946

4947

4948

4949

4950

4951

4952

4953

4954

4955

4956

4957

4958

4959

4960

4961

4962

4963

4964

4965

4966

4967

4968

4969

4970

4971

4972

4973

4974

4975

4976

4977

4978

4979

4980

4981

4982

4983

4984

4985

4986

4987

4988

4989

4990

4991

4992

4993

4994

4995

4996

4997

4998

4999

5000

5001

5002

5003

5004

5005

5006

5007

5008

5009

5010

5011

5012

5013

5014

5015

5016

5017

5018

5019

5020

5021

5022

5023

5024

5025

5026

5027

5028

5029

5030

5031

5032

5033

5034

5035

5036

5037

5038

5039

5040

5041

5042

5043

5044

5045

5046

5047

5048

5049

5050

5051

5052

5053

5054

5055

5056

5057

5058

5059

5060

5061

5062

5063

5064

5065

5066

5067

5068

5069

5070

5071

5072

5073

5074

5075

5076

5077

5078

5079

5080

5081

5082

5083

5084

5085

5086

5087

5088

5089

5090

5091

5092

5093

5094

5095

5096

5097

5098

5099

5100

5101

5102

5103

5104

5105

5106

5107

5108

5109

5110

5111

5112

5113

5114

5115

5116

5117

5118

5119

5120

5121

5122

5123

5124

5125

5126

5127

5128

5129

5130

5131

5132

5133

5134

5135

5136

5137

5138

5139

5140

5141

5142

5143

5144

5145

5146

5147

5148

5149

5150

5151

5152

5153

5154

5155

5156

5157

5158

5159

5160

5161

5162

5163

5164

5165

5166

5167

5168

5169

5170

5171

5172

5173

5174

5175

5176

5177

5178

5179

5180

5181

5182

5183

5184

5185

5186

5187

5188

5189

5190

5191

5192

5193

5194

5195

5196

5197

5198

5199

5200

5201

5202

5203

5204

5205

5206

5207

5208

5209

5210

5211

5212

5213

5214

5215

5216

5217

5218

5219

5220

5221

5222

5223

5224

5225

5226

5227

5228

5229

5230

5231

5232

5233

5234

5235

5236

5237

5238

5239

5240

5241

5242

5243

5244

5245

5246

5247

5248

5249

5250

5251

5252

5253

5254

5255

5256

5257

5258

5259

5260

5261

5262

5263

5264

5265

5266

5267

5268

5269

5270

5271

5272

5273

5274

5275

5276

5277

5278

5279

5280

5281

5282

5283

5284

5285

5286

5287

5288

5289

5290

5291

5292

5293

5294

5295

5296

5297

5298

5299

5300

5301

5302

5303

5304

5305

5306

5307

5308

5309

5310

5311

5312

5313

5314

5315

5316

5317

5318

5319

5320

5321

5322

5323

5324

5325

5326

5327

5328

5329

5330

5331

5332

5333

5334

5335

5336

5337

5338

5339

5340

5341

5342

5343

5344

5345

5346

5347

5348

5349

5350

5351

5352

5353

5354

5355

5356

5357

5358

5359

5360

5361

5362

5363

5364

5365

5366

5367

5368

5369

5370

5371

5372

5373

5374

5375

5376

5377

5378

5379

5380

5381

5382

5383

5384

5385

5386

5387

5388

5389

5390

5391

5392

5393

5394

5395

5396

5397

5398

5399

5400

5401

5402

5403

5404

5405

5406

5407

5408

5409

5410

5411

5412

5413

5414

5415

5416

5417

5418

5419

5420

5421

5422

5423

5424

5425

5426

5427

5428

5429

5430

5431

5432

5433

5434

5435

5436

5437

5438

5439

5440

5441

5442

5443

5444

5445

5446

5447

5448

5449

5450

5451

5452

5453

5454

5455

5456

5457

5458

5459

5460

5461

5462

5463

5464

5465

5466

5467

5468

5469

5470

5471

5472

5473

5474

5475

5476

5477

5478

5479

5480

5481

5482

5483

5484

5485

5486

5487

5488

5489

5490

5491

5492

5493

5494

5495

5496

5497

5498

5499

5500

5501

5502

5503

5504

5505

5506

5507

5508

5509

5510

5511

5512

5513

5514

5515

5516

5517

5518

5519

5520

5521

5522

5523

5524

5525

5526

5527

5528

5529

5530

5531

5532

5533

5534

5535

5536

5537

5538

5539

5540

5541

5542

5543

5544

5545

5546

5547

5548

5549

5550

5551

5552

5553

5554

5555

5556

5557

5558

5559

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

5570

5571

5572

5573

5574

5575

5576

5577

5578

5579

5580

5581

5582

5583

5584

5585

5586

5587

5588

5589

5590

5591

5592

5593

5594

5595

5596

5597

5598

5599

5600

5601

5602

5603

5604

5605

5606

5607

5608

5609

5610

5611

5612

5613

5614

5615

5616

5617

5618

5619

5620

5621

5622

5623

5624

5625

5626

5627

5628

5629

5630

5631

5632

5633

5634

5635

5636

5637

5638

5639

5640

5641

5642

5643

5644

5645

5646

5647

5648

5649

5650

5651

5652

5653

5654

5655

5656

5657

5658

5659

5660

5661

5662

5663

5664

5665

5666

5667

5668

5669

5670

5671

5672

5673

5674

5675

5676

5677

5678

5679

5680

5681

5682

5683

5684

5685

5686

5687

5688

5689

5690

5691

5692

5693

5694

5695

5696

5697

5698

5699

5700

5701

5702

5703

5704

5705

5706

5707

5708

5709

5710

5711

5712

5713

5714

5715

5716

5717

5718

5719

5720

5721

5722

5723

5724

5725

5726

5727

5728

5729

5730

5731

5732

5733

5734

5735

5736

5737

5738

5739

5740

5741

5742

5743

5744

5745

5746

5747

5748

5749

5750

5751

5752

5753

5754

5755

5756

5757

5758

5759

5760

5761

5762

5763

5764

5765

5766

5767

5768

5769

5770

5771

5772

5773

5774

5775

5776

5777

5778

5779

5780

5781

5782

5783

5784

5785

5786

5787

5788

5789

5790

5791

5792

5793

5794

5795

5796

5797

5798

5799

5800

5801

5802

5803

5804

5805

5806

5807

5808

5809

5810

5811

5812

5813

5814

5815

5816

5817

5818

5819

5820

5821

5822

5823

5824

5825

5826

5827

5828

5829

5830

5831

5832

5833

5834

5835

5836

5837

5838

5839

5840

5841

5842

5843

5844

5845

5846

5847

5848

5849

5850

5851

5852

5853

5854

5855

5856

5857

5858

5859

5860

5861

5862

5863

5864

5865

5866

5867

5868

5869

5870

5871

5872

5873

5874

5875

5876

5877

5878

5879

5880

5881

5882

5883

5884

5885

5886

5887

5888

5889

5890

5891

5892

5893

5894

5895

5896

5897

5898

5899

5900

5901

5902

5903

5904

5905

5906

5907

5908

5909

5910

5911

5912

5913

5914

5915

5916

5917

5918

5919

5920

5921

5922

5923

5924

5925

5926

5927

5928

5929

5930

5931

5932

5933

5934

5935

5936

5937

5938

5939

5940

5941

5942

5943

5944

5945

5946

5947

5948

5949

5950

5951

5952

5953

5954

5955

5956

5957

5958

5959

5960

5961

5962

5963

5964

5965

5966

5967

5968

5969

5970

5971

5972

5973

5974

5975

5976

5977

5978

5979

5980

5981

5982

5983

5984

5985

5986

5987

5988

5989

5990

5991

5992

5993

5994

5995

5996

5997

5998

5999

6000

6001

6002

6003

6004

6005

6006

6007

6008

6009

6010

6011

6012

6013

6014

6015

6016

6017

6018

6019

6020

6021

6022

6023

6024

6025

6026

6027

6028

6029

6030

6031

6032

6033

6034

6035

6036

6037

6038

6039

6040

6041

6042

6043

6044

6045

6046

6047

6048

6049

6050

6051

6052

6053

6054

6055

6056

6057

6058

6059

6060

6061

6062

6063

6064

6065

6066

6067

6068

6069

6070

6071

6072

6073

6074

6075

6076

6077

6078

6079

6080

6081

6082

6083

6084

6085

6086

6087

6088

6089

6090

6091

6092

6093

6094

6095

6096

6097

6098

6099

6100

6101

6102

6103

6104

6105

6106

6107

6108

6109

6110

6111

6112

6113

6114

6115

6116

6117

6118

6119

6120

6121

6122

6123

6124

6125

6126

6127

6128

6129

6130

6131

6132

6133

6134

6135

6136

6137

6138

6139

6140

6141

6142

6143

6144

6145

6146

6147

6148

6149

6150

6151

6152

6153

6154

6155

6156

6157

6158

6159

6160

6161

6162

6163

6164

6165

6166

6167

6168

6169

6170

6171

6172

6173

6174

6175

6176

6177

6178

6179

6180

6181

6182

6183

6184

6185

6186

6187

6188

6189

6190

6191

6192

6193

6194

6195

6196

6197

6198

6199

6200

6201

6202

6203

6204

6205

6206

6207

6208

6209

6210

6211

6212

6213

6214

6215

6216

6217

6218

6219

6220

6221

6222

6223

6224

6225

6226

6227

6228

6229

6230

6231

6232

6233

6234

6235

6236

6237

6238

6239

6240

6241

6242

6243

6244

6245

6246

6247

6248

6249

6250

6251

6252

6253

6254

6255

6256

6257

6258

6259

6260

6261

6262

6263

6264

6265

6266

6267

6268

6269

6270

6271

6272

6273

6274

6275

6276

6277

6278

6279

6280

6281

6282

6283

6284

6285

6286

6287

6288

6289

6290

6291

6292

6293

6294

6295

6296

6297

6298

6299

6300

6301

6302

6303

6304

6305

6306

6307

6308

6309

6310

6311

6312

6313

6314

6315

6316

6317

6318

6319

6320

6321

6322

6323

6324

6325

6326

6327

6328

6329

6330

6331

6332

6333

6334

6335

6336

6337

6338

6339

6340

6341

6342

6343

6344

6345

6346

6347

6348

6349

6350

6351

6352

6353

6354

6355

6356

6357

6358

6359

6360

6361

6362

6363

6364

6365

6366

6367

6368

6369

6370

6371

6372

6373

6374

6375

6376

6377

6378

6379

6380

6381

6382

6383

6384

6385

6386

6387

6388

6389

6390

6391

6392

6393

6394

6395

6396

6397

6398

6399

6400

6401

6402

6403

6404

6405

6406

6407

6408

6409

6410

6411

6412

6413

6414

6415

6416

6417

6418

6419

6420

6421

6422

6423

6424

6425

6426

6427

6428

6429

6430

6431

6432

6433

6434

6435

6436

6437

6438

6439

6440

6441

6442

6443

6444

6445

6446

6447

6448

6449

6450

6451

6452

6453

6454

6455

6456

6457

6458

6459

6460

6461

6462

6463

6464

6465

6466

6467

6468

6469

6470

6471

6472

6473

6474

6475

6476

6477

6478

6479

6480

6481

6482

6483

6484

6485

6486

6487

6488

6489

6490

6491

6492

6493

6494

6495

6496

6497

6498

6499

6500

6501

6502

6503

6504

6505

6506

6507

6508

6509

6510

6511

6512

6513

6514

6515

6516

6517

6518

6519

6520

6521

6522

6523

6524

6525

6526

6527

6528

6529

6530

6531

6532

6533

6534

6535

6536

6537

6538

6539

6540

6541

6542

6543

6544

6545

6546

6547

6548

6549

6550

6551

6552

6553

6554

6555

6556

6557

6558

6559

6560

6561

6562

6563

6564

6565

6566

6567

6568

6569

6570

6571

6572

6573

6574

6575

6576

6577

6578

6579

6580

6581

6582

6583

6584

6585

6586

6587

6588

6589

6590

6591

6592

6593

6594

6595

6596

6597

6598

6599

6600

6601

6602

6603

6604

6605

6606

6607

6608

6609

6610

6611

6612

6613

6614

6615

6616

6617

6618

6619

6620

6621

6622

6623

6624

6625

6626

6627

6628

6629

6630

6631

6632

6633

6634

6635

6636

6637

6638

6639

6640

6641

6642

6643

6644

6645

6646

6647

6648

6649

6650

6651

6652

6653

6654

6655

6656

6657

6658

6659

6660

6661

6662

6663

6664

6665

6666

6667

6668

6669

6670

6671

6672

6673

6674

6675

6676

6677

6678

6679

6680

6681

6682

6683

6684

6685

6686

6687

6688

6689

6690

6691

6692

6693

6694

6695

6696

6697

6698

6699

6700

6701

6702

6703

6704

6705

6706

6707

6708

6709

6710

6711

6712

6713

6714

6715

6716

6717

6718

6719

6720

6721

6722

6723

6724

6725

6726

6727

6728

6729

6730

6731

6732

6733

6734

6735

6736

6737

6738

6739

6740

6741

6742

6743

6744

6745

6746

6747

6748

6749

6750

6751

6752

6753

6754

6755

6756

6757

6758

6759

6760

6761

6762

6763

6764

6765

6766

6767

6768

6769

6770

6771

6772

6773

6774

6775

6776

6777

6778

6779

6780

6781

6782

6783

6784

6785

6786

6787

6788

6789

6790

6791

6792

6793

6794

6795

6796

6797

6798

6799

6800

6801

6802

6803

6804

6805

6806

6807

6808

6809

6810

6811

6812

6813

6814

6815

6816

6817

6818

6819

6820

6821

6822

6823

6824

6825

6826

6827

6828

6829

6830

6831

6832

6833

6834

6835

6836

6837

6838

6839

6840

6841

6842

6843

6844

6845

6846

6847

6848

6849

6850

6851

6852

6853

6854

6855

6856

6857

6858

6859

6860

6861

6862

6863

6864

6865

6866

6867

6868

6869

6870

6871

6872

6873

6874

6875

6876

6877

6878

6879

6880

6881

6882

6883

6884

6885

6886

6887

6888

6889

6890

6891

6892

6893

6894

6895

6896

6897

6898

6899

6900

6901

6902

6903

6904

6905

6906

6907

6908

6909

6910

6911

6912

6913

6914

6915

6916

6917

6918

6919

6920

6921

6922

6923

6924

6925

6926

6927

6928

6929

6930

6931

6932

6933

6934

6935

6936

""" 

This is only meant to add docs to objects defined in C-extension modules. 

The purpose is to allow easier editing of the docstrings without 

requiring a re-compile. 

 

NOTE: Many of the methods of ndarray have corresponding functions. 

If you update these docstrings, please keep also the ones in 

core/fromnumeric.py, core/defmatrix.py up-to-date. 

 

""" 

from __future__ import division, absolute_import, print_function 

 

from numpy.core import numerictypes as _numerictypes 

from numpy.core import dtype 

from numpy.core.function_base import add_newdoc 

 

############################################################################### 

# 

# flatiter 

# 

# flatiter needs a toplevel description 

# 

############################################################################### 

 

add_newdoc('numpy.core', 'flatiter', 

""" 

Flat iterator object to iterate over arrays. 

 

A `flatiter` iterator is returned by ``x.flat`` for any array `x`. 

It allows iterating over the array as if it were a 1-D array, 

either in a for-loop or by calling its `next` method. 

 

Iteration is done in row-major, C-style order (the last 

index varying the fastest). The iterator can also be indexed using 

basic slicing or advanced indexing. 

 

See Also 

-------- 

ndarray.flat : Return a flat iterator over an array. 

ndarray.flatten : Returns a flattened copy of an array. 

 

Notes 

----- 

A `flatiter` iterator can not be constructed directly from Python code 

by calling the `flatiter` constructor. 

 

Examples 

-------- 

>>> x = np.arange(6).reshape(2, 3) 

>>> fl = x.flat 

>>> type(fl) 

<type 'numpy.flatiter'> 

>>> for item in fl: 

... print(item) 

... 

0 

1 

2 

3 

4 

5 

 

>>> fl[2:4] 

array([2, 3]) 

 

""") 

 

# flatiter attributes 

 

add_newdoc('numpy.core', 'flatiter', ('base', 

""" 

A reference to the array that is iterated over. 

 

Examples 

-------- 

>>> x = np.arange(5) 

>>> fl = x.flat 

>>> fl.base is x 

True 

 

""")) 

 

 

 

add_newdoc('numpy.core', 'flatiter', ('coords', 

""" 

An N-dimensional tuple of current coordinates. 

 

Examples 

-------- 

>>> x = np.arange(6).reshape(2, 3) 

>>> fl = x.flat 

>>> fl.coords 

(0, 0) 

>>> fl.next() 

0 

>>> fl.coords 

(0, 1) 

 

""")) 

 

 

 

add_newdoc('numpy.core', 'flatiter', ('index', 

""" 

Current flat index into the array. 

 

Examples 

-------- 

>>> x = np.arange(6).reshape(2, 3) 

>>> fl = x.flat 

>>> fl.index 

0 

>>> fl.next() 

0 

>>> fl.index 

1 

 

""")) 

 

# flatiter functions 

 

add_newdoc('numpy.core', 'flatiter', ('__array__', 

"""__array__(type=None) Get array from iterator 

 

""")) 

 

 

add_newdoc('numpy.core', 'flatiter', ('copy', 

""" 

copy() 

 

Get a copy of the iterator as a 1-D array. 

 

Examples 

-------- 

>>> x = np.arange(6).reshape(2, 3) 

>>> x 

array([[0, 1, 2], 

[3, 4, 5]]) 

>>> fl = x.flat 

>>> fl.copy() 

array([0, 1, 2, 3, 4, 5]) 

 

""")) 

 

 

############################################################################### 

# 

# nditer 

# 

############################################################################### 

 

add_newdoc('numpy.core', 'nditer', 

""" 

Efficient multi-dimensional iterator object to iterate over arrays. 

To get started using this object, see the 

:ref:`introductory guide to array iteration <arrays.nditer>`. 

 

Parameters 

---------- 

op : ndarray or sequence of array_like 

The array(s) to iterate over. 

flags : sequence of str, optional 

Flags to control the behavior of the iterator. 

 

* "buffered" enables buffering when required. 

* "c_index" causes a C-order index to be tracked. 

* "f_index" causes a Fortran-order index to be tracked. 

* "multi_index" causes a multi-index, or a tuple of indices 

with one per iteration dimension, to be tracked. 

* "common_dtype" causes all the operands to be converted to 

a common data type, with copying or buffering as necessary. 

* "copy_if_overlap" causes the iterator to determine if read 

operands have overlap with write operands, and make temporary 

copies as necessary to avoid overlap. False positives (needless 

copying) are possible in some cases. 

* "delay_bufalloc" delays allocation of the buffers until 

a reset() call is made. Allows "allocate" operands to 

be initialized before their values are copied into the buffers. 

* "external_loop" causes the `values` given to be 

one-dimensional arrays with multiple values instead of 

zero-dimensional arrays. 

* "grow_inner" allows the `value` array sizes to be made 

larger than the buffer size when both "buffered" and 

"external_loop" is used. 

* "ranged" allows the iterator to be restricted to a sub-range 

of the iterindex values. 

* "refs_ok" enables iteration of reference types, such as 

object arrays. 

* "reduce_ok" enables iteration of "readwrite" operands 

which are broadcasted, also known as reduction operands. 

* "zerosize_ok" allows `itersize` to be zero. 

op_flags : list of list of str, optional 

This is a list of flags for each operand. At minimum, one of 

"readonly", "readwrite", or "writeonly" must be specified. 

 

* "readonly" indicates the operand will only be read from. 

* "readwrite" indicates the operand will be read from and written to. 

* "writeonly" indicates the operand will only be written to. 

* "no_broadcast" prevents the operand from being broadcasted. 

* "contig" forces the operand data to be contiguous. 

* "aligned" forces the operand data to be aligned. 

* "nbo" forces the operand data to be in native byte order. 

* "copy" allows a temporary read-only copy if required. 

* "updateifcopy" allows a temporary read-write copy if required. 

* "allocate" causes the array to be allocated if it is None 

in the `op` parameter. 

* "no_subtype" prevents an "allocate" operand from using a subtype. 

* "arraymask" indicates that this operand is the mask to use 

for selecting elements when writing to operands with the 

'writemasked' flag set. The iterator does not enforce this, 

but when writing from a buffer back to the array, it only 

copies those elements indicated by this mask. 

* 'writemasked' indicates that only elements where the chosen 

'arraymask' operand is True will be written to. 

* "overlap_assume_elementwise" can be used to mark operands that are 

accessed only in the iterator order, to allow less conservative 

copying when "copy_if_overlap" is present. 

op_dtypes : dtype or tuple of dtype(s), optional 

The required data type(s) of the operands. If copying or buffering 

is enabled, the data will be converted to/from their original types. 

order : {'C', 'F', 'A', 'K'}, optional 

Controls the iteration order. 'C' means C order, 'F' means 

Fortran order, 'A' means 'F' order if all the arrays are Fortran 

contiguous, 'C' order otherwise, and 'K' means as close to the 

order the array elements appear in memory as possible. This also 

affects the element memory order of "allocate" operands, as they 

are allocated to be compatible with iteration order. 

Default is 'K'. 

casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

Controls what kind of data casting may occur when making a copy 

or buffering. Setting this to 'unsafe' is not recommended, 

as it can adversely affect accumulations. 

 

* 'no' means the data types should not be cast at all. 

* 'equiv' means only byte-order changes are allowed. 

* 'safe' means only casts which can preserve values are allowed. 

* 'same_kind' means only safe casts or casts within a kind, 

like float64 to float32, are allowed. 

* 'unsafe' means any data conversions may be done. 

op_axes : list of list of ints, optional 

If provided, is a list of ints or None for each operands. 

The list of axes for an operand is a mapping from the dimensions 

of the iterator to the dimensions of the operand. A value of 

-1 can be placed for entries, causing that dimension to be 

treated as "newaxis". 

itershape : tuple of ints, optional 

The desired shape of the iterator. This allows "allocate" operands 

with a dimension mapped by op_axes not corresponding to a dimension 

of a different operand to get a value not equal to 1 for that 

dimension. 

buffersize : int, optional 

When buffering is enabled, controls the size of the temporary 

buffers. Set to 0 for the default value. 

 

Attributes 

---------- 

dtypes : tuple of dtype(s) 

The data types of the values provided in `value`. This may be 

different from the operand data types if buffering is enabled. 

Valid only before the iterator is closed. 

finished : bool 

Whether the iteration over the operands is finished or not. 

has_delayed_bufalloc : bool 

If True, the iterator was created with the "delay_bufalloc" flag, 

and no reset() function was called on it yet. 

has_index : bool 

If True, the iterator was created with either the "c_index" or 

the "f_index" flag, and the property `index` can be used to 

retrieve it. 

has_multi_index : bool 

If True, the iterator was created with the "multi_index" flag, 

and the property `multi_index` can be used to retrieve it. 

index 

When the "c_index" or "f_index" flag was used, this property 

provides access to the index. Raises a ValueError if accessed 

and `has_index` is False. 

iterationneedsapi : bool 

Whether iteration requires access to the Python API, for example 

if one of the operands is an object array. 

iterindex : int 

An index which matches the order of iteration. 

itersize : int 

Size of the iterator. 

itviews 

Structured view(s) of `operands` in memory, matching the reordered 

and optimized iterator access pattern. Valid only before the iterator 

is closed. 

multi_index 

When the "multi_index" flag was used, this property 

provides access to the index. Raises a ValueError if accessed 

accessed and `has_multi_index` is False. 

ndim : int 

The iterator's dimension. 

nop : int 

The number of iterator operands. 

operands : tuple of operand(s) 

The array(s) to be iterated over. Valid only before the iterator is 

closed. 

shape : tuple of ints 

Shape tuple, the shape of the iterator. 

value 

Value of `operands` at current iteration. Normally, this is a 

tuple of array scalars, but if the flag "external_loop" is used, 

it is a tuple of one dimensional arrays. 

 

Notes 

----- 

`nditer` supersedes `flatiter`. The iterator implementation behind 

`nditer` is also exposed by the NumPy C API. 

 

The Python exposure supplies two iteration interfaces, one which follows 

the Python iterator protocol, and another which mirrors the C-style 

do-while pattern. The native Python approach is better in most cases, but 

if you need the iterator's coordinates or index, use the C-style pattern. 

 

Examples 

-------- 

Here is how we might write an ``iter_add`` function, using the 

Python iterator protocol:: 

 

def iter_add_py(x, y, out=None): 

addop = np.add 

it = np.nditer([x, y, out], [], 

[['readonly'], ['readonly'], ['writeonly','allocate']]) 

with it: 

for (a, b, c) in it: 

addop(a, b, out=c) 

return it.operands[2] 

 

Here is the same function, but following the C-style pattern:: 

 

def iter_add(x, y, out=None): 

addop = np.add 

 

it = np.nditer([x, y, out], [], 

[['readonly'], ['readonly'], ['writeonly','allocate']]) 

with it: 

while not it.finished: 

addop(it[0], it[1], out=it[2]) 

it.iternext() 

 

return it.operands[2] 

 

Here is an example outer product function:: 

 

def outer_it(x, y, out=None): 

mulop = np.multiply 

 

it = np.nditer([x, y, out], ['external_loop'], 

[['readonly'], ['readonly'], ['writeonly', 'allocate']], 

op_axes=[list(range(x.ndim)) + [-1] * y.ndim, 

[-1] * x.ndim + list(range(y.ndim)), 

None]) 

with it: 

for (a, b, c) in it: 

mulop(a, b, out=c) 

return it.operands[2] 

 

>>> a = np.arange(2)+1 

>>> b = np.arange(3)+1 

>>> outer_it(a,b) 

array([[1, 2, 3], 

[2, 4, 6]]) 

 

Here is an example function which operates like a "lambda" ufunc:: 

 

def luf(lamdaexpr, *args, **kwargs): 

"luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)" 

nargs = len(args) 

op = (kwargs.get('out',None),) + args 

it = np.nditer(op, ['buffered','external_loop'], 

[['writeonly','allocate','no_broadcast']] + 

[['readonly','nbo','aligned']]*nargs, 

order=kwargs.get('order','K'), 

casting=kwargs.get('casting','safe'), 

buffersize=kwargs.get('buffersize',0)) 

while not it.finished: 

it[0] = lamdaexpr(*it[1:]) 

it.iternext() 

return it.operands[0] 

 

>>> a = np.arange(5) 

>>> b = np.ones(5) 

>>> luf(lambda i,j:i*i + j/2, a, b) 

array([ 0.5, 1.5, 4.5, 9.5, 16.5]) 

 

If operand flags `"writeonly"` or `"readwrite"` are used the operands may 

be views into the original data with the `WRITEBACKIFCOPY` flag. In this case 

nditer must be used as a context manager or the nditer.close 

method must be called before using the result. The temporary 

data will be written back to the original data when the `__exit__` 

function is called but not before: 

 

>>> a = np.arange(6, dtype='i4')[::-2] 

>>> with nditer(a, [], 

... [['writeonly', 'updateifcopy']], 

... casting='unsafe', 

... op_dtypes=[np.dtype('f4')]) as i: 

... x = i.operands[0] 

... x[:] = [-1, -2, -3] 

... # a still unchanged here 

>>> a, x 

array([-1, -2, -3]), array([-1, -2, -3]) 

 

It is important to note that once the iterator is exited, dangling 

references (like `x` in the example) may or may not share data with 

the original data `a`. If writeback semantics were active, i.e. if 

`x.base.flags.writebackifcopy` is `True`, then exiting the iterator 

will sever the connection between `x` and `a`, writing to `x` will 

no longer write to `a`. If writeback semantics are not active, then 

`x.data` will still point at some part of `a.data`, and writing to 

one will affect the other. 

 

""") 

 

# nditer methods 

 

add_newdoc('numpy.core', 'nditer', ('copy', 

""" 

copy() 

 

Get a copy of the iterator in its current state. 

 

Examples 

-------- 

>>> x = np.arange(10) 

>>> y = x + 1 

>>> it = np.nditer([x, y]) 

>>> it.next() 

(array(0), array(1)) 

>>> it2 = it.copy() 

>>> it2.next() 

(array(1), array(2)) 

 

""")) 

 

add_newdoc('numpy.core', 'nditer', ('operands', 

""" 

operands[`Slice`] 

 

The array(s) to be iterated over. Valid only before the iterator is closed. 

""")) 

 

add_newdoc('numpy.core', 'nditer', ('debug_print', 

""" 

debug_print() 

 

Print the current state of the `nditer` instance and debug info to stdout. 

 

""")) 

 

add_newdoc('numpy.core', 'nditer', ('enable_external_loop', 

""" 

enable_external_loop() 

 

When the "external_loop" was not used during construction, but 

is desired, this modifies the iterator to behave as if the flag 

was specified. 

 

""")) 

 

add_newdoc('numpy.core', 'nditer', ('iternext', 

""" 

iternext() 

 

Check whether iterations are left, and perform a single internal iteration 

without returning the result. Used in the C-style pattern do-while 

pattern. For an example, see `nditer`. 

 

Returns 

------- 

iternext : bool 

Whether or not there are iterations left. 

 

""")) 

 

add_newdoc('numpy.core', 'nditer', ('remove_axis', 

""" 

remove_axis(i) 

 

Removes axis `i` from the iterator. Requires that the flag "multi_index" 

be enabled. 

 

""")) 

 

add_newdoc('numpy.core', 'nditer', ('remove_multi_index', 

""" 

remove_multi_index() 

 

When the "multi_index" flag was specified, this removes it, allowing 

the internal iteration structure to be optimized further. 

 

""")) 

 

add_newdoc('numpy.core', 'nditer', ('reset', 

""" 

reset() 

 

Reset the iterator to its initial state. 

 

""")) 

 

add_newdoc('numpy.core', 'nested_iters', 

""" 

Create nditers for use in nested loops 

 

Create a tuple of `nditer` objects which iterate in nested loops over 

different axes of the op argument. The first iterator is used in the 

outermost loop, the last in the innermost loop. Advancing one will change 

the subsequent iterators to point at its new element. 

 

Parameters 

---------- 

op : ndarray or sequence of array_like 

The array(s) to iterate over. 

 

axes : list of list of int 

Each item is used as an "op_axes" argument to an nditer 

 

flags, op_flags, op_dtypes, order, casting, buffersize (optional) 

See `nditer` parameters of the same name 

 

Returns 

------- 

iters : tuple of nditer 

An nditer for each item in `axes`, outermost first 

 

See Also 

-------- 

nditer 

 

Examples 

-------- 

 

Basic usage. Note how y is the "flattened" version of 

[a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified 

the first iter's axes as [1] 

 

>>> a = np.arange(12).reshape(2, 3, 2) 

>>> i, j = np.nested_iters(a, [[1], [0, 2]], flags=["multi_index"]) 

>>> for x in i: 

... print(i.multi_index) 

... for y in j: 

... print('', j.multi_index, y) 

 

(0,) 

(0, 0) 0 

(0, 1) 1 

(1, 0) 6 

(1, 1) 7 

(1,) 

(0, 0) 2 

(0, 1) 3 

(1, 0) 8 

(1, 1) 9 

(2,) 

(0, 0) 4 

(0, 1) 5 

(1, 0) 10 

(1, 1) 11 

 

""") 

 

add_newdoc('numpy.core', 'nditer', ('close', 

""" 

close() 

 

Resolve all writeback semantics in writeable operands. 

 

See Also 

-------- 

 

:ref:`nditer-context-manager` 

 

""")) 

 

 

############################################################################### 

# 

# broadcast 

# 

############################################################################### 

 

add_newdoc('numpy.core', 'broadcast', 

""" 

Produce an object that mimics broadcasting. 

 

Parameters 

---------- 

in1, in2, ... : array_like 

Input parameters. 

 

Returns 

------- 

b : broadcast object 

Broadcast the input parameters against one another, and 

return an object that encapsulates the result. 

Amongst others, it has ``shape`` and ``nd`` properties, and 

may be used as an iterator. 

 

See Also 

-------- 

broadcast_arrays 

broadcast_to 

 

Examples 

-------- 

 

Manually adding two vectors, using broadcasting: 

 

>>> x = np.array([[1], [2], [3]]) 

>>> y = np.array([4, 5, 6]) 

>>> b = np.broadcast(x, y) 

 

>>> out = np.empty(b.shape) 

>>> out.flat = [u+v for (u,v) in b] 

>>> out 

array([[ 5., 6., 7.], 

[ 6., 7., 8.], 

[ 7., 8., 9.]]) 

 

Compare against built-in broadcasting: 

 

>>> x + y 

array([[5, 6, 7], 

[6, 7, 8], 

[7, 8, 9]]) 

 

""") 

 

# attributes 

 

add_newdoc('numpy.core', 'broadcast', ('index', 

""" 

current index in broadcasted result 

 

Examples 

-------- 

>>> x = np.array([[1], [2], [3]]) 

>>> y = np.array([4, 5, 6]) 

>>> b = np.broadcast(x, y) 

>>> b.index 

0 

>>> b.next(), b.next(), b.next() 

((1, 4), (1, 5), (1, 6)) 

>>> b.index 

3 

 

""")) 

 

add_newdoc('numpy.core', 'broadcast', ('iters', 

""" 

tuple of iterators along ``self``'s "components." 

 

Returns a tuple of `numpy.flatiter` objects, one for each "component" 

of ``self``. 

 

See Also 

-------- 

numpy.flatiter 

 

Examples 

-------- 

>>> x = np.array([1, 2, 3]) 

>>> y = np.array([[4], [5], [6]]) 

>>> b = np.broadcast(x, y) 

>>> row, col = b.iters 

>>> row.next(), col.next() 

(1, 4) 

 

""")) 

 

add_newdoc('numpy.core', 'broadcast', ('ndim', 

""" 

Number of dimensions of broadcasted result. Alias for `nd`. 

 

.. versionadded:: 1.12.0 

 

Examples 

-------- 

>>> x = np.array([1, 2, 3]) 

>>> y = np.array([[4], [5], [6]]) 

>>> b = np.broadcast(x, y) 

>>> b.ndim 

2 

 

""")) 

 

add_newdoc('numpy.core', 'broadcast', ('nd', 

""" 

Number of dimensions of broadcasted result. For code intended for NumPy 

1.12.0 and later the more consistent `ndim` is preferred. 

 

Examples 

-------- 

>>> x = np.array([1, 2, 3]) 

>>> y = np.array([[4], [5], [6]]) 

>>> b = np.broadcast(x, y) 

>>> b.nd 

2 

 

""")) 

 

add_newdoc('numpy.core', 'broadcast', ('numiter', 

""" 

Number of iterators possessed by the broadcasted result. 

 

Examples 

-------- 

>>> x = np.array([1, 2, 3]) 

>>> y = np.array([[4], [5], [6]]) 

>>> b = np.broadcast(x, y) 

>>> b.numiter 

2 

 

""")) 

 

add_newdoc('numpy.core', 'broadcast', ('shape', 

""" 

Shape of broadcasted result. 

 

Examples 

-------- 

>>> x = np.array([1, 2, 3]) 

>>> y = np.array([[4], [5], [6]]) 

>>> b = np.broadcast(x, y) 

>>> b.shape 

(3, 3) 

 

""")) 

 

add_newdoc('numpy.core', 'broadcast', ('size', 

""" 

Total size of broadcasted result. 

 

Examples 

-------- 

>>> x = np.array([1, 2, 3]) 

>>> y = np.array([[4], [5], [6]]) 

>>> b = np.broadcast(x, y) 

>>> b.size 

9 

 

""")) 

 

add_newdoc('numpy.core', 'broadcast', ('reset', 

""" 

reset() 

 

Reset the broadcasted result's iterator(s). 

 

Parameters 

---------- 

None 

 

Returns 

------- 

None 

 

Examples 

-------- 

>>> x = np.array([1, 2, 3]) 

>>> y = np.array([[4], [5], [6]] 

>>> b = np.broadcast(x, y) 

>>> b.index 

0 

>>> b.next(), b.next(), b.next() 

((1, 4), (2, 4), (3, 4)) 

>>> b.index 

3 

>>> b.reset() 

>>> b.index 

0 

 

""")) 

 

############################################################################### 

# 

# numpy functions 

# 

############################################################################### 

 

add_newdoc('numpy.core.multiarray', 'array', 

""" 

array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0) 

 

Create an array. 

 

Parameters 

---------- 

object : array_like 

An array, any object exposing the array interface, an object whose 

__array__ method returns an array, or any (nested) sequence. 

dtype : data-type, optional 

The desired data-type for the array. If not given, then the type will 

be determined as the minimum type required to hold the objects in the 

sequence. This argument can only be used to 'upcast' the array. For 

downcasting, use the .astype(t) method. 

copy : bool, optional 

If true (default), then the object is copied. Otherwise, a copy will 

only be made if __array__ returns a copy, if obj is a nested sequence, 

or if a copy is needed to satisfy any of the other requirements 

(`dtype`, `order`, etc.). 

order : {'K', 'A', 'C', 'F'}, optional 

Specify the memory layout of the array. If object is not an array, the 

newly created array will be in C order (row major) unless 'F' is 

specified, in which case it will be in Fortran order (column major). 

If object is an array the following holds. 

 

===== ========= =================================================== 

order no copy copy=True 

===== ========= =================================================== 

'K' unchanged F & C order preserved, otherwise most similar order 

'A' unchanged F order if input is F and not C, otherwise C order 

'C' C order C order 

'F' F order F order 

===== ========= =================================================== 

 

When ``copy=False`` and a copy is made for other reasons, the result is 

the same as if ``copy=True``, with some exceptions for `A`, see the 

Notes section. The default order is 'K'. 

subok : bool, optional 

If True, then sub-classes will be passed-through, otherwise 

the returned array will be forced to be a base-class array (default). 

ndmin : int, optional 

Specifies the minimum number of dimensions that the resulting 

array should have. Ones will be pre-pended to the shape as 

needed to meet this requirement. 

 

Returns 

------- 

out : ndarray 

An array object satisfying the specified requirements. 

 

See Also 

-------- 

empty_like : Return an empty array with shape and type of input. 

ones_like : Return an array of ones with shape and type of input. 

zeros_like : Return an array of zeros with shape and type of input. 

full_like : Return a new array with shape of input filled with value. 

empty : Return a new uninitialized array. 

ones : Return a new array setting values to one. 

zeros : Return a new array setting values to zero. 

full : Return a new array of given shape filled with value. 

 

 

Notes 

----- 

When order is 'A' and `object` is an array in neither 'C' nor 'F' order, 

and a copy is forced by a change in dtype, then the order of the result is 

not necessarily 'C' as expected. This is likely a bug. 

 

Examples 

-------- 

>>> np.array([1, 2, 3]) 

array([1, 2, 3]) 

 

Upcasting: 

 

>>> np.array([1, 2, 3.0]) 

array([ 1., 2., 3.]) 

 

More than one dimension: 

 

>>> np.array([[1, 2], [3, 4]]) 

array([[1, 2], 

[3, 4]]) 

 

Minimum dimensions 2: 

 

>>> np.array([1, 2, 3], ndmin=2) 

array([[1, 2, 3]]) 

 

Type provided: 

 

>>> np.array([1, 2, 3], dtype=complex) 

array([ 1.+0.j, 2.+0.j, 3.+0.j]) 

 

Data-type consisting of more than one element: 

 

>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')]) 

>>> x['a'] 

array([1, 3]) 

 

Creating an array from sub-classes: 

 

>>> np.array(np.mat('1 2; 3 4')) 

array([[1, 2], 

[3, 4]]) 

 

>>> np.array(np.mat('1 2; 3 4'), subok=True) 

matrix([[1, 2], 

[3, 4]]) 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'empty', 

""" 

empty(shape, dtype=float, order='C') 

 

Return a new array of given shape and type, without initializing entries. 

 

Parameters 

---------- 

shape : int or tuple of int 

Shape of the empty array, e.g., ``(2, 3)`` or ``2``. 

dtype : data-type, optional 

Desired output data-type for the array, e.g, `numpy.int8`. Default is 

`numpy.float64`. 

order : {'C', 'F'}, optional, default: 'C' 

Whether to store multi-dimensional data in row-major 

(C-style) or column-major (Fortran-style) order in 

memory. 

 

Returns 

------- 

out : ndarray 

Array of uninitialized (arbitrary) data of the given shape, dtype, and 

order. Object arrays will be initialized to None. 

 

See Also 

-------- 

empty_like : Return an empty array with shape and type of input. 

ones : Return a new array setting values to one. 

zeros : Return a new array setting values to zero. 

full : Return a new array of given shape filled with value. 

 

 

Notes 

----- 

`empty`, unlike `zeros`, does not set the array values to zero, 

and may therefore be marginally faster. On the other hand, it requires 

the user to manually set all the values in the array, and should be 

used with caution. 

 

Examples 

-------- 

>>> np.empty([2, 2]) 

array([[ -9.74499359e+001, 6.69583040e-309], 

[ 2.13182611e-314, 3.06959433e-309]]) #random 

 

>>> np.empty([2, 2], dtype=int) 

array([[-1073741821, -1067949133], 

[ 496041986, 19249760]]) #random 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'scalar', 

""" 

scalar(dtype, obj) 

 

Return a new scalar array of the given type initialized with obj. 

 

This function is meant mainly for pickle support. `dtype` must be a 

valid data-type descriptor. If `dtype` corresponds to an object 

descriptor, then `obj` can be any object, otherwise `obj` must be a 

string. If `obj` is not given, it will be interpreted as None for object 

type and as zeros for all other types. 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'zeros', 

""" 

zeros(shape, dtype=float, order='C') 

 

Return a new array of given shape and type, filled with zeros. 

 

Parameters 

---------- 

shape : int or tuple of ints 

Shape of the new array, e.g., ``(2, 3)`` or ``2``. 

dtype : data-type, optional 

The desired data-type for the array, e.g., `numpy.int8`. Default is 

`numpy.float64`. 

order : {'C', 'F'}, optional, default: 'C' 

Whether to store multi-dimensional data in row-major 

(C-style) or column-major (Fortran-style) order in 

memory. 

 

Returns 

------- 

out : ndarray 

Array of zeros with the given shape, dtype, and order. 

 

See Also 

-------- 

zeros_like : Return an array of zeros with shape and type of input. 

empty : Return a new uninitialized array. 

ones : Return a new array setting values to one. 

full : Return a new array of given shape filled with value. 

 

Examples 

-------- 

>>> np.zeros(5) 

array([ 0., 0., 0., 0., 0.]) 

 

>>> np.zeros((5,), dtype=int) 

array([0, 0, 0, 0, 0]) 

 

>>> np.zeros((2, 1)) 

array([[ 0.], 

[ 0.]]) 

 

>>> s = (2,2) 

>>> np.zeros(s) 

array([[ 0., 0.], 

[ 0., 0.]]) 

 

>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype 

array([(0, 0), (0, 0)], 

dtype=[('x', '<i4'), ('y', '<i4')]) 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'set_typeDict', 

"""set_typeDict(dict) 

 

Set the internal dictionary that can look up an array type using a 

registered code. 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'fromstring', 

""" 

fromstring(string, dtype=float, count=-1, sep='') 

 

A new 1-D array initialized from text data in a string. 

 

Parameters 

---------- 

string : str 

A string containing the data. 

dtype : data-type, optional 

The data type of the array; default: float. For binary input data, 

the data must be in exactly this format. 

count : int, optional 

Read this number of `dtype` elements from the data. If this is 

negative (the default), the count will be determined from the 

length of the data. 

sep : str, optional 

The string separating numbers in the data; extra whitespace between 

elements is also ignored. 

 

.. deprecated:: 1.14 

If this argument is not provided, `fromstring` falls back on the 

behaviour of `frombuffer` after encoding unicode string inputs as 

either utf-8 (python 3), or the default encoding (python 2). 

 

Returns 

------- 

arr : ndarray 

The constructed array. 

 

Raises 

------ 

ValueError 

If the string is not the correct size to satisfy the requested 

`dtype` and `count`. 

 

See Also 

-------- 

frombuffer, fromfile, fromiter 

 

Examples 

-------- 

>>> np.fromstring('1 2', dtype=int, sep=' ') 

array([1, 2]) 

>>> np.fromstring('1, 2', dtype=int, sep=',') 

array([1, 2]) 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'compare_chararrays', 

""" 

compare_chararrays(a, b, cmp_op, rstrip) 

 

Performs element-wise comparison of two string arrays using the 

comparison operator specified by `cmp_op`. 

 

Parameters 

---------- 

a, b : array_like 

Arrays to be compared. 

cmp_op : {"<", "<=", "==", ">=", ">", "!="} 

Type of comparison. 

rstrip : Boolean 

If True, the spaces at the end of Strings are removed before the comparison. 

 

Returns 

------- 

out : ndarray 

The output array of type Boolean with the same shape as a and b. 

 

Raises 

------ 

ValueError 

If `cmp_op` is not valid. 

TypeError 

If at least one of `a` or `b` is a non-string array 

 

Examples 

-------- 

>>> a = np.array(["a", "b", "cde"]) 

>>> b = np.array(["a", "a", "dec"]) 

>>> np.compare_chararrays(a, b, ">", True) 

array([False, True, False]) 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'fromiter', 

""" 

fromiter(iterable, dtype, count=-1) 

 

Create a new 1-dimensional array from an iterable object. 

 

Parameters 

---------- 

iterable : iterable object 

An iterable object providing data for the array. 

dtype : data-type 

The data-type of the returned array. 

count : int, optional 

The number of items to read from *iterable*. The default is -1, 

which means all data is read. 

 

Returns 

------- 

out : ndarray 

The output array. 

 

Notes 

----- 

Specify `count` to improve performance. It allows ``fromiter`` to 

pre-allocate the output array, instead of resizing it on demand. 

 

Examples 

-------- 

>>> iterable = (x*x for x in range(5)) 

>>> np.fromiter(iterable, float) 

array([ 0., 1., 4., 9., 16.]) 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'fromfile', 

""" 

fromfile(file, dtype=float, count=-1, sep='') 

 

Construct an array from data in a text or binary file. 

 

A highly efficient way of reading binary data with a known data-type, 

as well as parsing simply formatted text files. Data written using the 

`tofile` method can be read using this function. 

 

Parameters 

---------- 

file : file or str 

Open file object or filename. 

dtype : data-type 

Data type of the returned array. 

For binary files, it is used to determine the size and byte-order 

of the items in the file. 

count : int 

Number of items to read. ``-1`` means all items (i.e., the complete 

file). 

sep : str 

Separator between items if file is a text file. 

Empty ("") separator means the file should be treated as binary. 

Spaces (" ") in the separator match zero or more whitespace characters. 

A separator consisting only of spaces must match at least one 

whitespace. 

 

See also 

-------- 

load, save 

ndarray.tofile 

loadtxt : More flexible way of loading data from a text file. 

 

Notes 

----- 

Do not rely on the combination of `tofile` and `fromfile` for 

data storage, as the binary files generated are are not platform 

independent. In particular, no byte-order or data-type information is 

saved. Data can be stored in the platform independent ``.npy`` format 

using `save` and `load` instead. 

 

Examples 

-------- 

Construct an ndarray: 

 

>>> dt = np.dtype([('time', [('min', int), ('sec', int)]), 

... ('temp', float)]) 

>>> x = np.zeros((1,), dtype=dt) 

>>> x['time']['min'] = 10; x['temp'] = 98.25 

>>> x 

array([((10, 0), 98.25)], 

dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')]) 

 

Save the raw data to disk: 

 

>>> import os 

>>> fname = os.tmpnam() 

>>> x.tofile(fname) 

 

Read the raw data from disk: 

 

>>> np.fromfile(fname, dtype=dt) 

array([((10, 0), 98.25)], 

dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')]) 

 

The recommended way to store and load data: 

 

>>> np.save(fname, x) 

>>> np.load(fname + '.npy') 

array([((10, 0), 98.25)], 

dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')]) 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'frombuffer', 

""" 

frombuffer(buffer, dtype=float, count=-1, offset=0) 

 

Interpret a buffer as a 1-dimensional array. 

 

Parameters 

---------- 

buffer : buffer_like 

An object that exposes the buffer interface. 

dtype : data-type, optional 

Data-type of the returned array; default: float. 

count : int, optional 

Number of items to read. ``-1`` means all data in the buffer. 

offset : int, optional 

Start reading the buffer from this offset (in bytes); default: 0. 

 

Notes 

----- 

If the buffer has data that is not in machine byte-order, this should 

be specified as part of the data-type, e.g.:: 

 

>>> dt = np.dtype(int) 

>>> dt = dt.newbyteorder('>') 

>>> np.frombuffer(buf, dtype=dt) 

 

The data of the resulting array will not be byteswapped, but will be 

interpreted correctly. 

 

Examples 

-------- 

>>> s = 'hello world' 

>>> np.frombuffer(s, dtype='S1', count=5, offset=6) 

array(['w', 'o', 'r', 'l', 'd'], 

dtype='|S1') 

 

>>> np.frombuffer(b'\\x01\\x02', dtype=np.uint8) 

array([1, 2], dtype=uint8) 

>>> np.frombuffer(b'\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3) 

array([1, 2, 3], dtype=uint8) 

 

""") 

 

add_newdoc('numpy.core', 'fastCopyAndTranspose', 

"""_fastCopyAndTranspose(a)""") 

 

add_newdoc('numpy.core.multiarray', 'correlate', 

"""cross_correlate(a,v, mode=0)""") 

 

add_newdoc('numpy.core.multiarray', 'arange', 

""" 

arange([start,] stop[, step,], dtype=None) 

 

Return evenly spaced values within a given interval. 

 

Values are generated within the half-open interval ``[start, stop)`` 

(in other words, the interval including `start` but excluding `stop`). 

For integer arguments the function is equivalent to the Python built-in 

`range` function, but returns an ndarray rather than a list. 

 

When using a non-integer step, such as 0.1, the results will often not 

be consistent. It is better to use `numpy.linspace` for these cases. 

 

Parameters 

---------- 

start : number, optional 

Start of interval. The interval includes this value. The default 

start value is 0. 

stop : number 

End of interval. The interval does not include this value, except 

in some cases where `step` is not an integer and floating point 

round-off affects the length of `out`. 

step : number, optional 

Spacing between values. For any output `out`, this is the distance 

between two adjacent values, ``out[i+1] - out[i]``. The default 

step size is 1. If `step` is specified as a position argument, 

`start` must also be given. 

dtype : dtype 

The type of the output array. If `dtype` is not given, infer the data 

type from the other input arguments. 

 

Returns 

------- 

arange : ndarray 

Array of evenly spaced values. 

 

For floating point arguments, the length of the result is 

``ceil((stop - start)/step)``. Because of floating point overflow, 

this rule may result in the last element of `out` being greater 

than `stop`. 

 

See Also 

-------- 

linspace : Evenly spaced numbers with careful handling of endpoints. 

ogrid: Arrays of evenly spaced numbers in N-dimensions. 

mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions. 

 

Examples 

-------- 

>>> np.arange(3) 

array([0, 1, 2]) 

>>> np.arange(3.0) 

array([ 0., 1., 2.]) 

>>> np.arange(3,7) 

array([3, 4, 5, 6]) 

>>> np.arange(3,7,2) 

array([3, 5]) 

 

""") 

 

add_newdoc('numpy.core.multiarray', '_get_ndarray_c_version', 

"""_get_ndarray_c_version() 

 

Return the compile time NDARRAY_VERSION number. 

 

""") 

 

add_newdoc('numpy.core.multiarray', '_reconstruct', 

"""_reconstruct(subtype, shape, dtype) 

 

Construct an empty array. Used by Pickles. 

 

""") 

 

 

add_newdoc('numpy.core.multiarray', 'set_string_function', 

""" 

set_string_function(f, repr=1) 

 

Internal method to set a function to be used when pretty printing arrays. 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'set_numeric_ops', 

""" 

set_numeric_ops(op1=func1, op2=func2, ...) 

 

Set numerical operators for array objects. 

 

.. deprecated:: 1.16 

 

For the general case, use :c:func:`PyUFunc_ReplaceLoopBySignature`. 

For ndarray subclasses, define the ``__array_ufunc__`` method and 

override the relevant ufunc. 

 

Parameters 

---------- 

op1, op2, ... : callable 

Each ``op = func`` pair describes an operator to be replaced. 

For example, ``add = lambda x, y: np.add(x, y) % 5`` would replace 

addition by modulus 5 addition. 

 

Returns 

------- 

saved_ops : list of callables 

A list of all operators, stored before making replacements. 

 

Notes 

----- 

.. WARNING:: 

Use with care! Incorrect usage may lead to memory errors. 

 

A function replacing an operator cannot make use of that operator. 

For example, when replacing add, you may not use ``+``. Instead, 

directly call ufuncs. 

 

Examples 

-------- 

>>> def add_mod5(x, y): 

... return np.add(x, y) % 5 

... 

>>> old_funcs = np.set_numeric_ops(add=add_mod5) 

 

>>> x = np.arange(12).reshape((3, 4)) 

>>> x + x 

array([[0, 2, 4, 1], 

[3, 0, 2, 4], 

[1, 3, 0, 2]]) 

 

>>> ignore = np.set_numeric_ops(**old_funcs) # restore operators 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'promote_types', 

""" 

promote_types(type1, type2) 

 

Returns the data type with the smallest size and smallest scalar 

kind to which both ``type1`` and ``type2`` may be safely cast. 

The returned data type is always in native byte order. 

 

This function is symmetric, but rarely associative. 

 

Parameters 

---------- 

type1 : dtype or dtype specifier 

First data type. 

type2 : dtype or dtype specifier 

Second data type. 

 

Returns 

------- 

out : dtype 

The promoted data type. 

 

Notes 

----- 

.. versionadded:: 1.6.0 

 

Starting in NumPy 1.9, promote_types function now returns a valid string 

length when given an integer or float dtype as one argument and a string 

dtype as another argument. Previously it always returned the input string 

dtype, even if it wasn't long enough to store the max integer/float value 

converted to a string. 

 

See Also 

-------- 

result_type, dtype, can_cast 

 

Examples 

-------- 

>>> np.promote_types('f4', 'f8') 

dtype('float64') 

 

>>> np.promote_types('i8', 'f4') 

dtype('float64') 

 

>>> np.promote_types('>i8', '<c8') 

dtype('complex128') 

 

>>> np.promote_types('i4', 'S8') 

dtype('S11') 

 

An example of a non-associative case: 

 

>>> p = np.promote_types 

>>> p('S', p('i1', 'u1')) 

dtype('S6') 

>>> p(p('S', 'i1'), 'u1') 

dtype('S4') 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'newbuffer', 

""" 

newbuffer(size) 

 

Return a new uninitialized buffer object. 

 

Parameters 

---------- 

size : int 

Size in bytes of returned buffer object. 

 

Returns 

------- 

newbuffer : buffer object 

Returned, uninitialized buffer object of `size` bytes. 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'getbuffer', 

""" 

getbuffer(obj [,offset[, size]]) 

 

Create a buffer object from the given object referencing a slice of 

length size starting at offset. 

 

Default is the entire buffer. A read-write buffer is attempted followed 

by a read-only buffer. 

 

Parameters 

---------- 

obj : object 

 

offset : int, optional 

 

size : int, optional 

 

Returns 

------- 

buffer_obj : buffer 

 

Examples 

-------- 

>>> buf = np.getbuffer(np.ones(5), 1, 3) 

>>> len(buf) 

3 

>>> buf[0] 

'\\x00' 

>>> buf 

<read-write buffer for 0x8af1e70, size 3, offset 1 at 0x8ba4ec0> 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'c_einsum', 

""" 

c_einsum(subscripts, *operands, out=None, dtype=None, order='K', 

casting='safe') 

 

*This documentation shadows that of the native python implementation of the `einsum` function, 

except all references and examples related to the `optimize` argument (v 0.12.0) have been removed.* 

 

Evaluates the Einstein summation convention on the operands. 

 

Using the Einstein summation convention, many common multi-dimensional, 

linear algebraic array operations can be represented in a simple fashion. 

In *implicit* mode `einsum` computes these values. 

 

In *explicit* mode, `einsum` provides further flexibility to compute 

other array operations that might not be considered classical Einstein 

summation operations, by disabling, or forcing summation over specified 

subscript labels. 

 

See the notes and examples for clarification. 

 

Parameters 

---------- 

subscripts : str 

Specifies the subscripts for summation as comma separated list of 

subscript labels. An implicit (classical Einstein summation) 

calculation is performed unless the explicit indicator '->' is 

included as well as subscript labels of the precise output form. 

operands : list of array_like 

These are the arrays for the operation. 

out : ndarray, optional 

If provided, the calculation is done into this array. 

dtype : {data-type, None}, optional 

If provided, forces the calculation to use the data type specified. 

Note that you may have to also give a more liberal `casting` 

parameter to allow the conversions. Default is None. 

order : {'C', 'F', 'A', 'K'}, optional 

Controls the memory layout of the output. 'C' means it should 

be C contiguous. 'F' means it should be Fortran contiguous, 

'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise. 

'K' means it should be as close to the layout as the inputs as 

is possible, including arbitrarily permuted axes. 

Default is 'K'. 

casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

Controls what kind of data casting may occur. Setting this to 

'unsafe' is not recommended, as it can adversely affect accumulations. 

 

* 'no' means the data types should not be cast at all. 

* 'equiv' means only byte-order changes are allowed. 

* 'safe' means only casts which can preserve values are allowed. 

* 'same_kind' means only safe casts or casts within a kind, 

like float64 to float32, are allowed. 

* 'unsafe' means any data conversions may be done. 

 

Default is 'safe'. 

optimize : {False, True, 'greedy', 'optimal'}, optional 

Controls if intermediate optimization should occur. No optimization 

will occur if False and True will default to the 'greedy' algorithm. 

Also accepts an explicit contraction list from the ``np.einsum_path`` 

function. See ``np.einsum_path`` for more details. Defaults to False. 

 

Returns 

------- 

output : ndarray 

The calculation based on the Einstein summation convention. 

 

See Also 

-------- 

einsum_path, dot, inner, outer, tensordot, linalg.multi_dot 

 

Notes 

----- 

.. versionadded:: 1.6.0 

 

The Einstein summation convention can be used to compute 

many multi-dimensional, linear algebraic array operations. `einsum` 

provides a succinct way of representing these. 

 

A non-exhaustive list of these operations, 

which can be computed by `einsum`, is shown below along with examples: 

 

* Trace of an array, :py:func:`numpy.trace`. 

* Return a diagonal, :py:func:`numpy.diag`. 

* Array axis summations, :py:func:`numpy.sum`. 

* Transpositions and permutations, :py:func:`numpy.transpose`. 

* Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`. 

* Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`. 

* Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`. 

* Tensor contractions, :py:func:`numpy.tensordot`. 

* Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`. 

 

The subscripts string is a comma-separated list of subscript labels, 

where each label refers to a dimension of the corresponding operand. 

Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)`` 

is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label 

appears only once, it is not summed, so ``np.einsum('i', a)`` produces a 

view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)`` 

describes traditional matrix multiplication and is equivalent to 

:py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one 

operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent 

to :py:func:`np.trace(a) <numpy.trace>`. 

 

In *implicit mode*, the chosen subscripts are important 

since the axes of the output are reordered alphabetically. This 

means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while 

``np.einsum('ji', a)`` takes its transpose. Additionally, 

``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while, 

``np.einsum('ij,jh', a, b)`` returns the transpose of the 

multiplication since subscript 'h' precedes subscript 'i'. 

 

In *explicit mode* the output can be directly controlled by 

specifying output subscript labels. This requires the 

identifier '->' as well as the list of output subscript labels. 

This feature increases the flexibility of the function since 

summing can be disabled or forced when required. The call 

``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <numpy.sum>`, 

and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <numpy.diag>`. 

The difference is that `einsum` does not allow broadcasting by default. 

Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the 

order of the output subscript labels and therefore returns matrix 

multiplication, unlike the example above in implicit mode. 

 

To enable and control broadcasting, use an ellipsis. Default 

NumPy-style broadcasting is done by adding an ellipsis 

to the left of each term, like ``np.einsum('...ii->...i', a)``. 

To take the trace along the first and last axes, 

you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix 

product with the left-most indices instead of rightmost, one can do 

``np.einsum('ij...,jk...->ik...', a, b)``. 

 

When there is only one operand, no axes are summed, and no output 

parameter is provided, a view into the operand is returned instead 

of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)`` 

produces a view (changed in version 1.10.0). 

 

`einsum` also provides an alternative way to provide the subscripts 

and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. 

If the output shape is not provided in this format `einsum` will be 

calculated in implicit mode, otherwise it will be performed explicitly. 

The examples below have corresponding `einsum` calls with the two 

parameter methods. 

 

.. versionadded:: 1.10.0 

 

Views returned from einsum are now writeable whenever the input array 

is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now 

have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>` 

and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal 

of a 2D array. 

 

Examples 

-------- 

>>> a = np.arange(25).reshape(5,5) 

>>> b = np.arange(5) 

>>> c = np.arange(6).reshape(2,3) 

 

Trace of a matrix: 

 

>>> np.einsum('ii', a) 

60 

>>> np.einsum(a, [0,0]) 

60 

>>> np.trace(a) 

60 

 

Extract the diagonal (requires explicit form): 

 

>>> np.einsum('ii->i', a) 

array([ 0, 6, 12, 18, 24]) 

>>> np.einsum(a, [0,0], [0]) 

array([ 0, 6, 12, 18, 24]) 

>>> np.diag(a) 

array([ 0, 6, 12, 18, 24]) 

 

Sum over an axis (requires explicit form): 

 

>>> np.einsum('ij->i', a) 

array([ 10, 35, 60, 85, 110]) 

>>> np.einsum(a, [0,1], [0]) 

array([ 10, 35, 60, 85, 110]) 

>>> np.sum(a, axis=1) 

array([ 10, 35, 60, 85, 110]) 

 

For higher dimensional arrays summing a single axis can be done with ellipsis: 

 

>>> np.einsum('...j->...', a) 

array([ 10, 35, 60, 85, 110]) 

>>> np.einsum(a, [Ellipsis,1], [Ellipsis]) 

array([ 10, 35, 60, 85, 110]) 

 

Compute a matrix transpose, or reorder any number of axes: 

 

>>> np.einsum('ji', c) 

array([[0, 3], 

[1, 4], 

[2, 5]]) 

>>> np.einsum('ij->ji', c) 

array([[0, 3], 

[1, 4], 

[2, 5]]) 

>>> np.einsum(c, [1,0]) 

array([[0, 3], 

[1, 4], 

[2, 5]]) 

>>> np.transpose(c) 

array([[0, 3], 

[1, 4], 

[2, 5]]) 

 

Vector inner products: 

 

>>> np.einsum('i,i', b, b) 

30 

>>> np.einsum(b, [0], b, [0]) 

30 

>>> np.inner(b,b) 

30 

 

Matrix vector multiplication: 

 

>>> np.einsum('ij,j', a, b) 

array([ 30, 80, 130, 180, 230]) 

>>> np.einsum(a, [0,1], b, [1]) 

array([ 30, 80, 130, 180, 230]) 

>>> np.dot(a, b) 

array([ 30, 80, 130, 180, 230]) 

>>> np.einsum('...j,j', a, b) 

array([ 30, 80, 130, 180, 230]) 

 

Broadcasting and scalar multiplication: 

 

>>> np.einsum('..., ...', 3, c) 

array([[ 0, 3, 6], 

[ 9, 12, 15]]) 

>>> np.einsum(',ij', 3, c) 

array([[ 0, 3, 6], 

[ 9, 12, 15]]) 

>>> np.einsum(3, [Ellipsis], c, [Ellipsis]) 

array([[ 0, 3, 6], 

[ 9, 12, 15]]) 

>>> np.multiply(3, c) 

array([[ 0, 3, 6], 

[ 9, 12, 15]]) 

 

Vector outer product: 

 

>>> np.einsum('i,j', np.arange(2)+1, b) 

array([[0, 1, 2, 3, 4], 

[0, 2, 4, 6, 8]]) 

>>> np.einsum(np.arange(2)+1, [0], b, [1]) 

array([[0, 1, 2, 3, 4], 

[0, 2, 4, 6, 8]]) 

>>> np.outer(np.arange(2)+1, b) 

array([[0, 1, 2, 3, 4], 

[0, 2, 4, 6, 8]]) 

 

Tensor contraction: 

 

>>> a = np.arange(60.).reshape(3,4,5) 

>>> b = np.arange(24.).reshape(4,3,2) 

>>> np.einsum('ijk,jil->kl', a, b) 

array([[ 4400., 4730.], 

[ 4532., 4874.], 

[ 4664., 5018.], 

[ 4796., 5162.], 

[ 4928., 5306.]]) 

>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3]) 

array([[ 4400., 4730.], 

[ 4532., 4874.], 

[ 4664., 5018.], 

[ 4796., 5162.], 

[ 4928., 5306.]]) 

>>> np.tensordot(a,b, axes=([1,0],[0,1])) 

array([[ 4400., 4730.], 

[ 4532., 4874.], 

[ 4664., 5018.], 

[ 4796., 5162.], 

[ 4928., 5306.]]) 

 

Writeable returned arrays (since version 1.10.0): 

 

>>> a = np.zeros((3, 3)) 

>>> np.einsum('ii->i', a)[:] = 1 

>>> a 

array([[ 1., 0., 0.], 

[ 0., 1., 0.], 

[ 0., 0., 1.]]) 

 

Example of ellipsis use: 

 

>>> a = np.arange(6).reshape((3,2)) 

>>> b = np.arange(12).reshape((4,3)) 

>>> np.einsum('ki,jk->ij', a, b) 

array([[10, 28, 46, 64], 

[13, 40, 67, 94]]) 

>>> np.einsum('ki,...k->i...', a, b) 

array([[10, 28, 46, 64], 

[13, 40, 67, 94]]) 

>>> np.einsum('k...,jk', a, b) 

array([[10, 28, 46, 64], 

[13, 40, 67, 94]]) 

 

""") 

 

 

############################################################################## 

# 

# Documentation for ndarray attributes and methods 

# 

############################################################################## 

 

 

############################################################################## 

# 

# ndarray object 

# 

############################################################################## 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', 

""" 

ndarray(shape, dtype=float, buffer=None, offset=0, 

strides=None, order=None) 

 

An array object represents a multidimensional, homogeneous array 

of fixed-size items. An associated data-type object describes the 

format of each element in the array (its byte-order, how many bytes it 

occupies in memory, whether it is an integer, a floating point number, 

or something else, etc.) 

 

Arrays should be constructed using `array`, `zeros` or `empty` (refer 

to the See Also section below). The parameters given here refer to 

a low-level method (`ndarray(...)`) for instantiating an array. 

 

For more information, refer to the `numpy` module and examine the 

methods and attributes of an array. 

 

Parameters 

---------- 

(for the __new__ method; see Notes below) 

 

shape : tuple of ints 

Shape of created array. 

dtype : data-type, optional 

Any object that can be interpreted as a numpy data type. 

buffer : object exposing buffer interface, optional 

Used to fill the array with data. 

offset : int, optional 

Offset of array data in buffer. 

strides : tuple of ints, optional 

Strides of data in memory. 

order : {'C', 'F'}, optional 

Row-major (C-style) or column-major (Fortran-style) order. 

 

Attributes 

---------- 

T : ndarray 

Transpose of the array. 

data : buffer 

The array's elements, in memory. 

dtype : dtype object 

Describes the format of the elements in the array. 

flags : dict 

Dictionary containing information related to memory use, e.g., 

'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc. 

flat : numpy.flatiter object 

Flattened version of the array as an iterator. The iterator 

allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for 

assignment examples; TODO). 

imag : ndarray 

Imaginary part of the array. 

real : ndarray 

Real part of the array. 

size : int 

Number of elements in the array. 

itemsize : int 

The memory use of each array element in bytes. 

nbytes : int 

The total number of bytes required to store the array data, 

i.e., ``itemsize * size``. 

ndim : int 

The array's number of dimensions. 

shape : tuple of ints 

Shape of the array. 

strides : tuple of ints 

The step-size required to move from one element to the next in 

memory. For example, a contiguous ``(3, 4)`` array of type 

``int16`` in C-order has strides ``(8, 2)``. This implies that 

to move from element to element in memory requires jumps of 2 bytes. 

To move from row-to-row, one needs to jump 8 bytes at a time 

(``2 * 4``). 

ctypes : ctypes object 

Class containing properties of the array needed for interaction 

with ctypes. 

base : ndarray 

If the array is a view into another array, that array is its `base` 

(unless that array is also a view). The `base` array is where the 

array data is actually stored. 

 

See Also 

-------- 

array : Construct an array. 

zeros : Create an array, each element of which is zero. 

empty : Create an array, but leave its allocated memory unchanged (i.e., 

it contains "garbage"). 

dtype : Create a data-type. 

 

Notes 

----- 

There are two modes of creating an array using ``__new__``: 

 

1. If `buffer` is None, then only `shape`, `dtype`, and `order` 

are used. 

2. If `buffer` is an object exposing the buffer interface, then 

all keywords are interpreted. 

 

No ``__init__`` method is needed because the array is fully initialized 

after the ``__new__`` method. 

 

Examples 

-------- 

These examples illustrate the low-level `ndarray` constructor. Refer 

to the `See Also` section above for easier ways of constructing an 

ndarray. 

 

First mode, `buffer` is None: 

 

>>> np.ndarray(shape=(2,2), dtype=float, order='F') 

array([[ -1.13698227e+002, 4.25087011e-303], 

[ 2.88528414e-306, 3.27025015e-309]]) #random 

 

Second mode: 

 

>>> np.ndarray((2,), buffer=np.array([1,2,3]), 

... offset=np.int_().itemsize, 

... dtype=int) # offset = 1*itemsize, i.e. skip first element 

array([2, 3]) 

 

""") 

 

 

############################################################################## 

# 

# ndarray attributes 

# 

############################################################################## 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__', 

"""Array protocol: Python side.""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__', 

"""None.""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__', 

"""Array priority.""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__', 

"""Array protocol: C-struct side.""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_', 

"""Allow the array to be interpreted as a ctypes object by returning the 

data-memory location as an integer 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('base', 

""" 

Base object if memory is from some other object. 

 

Examples 

-------- 

The base of an array that owns its memory is None: 

 

>>> x = np.array([1,2,3,4]) 

>>> x.base is None 

True 

 

Slicing creates a view, whose memory is shared with x: 

 

>>> y = x[2:] 

>>> y.base is x 

True 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes', 

""" 

An object to simplify the interaction of the array with the ctypes 

module. 

 

This attribute creates an object that makes it easier to use arrays 

when calling shared libraries with the ctypes module. The returned 

object has, among others, data, shape, and strides attributes (see 

Notes below) which themselves return ctypes objects that can be used 

as arguments to a shared library. 

 

Parameters 

---------- 

None 

 

Returns 

------- 

c : Python object 

Possessing attributes data, shape, strides, etc. 

 

See Also 

-------- 

numpy.ctypeslib 

 

Notes 

----- 

Below are the public attributes of this object which were documented 

in "Guide to NumPy" (we have omitted undocumented public attributes, 

as well as documented private attributes): 

 

.. autoattribute:: numpy.core._internal._ctypes.data 

 

.. autoattribute:: numpy.core._internal._ctypes.shape 

 

.. autoattribute:: numpy.core._internal._ctypes.strides 

 

.. automethod:: numpy.core._internal._ctypes.data_as 

 

.. automethod:: numpy.core._internal._ctypes.shape_as 

 

.. automethod:: numpy.core._internal._ctypes.strides_as 

 

If the ctypes module is not available, then the ctypes attribute 

of array objects still returns something useful, but ctypes objects 

are not returned and errors may be raised instead. In particular, 

the object will still have the as parameter attribute which will 

return an integer equal to the data attribute. 

 

Examples 

-------- 

>>> import ctypes 

>>> x 

array([[0, 1], 

[2, 3]]) 

>>> x.ctypes.data 

30439712 

>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)) 

<ctypes.LP_c_long object at 0x01F01300> 

>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents 

c_long(0) 

>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents 

c_longlong(4294967296L) 

>>> x.ctypes.shape 

<numpy.core._internal.c_long_Array_2 object at 0x01FFD580> 

>>> x.ctypes.shape_as(ctypes.c_long) 

<numpy.core._internal.c_long_Array_2 object at 0x01FCE620> 

>>> x.ctypes.strides 

<numpy.core._internal.c_long_Array_2 object at 0x01FCE620> 

>>> x.ctypes.strides_as(ctypes.c_longlong) 

<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300> 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('data', 

"""Python buffer object pointing to the start of the array's data.""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype', 

""" 

Data-type of the array's elements. 

 

Parameters 

---------- 

None 

 

Returns 

------- 

d : numpy dtype object 

 

See Also 

-------- 

numpy.dtype 

 

Examples 

-------- 

>>> x 

array([[0, 1], 

[2, 3]]) 

>>> x.dtype 

dtype('int32') 

>>> type(x.dtype) 

<type 'numpy.dtype'> 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('imag', 

""" 

The imaginary part of the array. 

 

Examples 

-------- 

>>> x = np.sqrt([1+0j, 0+1j]) 

>>> x.imag 

array([ 0. , 0.70710678]) 

>>> x.imag.dtype 

dtype('float64') 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize', 

""" 

Length of one array element in bytes. 

 

Examples 

-------- 

>>> x = np.array([1,2,3], dtype=np.float64) 

>>> x.itemsize 

8 

>>> x = np.array([1,2,3], dtype=np.complex128) 

>>> x.itemsize 

16 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('flags', 

""" 

Information about the memory layout of the array. 

 

Attributes 

---------- 

C_CONTIGUOUS (C) 

The data is in a single, C-style contiguous segment. 

F_CONTIGUOUS (F) 

The data is in a single, Fortran-style contiguous segment. 

OWNDATA (O) 

The array owns the memory it uses or borrows it from another object. 

WRITEABLE (W) 

The data area can be written to. Setting this to False locks 

the data, making it read-only. A view (slice, etc.) inherits WRITEABLE 

from its base array at creation time, but a view of a writeable 

array may be subsequently locked while the base array remains writeable. 

(The opposite is not true, in that a view of a locked array may not 

be made writeable. However, currently, locking a base object does not 

lock any views that already reference it, so under that circumstance it 

is possible to alter the contents of a locked array via a previously 

created writeable view onto it.) Attempting to change a non-writeable 

array raises a RuntimeError exception. 

ALIGNED (A) 

The data and all elements are aligned appropriately for the hardware. 

WRITEBACKIFCOPY (X) 

This array is a copy of some other array. The C-API function 

PyArray_ResolveWritebackIfCopy must be called before deallocating 

to the base array will be updated with the contents of this array. 

UPDATEIFCOPY (U) 

(Deprecated, use WRITEBACKIFCOPY) This array is a copy of some other array. 

When this array is 

deallocated, the base array will be updated with the contents of 

this array. 

FNC 

F_CONTIGUOUS and not C_CONTIGUOUS. 

FORC 

F_CONTIGUOUS or C_CONTIGUOUS (one-segment test). 

BEHAVED (B) 

ALIGNED and WRITEABLE. 

CARRAY (CA) 

BEHAVED and C_CONTIGUOUS. 

FARRAY (FA) 

BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS. 

 

Notes 

----- 

The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``), 

or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag 

names are only supported in dictionary access. 

 

Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be 

changed by the user, via direct assignment to the attribute or dictionary 

entry, or by calling `ndarray.setflags`. 

 

The array flags cannot be set arbitrarily: 

 

- UPDATEIFCOPY can only be set ``False``. 

- WRITEBACKIFCOPY can only be set ``False``. 

- ALIGNED can only be set ``True`` if the data is truly aligned. 

- WRITEABLE can only be set ``True`` if the array owns its own memory 

or the ultimate owner of the memory exposes a writeable buffer 

interface or is a string. 

 

Arrays can be both C-style and Fortran-style contiguous simultaneously. 

This is clear for 1-dimensional arrays, but can also be true for higher 

dimensional arrays. 

 

Even for contiguous arrays a stride for a given dimension 

``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1`` 

or the array has no elements. 

It does *not* generally hold that ``self.strides[-1] == self.itemsize`` 

for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for 

Fortran-style contiguous arrays is true. 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('flat', 

""" 

A 1-D iterator over the array. 

 

This is a `numpy.flatiter` instance, which acts similarly to, but is not 

a subclass of, Python's built-in iterator object. 

 

See Also 

-------- 

flatten : Return a copy of the array collapsed into one dimension. 

 

flatiter 

 

Examples 

-------- 

>>> x = np.arange(1, 7).reshape(2, 3) 

>>> x 

array([[1, 2, 3], 

[4, 5, 6]]) 

>>> x.flat[3] 

4 

>>> x.T 

array([[1, 4], 

[2, 5], 

[3, 6]]) 

>>> x.T.flat[3] 

5 

>>> type(x.flat) 

<type 'numpy.flatiter'> 

 

An assignment example: 

 

>>> x.flat = 3; x 

array([[3, 3, 3], 

[3, 3, 3]]) 

>>> x.flat[[1,4]] = 1; x 

array([[3, 1, 3], 

[3, 1, 3]]) 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes', 

""" 

Total bytes consumed by the elements of the array. 

 

Notes 

----- 

Does not include memory consumed by non-element attributes of the 

array object. 

 

Examples 

-------- 

>>> x = np.zeros((3,5,2), dtype=np.complex128) 

>>> x.nbytes 

480 

>>> np.prod(x.shape) * x.itemsize 

480 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim', 

""" 

Number of array dimensions. 

 

Examples 

-------- 

>>> x = np.array([1, 2, 3]) 

>>> x.ndim 

1 

>>> y = np.zeros((2, 3, 4)) 

>>> y.ndim 

3 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('real', 

""" 

The real part of the array. 

 

Examples 

-------- 

>>> x = np.sqrt([1+0j, 0+1j]) 

>>> x.real 

array([ 1. , 0.70710678]) 

>>> x.real.dtype 

dtype('float64') 

 

See Also 

-------- 

numpy.real : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('shape', 

""" 

Tuple of array dimensions. 

 

The shape property is usually used to get the current shape of an array, 

but may also be used to reshape the array in-place by assigning a tuple of 

array dimensions to it. As with `numpy.reshape`, one of the new shape 

dimensions can be -1, in which case its value is inferred from the size of 

the array and the remaining dimensions. Reshaping an array in-place will 

fail if a copy is required. 

 

Examples 

-------- 

>>> x = np.array([1, 2, 3, 4]) 

>>> x.shape 

(4,) 

>>> y = np.zeros((2, 3, 4)) 

>>> y.shape 

(2, 3, 4) 

>>> y.shape = (3, 8) 

>>> y 

array([[ 0., 0., 0., 0., 0., 0., 0., 0.], 

[ 0., 0., 0., 0., 0., 0., 0., 0.], 

[ 0., 0., 0., 0., 0., 0., 0., 0.]]) 

>>> y.shape = (3, 6) 

Traceback (most recent call last): 

File "<stdin>", line 1, in <module> 

ValueError: total size of new array must be unchanged 

>>> np.zeros((4,2))[::2].shape = (-1,) 

Traceback (most recent call last): 

File "<stdin>", line 1, in <module> 

AttributeError: incompatible shape for a non-contiguous array 

 

See Also 

-------- 

numpy.reshape : similar function 

ndarray.reshape : similar method 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('size', 

""" 

Number of elements in the array. 

 

Equal to ``np.prod(a.shape)``, i.e., the product of the array's 

dimensions. 

 

Notes 

----- 

`a.size` returns a standard arbitrary precision Python integer. This 

may not be the case with other methods of obtaining the same value 

(like the suggested ``np.prod(a.shape)``, which returns an instance 

of ``np.int_``), and may be relevant if the value is used further in 

calculations that may overflow a fixed size integer type. 

 

Examples 

-------- 

>>> x = np.zeros((3, 5, 2), dtype=np.complex128) 

>>> x.size 

30 

>>> np.prod(x.shape) 

30 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('strides', 

""" 

Tuple of bytes to step in each dimension when traversing an array. 

 

The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a` 

is:: 

 

offset = sum(np.array(i) * a.strides) 

 

A more detailed explanation of strides can be found in the 

"ndarray.rst" file in the NumPy reference guide. 

 

Notes 

----- 

Imagine an array of 32-bit integers (each 4 bytes):: 

 

x = np.array([[0, 1, 2, 3, 4], 

[5, 6, 7, 8, 9]], dtype=np.int32) 

 

This array is stored in memory as 40 bytes, one after the other 

(known as a contiguous block of memory). The strides of an array tell 

us how many bytes we have to skip in memory to move to the next position 

along a certain axis. For example, we have to skip 4 bytes (1 value) to 

move to the next column, but 20 bytes (5 values) to get to the same 

position in the next row. As such, the strides for the array `x` will be 

``(20, 4)``. 

 

See Also 

-------- 

numpy.lib.stride_tricks.as_strided 

 

Examples 

-------- 

>>> y = np.reshape(np.arange(2*3*4), (2,3,4)) 

>>> y 

array([[[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]], 

[[12, 13, 14, 15], 

[16, 17, 18, 19], 

[20, 21, 22, 23]]]) 

>>> y.strides 

(48, 16, 4) 

>>> y[1,1,1] 

17 

>>> offset=sum(y.strides * np.array((1,1,1))) 

>>> offset/y.itemsize 

17 

 

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0) 

>>> x.strides 

(32, 4, 224, 1344) 

>>> i = np.array([3,5,2,2]) 

>>> offset = sum(i * x.strides) 

>>> x[3,5,2,2] 

813 

>>> offset / x.itemsize 

813 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('T', 

""" 

Same as self.transpose(), except that self is returned if 

self.ndim < 2. 

 

Examples 

-------- 

>>> x = np.array([[1.,2.],[3.,4.]]) 

>>> x 

array([[ 1., 2.], 

[ 3., 4.]]) 

>>> x.T 

array([[ 1., 3.], 

[ 2., 4.]]) 

>>> x = np.array([1.,2.,3.,4.]) 

>>> x 

array([ 1., 2., 3., 4.]) 

>>> x.T 

array([ 1., 2., 3., 4.]) 

 

""")) 

 

 

############################################################################## 

# 

# ndarray methods 

# 

############################################################################## 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__', 

""" a.__array__(|dtype) -> reference if type unchanged, copy otherwise. 

 

Returns either a new reference to self if dtype is not given or a new array 

of provided data type if dtype is different from the current dtype of the 

array. 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_prepare__', 

"""a.__array_prepare__(obj) -> Object of same type as ndarray object obj. 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__', 

"""a.__array_wrap__(obj) -> Object of same type as ndarray object a. 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__', 

"""a.__copy__() 

 

Used if :func:`copy.copy` is called on an array. Returns a copy of the array. 

 

Equivalent to ``a.copy(order='K')``. 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__', 

"""a.__deepcopy__(memo, /) -> Deep copy of array. 

 

Used if :func:`copy.deepcopy` is called on an array. 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__', 

"""a.__reduce__() 

 

For pickling. 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__', 

"""a.__setstate__(state, /) 

 

For unpickling. 

 

The `state` argument must be a sequence that contains the following 

elements: 

 

Parameters 

---------- 

version : int 

optional pickle version. If omitted defaults to 0. 

shape : tuple 

dtype : data-type 

isFortran : bool 

rawdata : string or list 

a binary string with the data (or a list if 'a' is an object array) 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('all', 

""" 

a.all(axis=None, out=None, keepdims=False) 

 

Returns True if all elements evaluate to True. 

 

Refer to `numpy.all` for full documentation. 

 

See Also 

-------- 

numpy.all : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('any', 

""" 

a.any(axis=None, out=None, keepdims=False) 

 

Returns True if any of the elements of `a` evaluate to True. 

 

Refer to `numpy.any` for full documentation. 

 

See Also 

-------- 

numpy.any : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax', 

""" 

a.argmax(axis=None, out=None) 

 

Return indices of the maximum values along the given axis. 

 

Refer to `numpy.argmax` for full documentation. 

 

See Also 

-------- 

numpy.argmax : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin', 

""" 

a.argmin(axis=None, out=None) 

 

Return indices of the minimum values along the given axis of `a`. 

 

Refer to `numpy.argmin` for detailed documentation. 

 

See Also 

-------- 

numpy.argmin : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort', 

""" 

a.argsort(axis=-1, kind='quicksort', order=None) 

 

Returns the indices that would sort this array. 

 

Refer to `numpy.argsort` for full documentation. 

 

See Also 

-------- 

numpy.argsort : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('argpartition', 

""" 

a.argpartition(kth, axis=-1, kind='introselect', order=None) 

 

Returns the indices that would partition this array. 

 

Refer to `numpy.argpartition` for full documentation. 

 

.. versionadded:: 1.8.0 

 

See Also 

-------- 

numpy.argpartition : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('astype', 

""" 

a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True) 

 

Copy of the array, cast to a specified type. 

 

Parameters 

---------- 

dtype : str or dtype 

Typecode or data-type to which the array is cast. 

order : {'C', 'F', 'A', 'K'}, optional 

Controls the memory layout order of the result. 

'C' means C order, 'F' means Fortran order, 'A' 

means 'F' order if all the arrays are Fortran contiguous, 

'C' order otherwise, and 'K' means as close to the 

order the array elements appear in memory as possible. 

Default is 'K'. 

casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

Controls what kind of data casting may occur. Defaults to 'unsafe' 

for backwards compatibility. 

 

* 'no' means the data types should not be cast at all. 

* 'equiv' means only byte-order changes are allowed. 

* 'safe' means only casts which can preserve values are allowed. 

* 'same_kind' means only safe casts or casts within a kind, 

like float64 to float32, are allowed. 

* 'unsafe' means any data conversions may be done. 

subok : bool, optional 

If True, then sub-classes will be passed-through (default), otherwise 

the returned array will be forced to be a base-class array. 

copy : bool, optional 

By default, astype always returns a newly allocated array. If this 

is set to false, and the `dtype`, `order`, and `subok` 

requirements are satisfied, the input array is returned instead 

of a copy. 

 

Returns 

------- 

arr_t : ndarray 

Unless `copy` is False and the other conditions for returning the input 

array are satisfied (see description for `copy` input parameter), `arr_t` 

is a new array of the same shape as the input array, with dtype, order 

given by `dtype`, `order`. 

 

Notes 

----- 

Starting in NumPy 1.9, astype method now returns an error if the string 

dtype to cast to is not long enough in 'safe' casting mode to hold the max 

value of integer/float array that is being casted. Previously the casting 

was allowed even if the result was truncated. 

 

Raises 

------ 

ComplexWarning 

When casting from complex to float or int. To avoid this, 

one should use ``a.real.astype(t)``. 

 

Examples 

-------- 

>>> x = np.array([1, 2, 2.5]) 

>>> x 

array([ 1. , 2. , 2.5]) 

 

>>> x.astype(int) 

array([1, 2, 2]) 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap', 

""" 

a.byteswap(inplace=False) 

 

Swap the bytes of the array elements 

 

Toggle between low-endian and big-endian data representation by 

returning a byteswapped array, optionally swapped in-place. 

 

Parameters 

---------- 

inplace : bool, optional 

If ``True``, swap bytes in-place, default is ``False``. 

 

Returns 

------- 

out : ndarray 

The byteswapped array. If `inplace` is ``True``, this is 

a view to self. 

 

Examples 

-------- 

>>> A = np.array([1, 256, 8755], dtype=np.int16) 

>>> map(hex, A) 

['0x1', '0x100', '0x2233'] 

>>> A.byteswap(inplace=True) 

array([ 256, 1, 13090], dtype=int16) 

>>> map(hex, A) 

['0x100', '0x1', '0x3322'] 

 

Arrays of strings are not swapped 

 

>>> A = np.array(['ceg', 'fac']) 

>>> A.byteswap() 

array(['ceg', 'fac'], 

dtype='|S3') 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('choose', 

""" 

a.choose(choices, out=None, mode='raise') 

 

Use an index array to construct a new array from a set of choices. 

 

Refer to `numpy.choose` for full documentation. 

 

See Also 

-------- 

numpy.choose : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('clip', 

""" 

a.clip(min=None, max=None, out=None) 

 

Return an array whose values are limited to ``[min, max]``. 

One of max or min must be given. 

 

Refer to `numpy.clip` for full documentation. 

 

See Also 

-------- 

numpy.clip : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('compress', 

""" 

a.compress(condition, axis=None, out=None) 

 

Return selected slices of this array along given axis. 

 

Refer to `numpy.compress` for full documentation. 

 

See Also 

-------- 

numpy.compress : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('conj', 

""" 

a.conj() 

 

Complex-conjugate all elements. 

 

Refer to `numpy.conjugate` for full documentation. 

 

See Also 

-------- 

numpy.conjugate : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate', 

""" 

a.conjugate() 

 

Return the complex conjugate, element-wise. 

 

Refer to `numpy.conjugate` for full documentation. 

 

See Also 

-------- 

numpy.conjugate : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('copy', 

""" 

a.copy(order='C') 

 

Return a copy of the array. 

 

Parameters 

---------- 

order : {'C', 'F', 'A', 'K'}, optional 

Controls the memory layout of the copy. 'C' means C-order, 

'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 

'C' otherwise. 'K' means match the layout of `a` as closely 

as possible. (Note that this function and :func:`numpy.copy` are very 

similar, but have different default values for their order= 

arguments.) 

 

See also 

-------- 

numpy.copy 

numpy.copyto 

 

Examples 

-------- 

>>> x = np.array([[1,2,3],[4,5,6]], order='F') 

 

>>> y = x.copy() 

 

>>> x.fill(0) 

 

>>> x 

array([[0, 0, 0], 

[0, 0, 0]]) 

 

>>> y 

array([[1, 2, 3], 

[4, 5, 6]]) 

 

>>> y.flags['C_CONTIGUOUS'] 

True 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod', 

""" 

a.cumprod(axis=None, dtype=None, out=None) 

 

Return the cumulative product of the elements along the given axis. 

 

Refer to `numpy.cumprod` for full documentation. 

 

See Also 

-------- 

numpy.cumprod : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum', 

""" 

a.cumsum(axis=None, dtype=None, out=None) 

 

Return the cumulative sum of the elements along the given axis. 

 

Refer to `numpy.cumsum` for full documentation. 

 

See Also 

-------- 

numpy.cumsum : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal', 

""" 

a.diagonal(offset=0, axis1=0, axis2=1) 

 

Return specified diagonals. In NumPy 1.9 the returned array is a 

read-only view instead of a copy as in previous NumPy versions. In 

a future version the read-only restriction will be removed. 

 

Refer to :func:`numpy.diagonal` for full documentation. 

 

See Also 

-------- 

numpy.diagonal : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('dot', 

""" 

a.dot(b, out=None) 

 

Dot product of two arrays. 

 

Refer to `numpy.dot` for full documentation. 

 

See Also 

-------- 

numpy.dot : equivalent function 

 

Examples 

-------- 

>>> a = np.eye(2) 

>>> b = np.ones((2, 2)) * 2 

>>> a.dot(b) 

array([[ 2., 2.], 

[ 2., 2.]]) 

 

This array method can be conveniently chained: 

 

>>> a.dot(b).dot(b) 

array([[ 8., 8.], 

[ 8., 8.]]) 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('dump', 

"""a.dump(file) 

 

Dump a pickle of the array to the specified file. 

The array can be read back with pickle.load or numpy.load. 

 

Parameters 

---------- 

file : str 

A string naming the dump file. 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps', 

""" 

a.dumps() 

 

Returns the pickle of the array as a string. 

pickle.loads or numpy.loads will convert the string back to an array. 

 

Parameters 

---------- 

None 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('fill', 

""" 

a.fill(value) 

 

Fill the array with a scalar value. 

 

Parameters 

---------- 

value : scalar 

All elements of `a` will be assigned this value. 

 

Examples 

-------- 

>>> a = np.array([1, 2]) 

>>> a.fill(0) 

>>> a 

array([0, 0]) 

>>> a = np.empty(2) 

>>> a.fill(1) 

>>> a 

array([ 1., 1.]) 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten', 

""" 

a.flatten(order='C') 

 

Return a copy of the array collapsed into one dimension. 

 

Parameters 

---------- 

order : {'C', 'F', 'A', 'K'}, optional 

'C' means to flatten in row-major (C-style) order. 

'F' means to flatten in column-major (Fortran- 

style) order. 'A' means to flatten in column-major 

order if `a` is Fortran *contiguous* in memory, 

row-major order otherwise. 'K' means to flatten 

`a` in the order the elements occur in memory. 

The default is 'C'. 

 

Returns 

------- 

y : ndarray 

A copy of the input array, flattened to one dimension. 

 

See Also 

-------- 

ravel : Return a flattened array. 

flat : A 1-D flat iterator over the array. 

 

Examples 

-------- 

>>> a = np.array([[1,2], [3,4]]) 

>>> a.flatten() 

array([1, 2, 3, 4]) 

>>> a.flatten('F') 

array([1, 3, 2, 4]) 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield', 

""" 

a.getfield(dtype, offset=0) 

 

Returns a field of the given array as a certain type. 

 

A field is a view of the array data with a given data-type. The values in 

the view are determined by the given type and the offset into the current 

array in bytes. The offset needs to be such that the view dtype fits in the 

array dtype; for example an array of dtype complex128 has 16-byte elements. 

If taking a view with a 32-bit integer (4 bytes), the offset needs to be 

between 0 and 12 bytes. 

 

Parameters 

---------- 

dtype : str or dtype 

The data type of the view. The dtype size of the view can not be larger 

than that of the array itself. 

offset : int 

Number of bytes to skip before beginning the element view. 

 

Examples 

-------- 

>>> x = np.diag([1.+1.j]*2) 

>>> x[1, 1] = 2 + 4.j 

>>> x 

array([[ 1.+1.j, 0.+0.j], 

[ 0.+0.j, 2.+4.j]]) 

>>> x.getfield(np.float64) 

array([[ 1., 0.], 

[ 0., 2.]]) 

 

By choosing an offset of 8 bytes we can select the complex part of the 

array for our view: 

 

>>> x.getfield(np.float64, offset=8) 

array([[ 1., 0.], 

[ 0., 4.]]) 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('item', 

""" 

a.item(*args) 

 

Copy an element of an array to a standard Python scalar and return it. 

 

Parameters 

---------- 

\\*args : Arguments (variable number and type) 

 

* none: in this case, the method only works for arrays 

with one element (`a.size == 1`), which element is 

copied into a standard Python scalar object and returned. 

 

* int_type: this argument is interpreted as a flat index into 

the array, specifying which element to copy and return. 

 

* tuple of int_types: functions as does a single int_type argument, 

except that the argument is interpreted as an nd-index into the 

array. 

 

Returns 

------- 

z : Standard Python scalar object 

A copy of the specified element of the array as a suitable 

Python scalar 

 

Notes 

----- 

When the data type of `a` is longdouble or clongdouble, item() returns 

a scalar array object because there is no available Python scalar that 

would not lose information. Void arrays return a buffer object for item(), 

unless fields are defined, in which case a tuple is returned. 

 

`item` is very similar to a[args], except, instead of an array scalar, 

a standard Python scalar is returned. This can be useful for speeding up 

access to elements of the array and doing arithmetic on elements of the 

array using Python's optimized math. 

 

Examples 

-------- 

>>> x = np.random.randint(9, size=(3, 3)) 

>>> x 

array([[3, 1, 7], 

[2, 8, 3], 

[8, 5, 3]]) 

>>> x.item(3) 

2 

>>> x.item(7) 

5 

>>> x.item((0, 1)) 

1 

>>> x.item((2, 2)) 

3 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('itemset', 

""" 

a.itemset(*args) 

 

Insert scalar into an array (scalar is cast to array's dtype, if possible) 

 

There must be at least 1 argument, and define the last argument 

as *item*. Then, ``a.itemset(*args)`` is equivalent to but faster 

than ``a[args] = item``. The item should be a scalar value and `args` 

must select a single item in the array `a`. 

 

Parameters 

---------- 

\\*args : Arguments 

If one argument: a scalar, only used in case `a` is of size 1. 

If two arguments: the last argument is the value to be set 

and must be a scalar, the first argument specifies a single array 

element location. It is either an int or a tuple. 

 

Notes 

----- 

Compared to indexing syntax, `itemset` provides some speed increase 

for placing a scalar into a particular location in an `ndarray`, 

if you must do this. However, generally this is discouraged: 

among other problems, it complicates the appearance of the code. 

Also, when using `itemset` (and `item`) inside a loop, be sure 

to assign the methods to a local variable to avoid the attribute 

look-up at each loop iteration. 

 

Examples 

-------- 

>>> x = np.random.randint(9, size=(3, 3)) 

>>> x 

array([[3, 1, 7], 

[2, 8, 3], 

[8, 5, 3]]) 

>>> x.itemset(4, 0) 

>>> x.itemset((2, 2), 9) 

>>> x 

array([[3, 1, 7], 

[2, 0, 3], 

[8, 5, 9]]) 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('max', 

""" 

a.max(axis=None, out=None, keepdims=False) 

 

Return the maximum along a given axis. 

 

Refer to `numpy.amax` for full documentation. 

 

See Also 

-------- 

numpy.amax : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('mean', 

""" 

a.mean(axis=None, dtype=None, out=None, keepdims=False) 

 

Returns the average of the array elements along given axis. 

 

Refer to `numpy.mean` for full documentation. 

 

See Also 

-------- 

numpy.mean : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('min', 

""" 

a.min(axis=None, out=None, keepdims=False) 

 

Return the minimum along a given axis. 

 

Refer to `numpy.amin` for full documentation. 

 

See Also 

-------- 

numpy.amin : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'shares_memory', 

""" 

shares_memory(a, b, max_work=None) 

 

Determine if two arrays share memory 

 

Parameters 

---------- 

a, b : ndarray 

Input arrays 

max_work : int, optional 

Effort to spend on solving the overlap problem (maximum number 

of candidate solutions to consider). The following special 

values are recognized: 

 

max_work=MAY_SHARE_EXACT (default) 

The problem is solved exactly. In this case, the function returns 

True only if there is an element shared between the arrays. 

max_work=MAY_SHARE_BOUNDS 

Only the memory bounds of a and b are checked. 

 

Raises 

------ 

numpy.TooHardError 

Exceeded max_work. 

 

Returns 

------- 

out : bool 

 

See Also 

-------- 

may_share_memory 

 

Examples 

-------- 

>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) 

False 

 

""") 

 

 

add_newdoc('numpy.core.multiarray', 'may_share_memory', 

""" 

may_share_memory(a, b, max_work=None) 

 

Determine if two arrays might share memory 

 

A return of True does not necessarily mean that the two arrays 

share any element. It just means that they *might*. 

 

Only the memory bounds of a and b are checked by default. 

 

Parameters 

---------- 

a, b : ndarray 

Input arrays 

max_work : int, optional 

Effort to spend on solving the overlap problem. See 

`shares_memory` for details. Default for ``may_share_memory`` 

is to do a bounds check. 

 

Returns 

------- 

out : bool 

 

See Also 

-------- 

shares_memory 

 

Examples 

-------- 

>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) 

False 

>>> x = np.zeros([3, 4]) 

>>> np.may_share_memory(x[:,0], x[:,1]) 

True 

 

""") 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder', 

""" 

arr.newbyteorder(new_order='S') 

 

Return the array with the same data viewed with a different byte order. 

 

Equivalent to:: 

 

arr.view(arr.dtype.newbytorder(new_order)) 

 

Changes are also made in all fields and sub-arrays of the array data 

type. 

 

 

 

Parameters 

---------- 

new_order : string, optional 

Byte order to force; a value from the byte order specifications 

below. `new_order` codes can be any of: 

 

* 'S' - swap dtype from current to opposite endian 

* {'<', 'L'} - little endian 

* {'>', 'B'} - big endian 

* {'=', 'N'} - native order 

* {'|', 'I'} - ignore (no change to byte order) 

 

The default value ('S') results in swapping the current 

byte order. The code does a case-insensitive check on the first 

letter of `new_order` for the alternatives above. For example, 

any of 'B' or 'b' or 'biggish' are valid to specify big-endian. 

 

 

Returns 

------- 

new_arr : array 

New array object with the dtype reflecting given change to the 

byte order. 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero', 

""" 

a.nonzero() 

 

Return the indices of the elements that are non-zero. 

 

Refer to `numpy.nonzero` for full documentation. 

 

See Also 

-------- 

numpy.nonzero : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('prod', 

""" 

a.prod(axis=None, dtype=None, out=None, keepdims=False) 

 

Return the product of the array elements over the given axis 

 

Refer to `numpy.prod` for full documentation. 

 

See Also 

-------- 

numpy.prod : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp', 

""" 

a.ptp(axis=None, out=None, keepdims=False) 

 

Peak to peak (maximum - minimum) value along a given axis. 

 

Refer to `numpy.ptp` for full documentation. 

 

See Also 

-------- 

numpy.ptp : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('put', 

""" 

a.put(indices, values, mode='raise') 

 

Set ``a.flat[n] = values[n]`` for all `n` in indices. 

 

Refer to `numpy.put` for full documentation. 

 

See Also 

-------- 

numpy.put : equivalent function 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'copyto', 

""" 

copyto(dst, src, casting='same_kind', where=True) 

 

Copies values from one array to another, broadcasting as necessary. 

 

Raises a TypeError if the `casting` rule is violated, and if 

`where` is provided, it selects which elements to copy. 

 

.. versionadded:: 1.7.0 

 

Parameters 

---------- 

dst : ndarray 

The array into which values are copied. 

src : array_like 

The array from which values are copied. 

casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

Controls what kind of data casting may occur when copying. 

 

* 'no' means the data types should not be cast at all. 

* 'equiv' means only byte-order changes are allowed. 

* 'safe' means only casts which can preserve values are allowed. 

* 'same_kind' means only safe casts or casts within a kind, 

like float64 to float32, are allowed. 

* 'unsafe' means any data conversions may be done. 

where : array_like of bool, optional 

A boolean array which is broadcasted to match the dimensions 

of `dst`, and selects elements to copy from `src` to `dst` 

wherever it contains the value True. 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'putmask', 

""" 

putmask(a, mask, values) 

 

Changes elements of an array based on conditional and input values. 

 

Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``. 

 

If `values` is not the same size as `a` and `mask` then it will repeat. 

This gives behavior different from ``a[mask] = values``. 

 

Parameters 

---------- 

a : array_like 

Target array. 

mask : array_like 

Boolean mask array. It has to be the same shape as `a`. 

values : array_like 

Values to put into `a` where `mask` is True. If `values` is smaller 

than `a` it will be repeated. 

 

See Also 

-------- 

place, put, take, copyto 

 

Examples 

-------- 

>>> x = np.arange(6).reshape(2, 3) 

>>> np.putmask(x, x>2, x**2) 

>>> x 

array([[ 0, 1, 2], 

[ 9, 16, 25]]) 

 

If `values` is smaller than `a` it is repeated: 

 

>>> x = np.arange(5) 

>>> np.putmask(x, x>1, [-33, -44]) 

>>> x 

array([ 0, 1, -33, -44, -33]) 

 

""") 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel', 

""" 

a.ravel([order]) 

 

Return a flattened array. 

 

Refer to `numpy.ravel` for full documentation. 

 

See Also 

-------- 

numpy.ravel : equivalent function 

 

ndarray.flat : a flat iterator on the array. 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat', 

""" 

a.repeat(repeats, axis=None) 

 

Repeat elements of an array. 

 

Refer to `numpy.repeat` for full documentation. 

 

See Also 

-------- 

numpy.repeat : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape', 

""" 

a.reshape(shape, order='C') 

 

Returns an array containing the same data with a new shape. 

 

Refer to `numpy.reshape` for full documentation. 

 

See Also 

-------- 

numpy.reshape : equivalent function 

 

Notes 

----- 

Unlike the free function `numpy.reshape`, this method on `ndarray` allows 

the elements of the shape parameter to be passed in as separate arguments. 

For example, ``a.reshape(10, 11)`` is equivalent to 

``a.reshape((10, 11))``. 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('resize', 

""" 

a.resize(new_shape, refcheck=True) 

 

Change shape and size of array in-place. 

 

Parameters 

---------- 

new_shape : tuple of ints, or `n` ints 

Shape of resized array. 

refcheck : bool, optional 

If False, reference count will not be checked. Default is True. 

 

Returns 

------- 

None 

 

Raises 

------ 

ValueError 

If `a` does not own its own data or references or views to it exist, 

and the data memory must be changed. 

PyPy only: will always raise if the data memory must be changed, since 

there is no reliable way to determine if references or views to it 

exist. 

 

SystemError 

If the `order` keyword argument is specified. This behaviour is a 

bug in NumPy. 

 

See Also 

-------- 

resize : Return a new array with the specified shape. 

 

Notes 

----- 

This reallocates space for the data area if necessary. 

 

Only contiguous arrays (data elements consecutive in memory) can be 

resized. 

 

The purpose of the reference count check is to make sure you 

do not use this array as a buffer for another Python object and then 

reallocate the memory. However, reference counts can increase in 

other ways so if you are sure that you have not shared the memory 

for this array with another Python object, then you may safely set 

`refcheck` to False. 

 

Examples 

-------- 

Shrinking an array: array is flattened (in the order that the data are 

stored in memory), resized, and reshaped: 

 

>>> a = np.array([[0, 1], [2, 3]], order='C') 

>>> a.resize((2, 1)) 

>>> a 

array([[0], 

[1]]) 

 

>>> a = np.array([[0, 1], [2, 3]], order='F') 

>>> a.resize((2, 1)) 

>>> a 

array([[0], 

[2]]) 

 

Enlarging an array: as above, but missing entries are filled with zeros: 

 

>>> b = np.array([[0, 1], [2, 3]]) 

>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple 

>>> b 

array([[0, 1, 2], 

[3, 0, 0]]) 

 

Referencing an array prevents resizing... 

 

>>> c = a 

>>> a.resize((1, 1)) 

Traceback (most recent call last): 

... 

ValueError: cannot resize an array that has been referenced ... 

 

Unless `refcheck` is False: 

 

>>> a.resize((1, 1), refcheck=False) 

>>> a 

array([[0]]) 

>>> c 

array([[0]]) 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('round', 

""" 

a.round(decimals=0, out=None) 

 

Return `a` with each element rounded to the given number of decimals. 

 

Refer to `numpy.around` for full documentation. 

 

See Also 

-------- 

numpy.around : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted', 

""" 

a.searchsorted(v, side='left', sorter=None) 

 

Find indices where elements of v should be inserted in a to maintain order. 

 

For full documentation, see `numpy.searchsorted` 

 

See Also 

-------- 

numpy.searchsorted : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield', 

""" 

a.setfield(val, dtype, offset=0) 

 

Put a value into a specified place in a field defined by a data-type. 

 

Place `val` into `a`'s field defined by `dtype` and beginning `offset` 

bytes into the field. 

 

Parameters 

---------- 

val : object 

Value to be placed in field. 

dtype : dtype object 

Data-type of the field in which to place `val`. 

offset : int, optional 

The number of bytes into the field at which to place `val`. 

 

Returns 

------- 

None 

 

See Also 

-------- 

getfield 

 

Examples 

-------- 

>>> x = np.eye(3) 

>>> x.getfield(np.float64) 

array([[ 1., 0., 0.], 

[ 0., 1., 0.], 

[ 0., 0., 1.]]) 

>>> x.setfield(3, np.int32) 

>>> x.getfield(np.int32) 

array([[3, 3, 3], 

[3, 3, 3], 

[3, 3, 3]]) 

>>> x 

array([[ 1.00000000e+000, 1.48219694e-323, 1.48219694e-323], 

[ 1.48219694e-323, 1.00000000e+000, 1.48219694e-323], 

[ 1.48219694e-323, 1.48219694e-323, 1.00000000e+000]]) 

>>> x.setfield(np.eye(3), np.int32) 

>>> x 

array([[ 1., 0., 0.], 

[ 0., 1., 0.], 

[ 0., 0., 1.]]) 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags', 

""" 

a.setflags(write=None, align=None, uic=None) 

 

Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), 

respectively. 

 

These Boolean-valued flags affect how numpy interprets the memory 

area used by `a` (see Notes below). The ALIGNED flag can only 

be set to True if the data is actually aligned according to the type. 

The WRITEBACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set 

to True. The flag WRITEABLE can only be set to True if the array owns its 

own memory, or the ultimate owner of the memory exposes a writeable buffer 

interface, or is a string. (The exception for string is made so that 

unpickling can be done without copying memory.) 

 

Parameters 

---------- 

write : bool, optional 

Describes whether or not `a` can be written to. 

align : bool, optional 

Describes whether or not `a` is aligned properly for its type. 

uic : bool, optional 

Describes whether or not `a` is a copy of another "base" array. 

 

Notes 

----- 

Array flags provide information about how the memory area used 

for the array is to be interpreted. There are 7 Boolean flags 

in use, only four of which can be changed by the user: 

WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED. 

 

WRITEABLE (W) the data area can be written to; 

 

ALIGNED (A) the data and strides are aligned appropriately for the hardware 

(as determined by the compiler); 

 

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY; 

 

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced 

by .base). When the C-API function PyArray_ResolveWritebackIfCopy is 

called, the base array will be updated with the contents of this array. 

 

All flags can be accessed using the single (upper case) letter as well 

as the full name. 

 

Examples 

-------- 

>>> y 

array([[3, 1, 7], 

[2, 0, 0], 

[8, 5, 9]]) 

>>> y.flags 

C_CONTIGUOUS : True 

F_CONTIGUOUS : False 

OWNDATA : True 

WRITEABLE : True 

ALIGNED : True 

WRITEBACKIFCOPY : False 

UPDATEIFCOPY : False 

>>> y.setflags(write=0, align=0) 

>>> y.flags 

C_CONTIGUOUS : True 

F_CONTIGUOUS : False 

OWNDATA : True 

WRITEABLE : False 

ALIGNED : False 

WRITEBACKIFCOPY : False 

UPDATEIFCOPY : False 

>>> y.setflags(uic=1) 

Traceback (most recent call last): 

File "<stdin>", line 1, in <module> 

ValueError: cannot set WRITEBACKIFCOPY flag to True 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('sort', 

""" 

a.sort(axis=-1, kind='quicksort', order=None) 

 

Sort an array, in-place. 

 

Parameters 

---------- 

axis : int, optional 

Axis along which to sort. Default is -1, which means sort along the 

last axis. 

kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional 

Sorting algorithm. Default is 'quicksort'. 

order : str or list of str, optional 

When `a` is an array with fields defined, this argument specifies 

which fields to compare first, second, etc. A single field can 

be specified as a string, and not all fields need be specified, 

but unspecified fields will still be used, in the order in which 

they come up in the dtype, to break ties. 

 

See Also 

-------- 

numpy.sort : Return a sorted copy of an array. 

argsort : Indirect sort. 

lexsort : Indirect stable sort on multiple keys. 

searchsorted : Find elements in sorted array. 

partition: Partial sort. 

 

Notes 

----- 

See ``sort`` for notes on the different sorting algorithms. 

 

Examples 

-------- 

>>> a = np.array([[1,4], [3,1]]) 

>>> a.sort(axis=1) 

>>> a 

array([[1, 4], 

[1, 3]]) 

>>> a.sort(axis=0) 

>>> a 

array([[1, 3], 

[1, 4]]) 

 

Use the `order` keyword to specify a field to use when sorting a 

structured array: 

 

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)]) 

>>> a.sort(order='y') 

>>> a 

array([('c', 1), ('a', 2)], 

dtype=[('x', '|S1'), ('y', '<i4')]) 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('partition', 

""" 

a.partition(kth, axis=-1, kind='introselect', order=None) 

 

Rearranges the elements in the array in such a way that the value of the 

element in kth position is in the position it would be in a sorted array. 

All elements smaller than the kth element are moved before this element and 

all equal or greater are moved behind it. The ordering of the elements in 

the two partitions is undefined. 

 

.. versionadded:: 1.8.0 

 

Parameters 

---------- 

kth : int or sequence of ints 

Element index to partition by. The kth element value will be in its 

final sorted position and all smaller elements will be moved before it 

and all equal or greater elements behind it. 

The order of all elements in the partitions is undefined. 

If provided with a sequence of kth it will partition all elements 

indexed by kth of them into their sorted position at once. 

axis : int, optional 

Axis along which to sort. Default is -1, which means sort along the 

last axis. 

kind : {'introselect'}, optional 

Selection algorithm. Default is 'introselect'. 

order : str or list of str, optional 

When `a` is an array with fields defined, this argument specifies 

which fields to compare first, second, etc. A single field can 

be specified as a string, and not all fields need to be specified, 

but unspecified fields will still be used, in the order in which 

they come up in the dtype, to break ties. 

 

See Also 

-------- 

numpy.partition : Return a parititioned copy of an array. 

argpartition : Indirect partition. 

sort : Full sort. 

 

Notes 

----- 

See ``np.partition`` for notes on the different algorithms. 

 

Examples 

-------- 

>>> a = np.array([3, 4, 2, 1]) 

>>> a.partition(3) 

>>> a 

array([2, 1, 3, 4]) 

 

>>> a.partition((1, 3)) 

array([1, 2, 3, 4]) 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze', 

""" 

a.squeeze(axis=None) 

 

Remove single-dimensional entries from the shape of `a`. 

 

Refer to `numpy.squeeze` for full documentation. 

 

See Also 

-------- 

numpy.squeeze : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('std', 

""" 

a.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False) 

 

Returns the standard deviation of the array elements along given axis. 

 

Refer to `numpy.std` for full documentation. 

 

See Also 

-------- 

numpy.std : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('sum', 

""" 

a.sum(axis=None, dtype=None, out=None, keepdims=False) 

 

Return the sum of the array elements over the given axis. 

 

Refer to `numpy.sum` for full documentation. 

 

See Also 

-------- 

numpy.sum : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes', 

""" 

a.swapaxes(axis1, axis2) 

 

Return a view of the array with `axis1` and `axis2` interchanged. 

 

Refer to `numpy.swapaxes` for full documentation. 

 

See Also 

-------- 

numpy.swapaxes : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('take', 

""" 

a.take(indices, axis=None, out=None, mode='raise') 

 

Return an array formed from the elements of `a` at the given indices. 

 

Refer to `numpy.take` for full documentation. 

 

See Also 

-------- 

numpy.take : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile', 

""" 

a.tofile(fid, sep="", format="%s") 

 

Write array to a file as text or binary (default). 

 

Data is always written in 'C' order, independent of the order of `a`. 

The data produced by this method can be recovered using the function 

fromfile(). 

 

Parameters 

---------- 

fid : file or str 

An open file object, or a string containing a filename. 

sep : str 

Separator between array items for text output. 

If "" (empty), a binary file is written, equivalent to 

``file.write(a.tobytes())``. 

format : str 

Format string for text file output. 

Each entry in the array is formatted to text by first converting 

it to the closest Python type, and then using "format" % item. 

 

Notes 

----- 

This is a convenience function for quick storage of array data. 

Information on endianness and precision is lost, so this method is not a 

good choice for files intended to archive data or transport data between 

machines with different endianness. Some of these problems can be overcome 

by outputting the data as text files, at the expense of speed and file 

size. 

 

When fid is a file object, array contents are directly written to the 

file, bypassing the file object's ``write`` method. As a result, tofile 

cannot be used with files objects supporting compression (e.g., GzipFile) 

or file-like objects that do not support ``fileno()`` (e.g., BytesIO). 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist', 

""" 

a.tolist() 

 

Return the array as a (possibly nested) list. 

 

Return a copy of the array data as a (nested) Python list. 

Data items are converted to the nearest compatible Python type. 

 

Parameters 

---------- 

none 

 

Returns 

------- 

y : list 

The possibly nested list of array elements. 

 

Notes 

----- 

The array may be recreated, ``a = np.array(a.tolist())``. 

 

Examples 

-------- 

>>> a = np.array([1, 2]) 

>>> a.tolist() 

[1, 2] 

>>> a = np.array([[1, 2], [3, 4]]) 

>>> list(a) 

[array([1, 2]), array([3, 4])] 

>>> a.tolist() 

[[1, 2], [3, 4]] 

 

""")) 

 

 

tobytesdoc = """ 

a.{name}(order='C') 

 

Construct Python bytes containing the raw data bytes in the array. 

 

Constructs Python bytes showing a copy of the raw contents of 

data memory. The bytes object can be produced in either 'C' or 'Fortran', 

or 'Any' order (the default is 'C'-order). 'Any' order means C-order 

unless the F_CONTIGUOUS flag in the array is set, in which case it 

means 'Fortran' order. 

 

{deprecated} 

 

Parameters 

---------- 

order : {{'C', 'F', None}}, optional 

Order of the data for multidimensional arrays: 

C, Fortran, or the same as for the original array. 

 

Returns 

------- 

s : bytes 

Python bytes exhibiting a copy of `a`'s raw data. 

 

Examples 

-------- 

>>> x = np.array([[0, 1], [2, 3]]) 

>>> x.tobytes() 

b'\\x00\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x03\\x00\\x00\\x00' 

>>> x.tobytes('C') == x.tobytes() 

True 

>>> x.tobytes('F') 

b'\\x00\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x03\\x00\\x00\\x00' 

 

""" 

 

add_newdoc('numpy.core.multiarray', 'ndarray', 

('tostring', tobytesdoc.format(name='tostring', 

deprecated= 

'This function is a compatibility ' 

'alias for tobytes. Despite its ' 

'name it returns bytes not ' 

'strings.'))) 

add_newdoc('numpy.core.multiarray', 'ndarray', 

('tobytes', tobytesdoc.format(name='tobytes', 

deprecated='.. versionadded:: 1.9.0'))) 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('trace', 

""" 

a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) 

 

Return the sum along diagonals of the array. 

 

Refer to `numpy.trace` for full documentation. 

 

See Also 

-------- 

numpy.trace : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose', 

""" 

a.transpose(*axes) 

 

Returns a view of the array with axes transposed. 

 

For a 1-D array, this has no effect. (To change between column and 

row vectors, first cast the 1-D array into a matrix object.) 

For a 2-D array, this is the usual matrix transpose. 

For an n-D array, if axes are given, their order indicates how the 

axes are permuted (see Examples). If axes are not provided and 

``a.shape = (i[0], i[1], ... i[n-2], i[n-1])``, then 

``a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0])``. 

 

Parameters 

---------- 

axes : None, tuple of ints, or `n` ints 

 

* None or no argument: reverses the order of the axes. 

 

* tuple of ints: `i` in the `j`-th place in the tuple means `a`'s 

`i`-th axis becomes `a.transpose()`'s `j`-th axis. 

 

* `n` ints: same as an n-tuple of the same ints (this form is 

intended simply as a "convenience" alternative to the tuple form) 

 

Returns 

------- 

out : ndarray 

View of `a`, with axes suitably permuted. 

 

See Also 

-------- 

ndarray.T : Array property returning the array transposed. 

 

Examples 

-------- 

>>> a = np.array([[1, 2], [3, 4]]) 

>>> a 

array([[1, 2], 

[3, 4]]) 

>>> a.transpose() 

array([[1, 3], 

[2, 4]]) 

>>> a.transpose((1, 0)) 

array([[1, 3], 

[2, 4]]) 

>>> a.transpose(1, 0) 

array([[1, 3], 

[2, 4]]) 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('var', 

""" 

a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False) 

 

Returns the variance of the array elements, along given axis. 

 

Refer to `numpy.var` for full documentation. 

 

See Also 

-------- 

numpy.var : equivalent function 

 

""")) 

 

 

add_newdoc('numpy.core.multiarray', 'ndarray', ('view', 

""" 

a.view(dtype=None, type=None) 

 

New view of array with the same data. 

 

Parameters 

---------- 

dtype : data-type or ndarray sub-class, optional 

Data-type descriptor of the returned view, e.g., float32 or int16. The 

default, None, results in the view having the same data-type as `a`. 

This argument can also be specified as an ndarray sub-class, which 

then specifies the type of the returned object (this is equivalent to 

setting the ``type`` parameter). 

type : Python type, optional 

Type of the returned view, e.g., ndarray or matrix. Again, the 

default None results in type preservation. 

 

Notes 

----- 

``a.view()`` is used two different ways: 

 

``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view 

of the array's memory with a different data-type. This can cause a 

reinterpretation of the bytes of memory. 

 

``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just 

returns an instance of `ndarray_subclass` that looks at the same array 

(same shape, dtype, etc.) This does not cause a reinterpretation of the 

memory. 

 

For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of 

bytes per entry than the previous dtype (for example, converting a 

regular array to a structured array), then the behavior of the view 

cannot be predicted just from the superficial appearance of ``a`` (shown 

by ``print(a)``). It also depends on exactly how ``a`` is stored in 

memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus 

defined as a slice or transpose, etc., the view may give different 

results. 

 

 

Examples 

-------- 

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)]) 

 

Viewing array data using a different type and dtype: 

 

>>> y = x.view(dtype=np.int16, type=np.matrix) 

>>> y 

matrix([[513]], dtype=int16) 

>>> print(type(y)) 

<class 'numpy.matrixlib.defmatrix.matrix'> 

 

Creating a view on a structured array so it can be used in calculations 

 

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)]) 

>>> xv = x.view(dtype=np.int8).reshape(-1,2) 

>>> xv 

array([[1, 2], 

[3, 4]], dtype=int8) 

>>> xv.mean(0) 

array([ 2., 3.]) 

 

Making changes to the view changes the underlying array 

 

>>> xv[0,1] = 20 

>>> print(x) 

[(1, 20) (3, 4)] 

 

Using a view to convert an array to a recarray: 

 

>>> z = x.view(np.recarray) 

>>> z.a 

array([1], dtype=int8) 

 

Views share data: 

 

>>> x[0] = (9, 10) 

>>> z[0] 

(9, 10) 

 

Views that change the dtype size (bytes per entry) should normally be 

avoided on arrays defined by slices, transposes, fortran-ordering, etc.: 

 

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16) 

>>> y = x[:, 0:2] 

>>> y 

array([[1, 2], 

[4, 5]], dtype=int16) 

>>> y.view(dtype=[('width', np.int16), ('length', np.int16)]) 

Traceback (most recent call last): 

File "<stdin>", line 1, in <module> 

ValueError: new type not compatible with array. 

>>> z = y.copy() 

>>> z.view(dtype=[('width', np.int16), ('length', np.int16)]) 

array([[(1, 2)], 

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')]) 

""")) 

 

 

############################################################################## 

# 

# umath functions 

# 

############################################################################## 

 

add_newdoc('numpy.core.umath', 'frompyfunc', 

""" 

frompyfunc(func, nin, nout) 

 

Takes an arbitrary Python function and returns a NumPy ufunc. 

 

Can be used, for example, to add broadcasting to a built-in Python 

function (see Examples section). 

 

Parameters 

---------- 

func : Python function object 

An arbitrary Python function. 

nin : int 

The number of input arguments. 

nout : int 

The number of objects returned by `func`. 

 

Returns 

------- 

out : ufunc 

Returns a NumPy universal function (``ufunc``) object. 

 

See Also 

-------- 

vectorize : evaluates pyfunc over input arrays using broadcasting rules of numpy 

 

Notes 

----- 

The returned ufunc always returns PyObject arrays. 

 

Examples 

-------- 

Use frompyfunc to add broadcasting to the Python function ``oct``: 

 

>>> oct_array = np.frompyfunc(oct, 1, 1) 

>>> oct_array(np.array((10, 30, 100))) 

array([012, 036, 0144], dtype=object) 

>>> np.array((oct(10), oct(30), oct(100))) # for comparison 

array(['012', '036', '0144'], 

dtype='|S4') 

 

""") 

 

add_newdoc('numpy.core.umath', 'geterrobj', 

""" 

geterrobj() 

 

Return the current object that defines floating-point error handling. 

 

The error object contains all information that defines the error handling 

behavior in NumPy. `geterrobj` is used internally by the other 

functions that get and set error handling behavior (`geterr`, `seterr`, 

`geterrcall`, `seterrcall`). 

 

Returns 

------- 

errobj : list 

The error object, a list containing three elements: 

[internal numpy buffer size, error mask, error callback function]. 

 

The error mask is a single integer that holds the treatment information 

on all four floating point errors. The information for each error type 

is contained in three bits of the integer. If we print it in base 8, we 

can see what treatment is set for "invalid", "under", "over", and 

"divide" (in that order). The printed string can be interpreted with 

 

* 0 : 'ignore' 

* 1 : 'warn' 

* 2 : 'raise' 

* 3 : 'call' 

* 4 : 'print' 

* 5 : 'log' 

 

See Also 

-------- 

seterrobj, seterr, geterr, seterrcall, geterrcall 

getbufsize, setbufsize 

 

Notes 

----- 

For complete documentation of the types of floating-point exceptions and 

treatment options, see `seterr`. 

 

Examples 

-------- 

>>> np.geterrobj() # first get the defaults 

[10000, 0, None] 

 

>>> def err_handler(type, flag): 

... print("Floating point error (%s), with flag %s" % (type, flag)) 

... 

>>> old_bufsize = np.setbufsize(20000) 

>>> old_err = np.seterr(divide='raise') 

>>> old_handler = np.seterrcall(err_handler) 

>>> np.geterrobj() 

[20000, 2, <function err_handler at 0x91dcaac>] 

 

>>> old_err = np.seterr(all='ignore') 

>>> np.base_repr(np.geterrobj()[1], 8) 

'0' 

>>> old_err = np.seterr(divide='warn', over='log', under='call', 

invalid='print') 

>>> np.base_repr(np.geterrobj()[1], 8) 

'4351' 

 

""") 

 

add_newdoc('numpy.core.umath', 'seterrobj', 

""" 

seterrobj(errobj) 

 

Set the object that defines floating-point error handling. 

 

The error object contains all information that defines the error handling 

behavior in NumPy. `seterrobj` is used internally by the other 

functions that set error handling behavior (`seterr`, `seterrcall`). 

 

Parameters 

---------- 

errobj : list 

The error object, a list containing three elements: 

[internal numpy buffer size, error mask, error callback function]. 

 

The error mask is a single integer that holds the treatment information 

on all four floating point errors. The information for each error type 

is contained in three bits of the integer. If we print it in base 8, we 

can see what treatment is set for "invalid", "under", "over", and 

"divide" (in that order). The printed string can be interpreted with 

 

* 0 : 'ignore' 

* 1 : 'warn' 

* 2 : 'raise' 

* 3 : 'call' 

* 4 : 'print' 

* 5 : 'log' 

 

See Also 

-------- 

geterrobj, seterr, geterr, seterrcall, geterrcall 

getbufsize, setbufsize 

 

Notes 

----- 

For complete documentation of the types of floating-point exceptions and 

treatment options, see `seterr`. 

 

Examples 

-------- 

>>> old_errobj = np.geterrobj() # first get the defaults 

>>> old_errobj 

[10000, 0, None] 

 

>>> def err_handler(type, flag): 

... print("Floating point error (%s), with flag %s" % (type, flag)) 

... 

>>> new_errobj = [20000, 12, err_handler] 

>>> np.seterrobj(new_errobj) 

>>> np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn') 

'14' 

>>> np.geterr() 

{'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'} 

>>> np.geterrcall() is err_handler 

True 

 

""") 

 

 

############################################################################## 

# 

# compiled_base functions 

# 

############################################################################## 

 

add_newdoc('numpy.core.multiarray', 'add_docstring', 

""" 

add_docstring(obj, docstring) 

 

Add a docstring to a built-in obj if possible. 

If the obj already has a docstring raise a RuntimeError 

If this routine does not know how to add a docstring to the object 

raise a TypeError 

""") 

 

add_newdoc('numpy.core.umath', '_add_newdoc_ufunc', 

""" 

add_ufunc_docstring(ufunc, new_docstring) 

 

Replace the docstring for a ufunc with new_docstring. 

This method will only work if the current docstring for 

the ufunc is NULL. (At the C level, i.e. when ufunc->doc is NULL.) 

 

Parameters 

---------- 

ufunc : numpy.ufunc 

A ufunc whose current doc is NULL. 

new_docstring : string 

The new docstring for the ufunc. 

 

Notes 

----- 

This method allocates memory for new_docstring on 

the heap. Technically this creates a mempory leak, since this 

memory will not be reclaimed until the end of the program 

even if the ufunc itself is removed. However this will only 

be a problem if the user is repeatedly creating ufuncs with 

no documentation, adding documentation via add_newdoc_ufunc, 

and then throwing away the ufunc. 

""") 

 

add_newdoc('numpy.core.multiarray', 'packbits', 

""" 

packbits(myarray, axis=None) 

 

Packs the elements of a binary-valued array into bits in a uint8 array. 

 

The result is padded to full bytes by inserting zero bits at the end. 

 

Parameters 

---------- 

myarray : array_like 

An array of integers or booleans whose elements should be packed to 

bits. 

axis : int, optional 

The dimension over which bit-packing is done. 

``None`` implies packing the flattened array. 

 

Returns 

------- 

packed : ndarray 

Array of type uint8 whose elements represent bits corresponding to the 

logical (0 or nonzero) value of the input elements. The shape of 

`packed` has the same number of dimensions as the input (unless `axis` 

is None, in which case the output is 1-D). 

 

See Also 

-------- 

unpackbits: Unpacks elements of a uint8 array into a binary-valued output 

array. 

 

Examples 

-------- 

>>> a = np.array([[[1,0,1], 

... [0,1,0]], 

... [[1,1,0], 

... [0,0,1]]]) 

>>> b = np.packbits(a, axis=-1) 

>>> b 

array([[[160],[64]],[[192],[32]]], dtype=uint8) 

 

Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, 

and 32 = 0010 0000. 

 

""") 

 

add_newdoc('numpy.core.multiarray', 'unpackbits', 

""" 

unpackbits(myarray, axis=None) 

 

Unpacks elements of a uint8 array into a binary-valued output array. 

 

Each element of `myarray` represents a bit-field that should be unpacked 

into a binary-valued output array. The shape of the output array is either 

1-D (if `axis` is None) or the same shape as the input array with unpacking 

done along the axis specified. 

 

Parameters 

---------- 

myarray : ndarray, uint8 type 

Input array. 

axis : int, optional 

The dimension over which bit-unpacking is done. 

``None`` implies unpacking the flattened array. 

 

Returns 

------- 

unpacked : ndarray, uint8 type 

The elements are binary-valued (0 or 1). 

 

See Also 

-------- 

packbits : Packs the elements of a binary-valued array into bits in a uint8 

array. 

 

Examples 

-------- 

>>> a = np.array([[2], [7], [23]], dtype=np.uint8) 

>>> a 

array([[ 2], 

[ 7], 

[23]], dtype=uint8) 

>>> b = np.unpackbits(a, axis=1) 

>>> b 

array([[0, 0, 0, 0, 0, 0, 1, 0], 

[0, 0, 0, 0, 0, 1, 1, 1], 

[0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8) 

 

""") 

 

add_newdoc('numpy.core._multiarray_tests', 'format_float_OSprintf_g', 

""" 

format_float_OSprintf_g(val, precision) 

 

Print a floating point scalar using the system's printf function, 

equivalent to: 

 

printf("%.*g", precision, val); 

 

for half/float/double, or replacing 'g' by 'Lg' for longdouble. This 

method is designed to help cross-validate the format_float_* methods. 

 

Parameters 

---------- 

val : python float or numpy floating scalar 

Value to format. 

 

precision : non-negative integer, optional 

Precision given to printf. 

 

Returns 

------- 

rep : string 

The string representation of the floating point value 

 

See Also 

-------- 

format_float_scientific 

format_float_positional 

""") 

 

 

############################################################################## 

# 

# Documentation for ufunc attributes and methods 

# 

############################################################################## 

 

 

############################################################################## 

# 

# ufunc object 

# 

############################################################################## 

 

add_newdoc('numpy.core', 'ufunc', 

""" 

Functions that operate element by element on whole arrays. 

 

To see the documentation for a specific ufunc, use `info`. For 

example, ``np.info(np.sin)``. Because ufuncs are written in C 

(for speed) and linked into Python with NumPy's ufunc facility, 

Python's help() function finds this page whenever help() is called 

on a ufunc. 

 

A detailed explanation of ufuncs can be found in the docs for :ref:`ufuncs`. 

 

Calling ufuncs: 

=============== 

 

op(*x[, out], where=True, **kwargs) 

Apply `op` to the arguments `*x` elementwise, broadcasting the arguments. 

 

The broadcasting rules are: 

 

* Dimensions of length 1 may be prepended to either array. 

* Arrays may be repeated along dimensions of length 1. 

 

Parameters 

---------- 

*x : array_like 

Input arrays. 

out : ndarray, None, or tuple of ndarray and None, optional 

Alternate array object(s) in which to put the result; if provided, it 

must have a shape that the inputs broadcast to. A tuple of arrays 

(possible only as a keyword argument) must have length equal to the 

number of outputs; use `None` for uninitialized outputs to be 

allocated by the ufunc. 

where : array_like, optional 

Values of True indicate to calculate the ufunc at that position, values 

of False indicate to leave the value in the output alone. Note that if 

an uninitialized return array is created via the default ``out=None``, 

then the elements where the values are False will remain uninitialized. 

**kwargs 

For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`. 

 

Returns 

------- 

r : ndarray or tuple of ndarray 

`r` will have the shape that the arrays in `x` broadcast to; if `out` is 

provided, it will be returned. If not, `r` will be allocated and 

may contain uninitialized values. If the function has more than one 

output, then the result will be a tuple of arrays. 

 

""") 

 

 

############################################################################## 

# 

# ufunc attributes 

# 

############################################################################## 

 

add_newdoc('numpy.core', 'ufunc', ('identity', 

""" 

The identity value. 

 

Data attribute containing the identity element for the ufunc, if it has one. 

If it does not, the attribute value is None. 

 

Examples 

-------- 

>>> np.add.identity 

0 

>>> np.multiply.identity 

1 

>>> np.power.identity 

1 

>>> print(np.exp.identity) 

None 

""")) 

 

add_newdoc('numpy.core', 'ufunc', ('nargs', 

""" 

The number of arguments. 

 

Data attribute containing the number of arguments the ufunc takes, including 

optional ones. 

 

Notes 

----- 

Typically this value will be one more than what you might expect because all 

ufuncs take the optional "out" argument. 

 

Examples 

-------- 

>>> np.add.nargs 

3 

>>> np.multiply.nargs 

3 

>>> np.power.nargs 

3 

>>> np.exp.nargs 

2 

""")) 

 

add_newdoc('numpy.core', 'ufunc', ('nin', 

""" 

The number of inputs. 

 

Data attribute containing the number of arguments the ufunc treats as input. 

 

Examples 

-------- 

>>> np.add.nin 

2 

>>> np.multiply.nin 

2 

>>> np.power.nin 

2 

>>> np.exp.nin 

1 

""")) 

 

add_newdoc('numpy.core', 'ufunc', ('nout', 

""" 

The number of outputs. 

 

Data attribute containing the number of arguments the ufunc treats as output. 

 

Notes 

----- 

Since all ufuncs can take output arguments, this will always be (at least) 1. 

 

Examples 

-------- 

>>> np.add.nout 

1 

>>> np.multiply.nout 

1 

>>> np.power.nout 

1 

>>> np.exp.nout 

1 

 

""")) 

 

add_newdoc('numpy.core', 'ufunc', ('ntypes', 

""" 

The number of types. 

 

The number of numerical NumPy types - of which there are 18 total - on which 

the ufunc can operate. 

 

See Also 

-------- 

numpy.ufunc.types 

 

Examples 

-------- 

>>> np.add.ntypes 

18 

>>> np.multiply.ntypes 

18 

>>> np.power.ntypes 

17 

>>> np.exp.ntypes 

7 

>>> np.remainder.ntypes 

14 

 

""")) 

 

add_newdoc('numpy.core', 'ufunc', ('types', 

""" 

Returns a list with types grouped input->output. 

 

Data attribute listing the data-type "Domain-Range" groupings the ufunc can 

deliver. The data-types are given using the character codes. 

 

See Also 

-------- 

numpy.ufunc.ntypes 

 

Examples 

-------- 

>>> np.add.types 

['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 

'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 

'GG->G', 'OO->O'] 

 

>>> np.multiply.types 

['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 

'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 

'GG->G', 'OO->O'] 

 

>>> np.power.types 

['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L', 

'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G', 

'OO->O'] 

 

>>> np.exp.types 

['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O'] 

 

>>> np.remainder.types 

['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L', 

'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O'] 

 

""")) 

 

add_newdoc('numpy.core', 'ufunc', ('signature', 

""" 

Definition of the core elements a generalized ufunc operates on. 

 

The signature determines how the dimensions of each input/output array 

are split into core and loop dimensions: 

 

1. Each dimension in the signature is matched to a dimension of the 

corresponding passed-in array, starting from the end of the shape tuple. 

2. Core dimensions assigned to the same label in the signature must have 

exactly matching sizes, no broadcasting is performed. 

3. The core dimensions are removed from all inputs and the remaining 

dimensions are broadcast together, defining the loop dimensions. 

 

Notes 

----- 

Generalized ufuncs are used internally in many linalg functions, and in 

the testing suite; the examples below are taken from these. 

For ufuncs that operate on scalars, the signature is `None`, which is 

equivalent to '()' for every argument. 

 

Examples 

-------- 

>>> np.core.umath_tests.matrix_multiply.signature 

'(m,n),(n,p)->(m,p)' 

>>> np.linalg._umath_linalg.det.signature 

'(m,m)->()' 

>>> np.add.signature is None 

True # equivalent to '(),()->()' 

""")) 

 

############################################################################## 

# 

# ufunc methods 

# 

############################################################################## 

 

add_newdoc('numpy.core', 'ufunc', ('reduce', 

""" 

reduce(a, axis=0, dtype=None, out=None, keepdims=False, initial) 

 

Reduces `a`'s dimension by one, by applying ufunc along one axis. 

 

Let :math:`a.shape = (N_0, ..., N_i, ..., N_{M-1})`. Then 

:math:`ufunc.reduce(a, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` = 

the result of iterating `j` over :math:`range(N_i)`, cumulatively applying 

ufunc to each :math:`a[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`. 

For a one-dimensional array, reduce produces results equivalent to: 

:: 

 

r = op.identity # op = ufunc 

for i in range(len(A)): 

r = op(r, A[i]) 

return r 

 

For example, add.reduce() is equivalent to sum(). 

 

Parameters 

---------- 

a : array_like 

The array to act on. 

axis : None or int or tuple of ints, optional 

Axis or axes along which a reduction is performed. 

The default (`axis` = 0) is perform a reduction over the first 

dimension of the input array. `axis` may be negative, in 

which case it counts from the last to the first axis. 

 

.. versionadded:: 1.7.0 

 

If this is `None`, a reduction is performed over all the axes. 

If this is a tuple of ints, a reduction is performed on multiple 

axes, instead of a single axis or all the axes as before. 

 

For operations which are either not commutative or not associative, 

doing a reduction over multiple axes is not well-defined. The 

ufuncs do not currently raise an exception in this case, but will 

likely do so in the future. 

dtype : data-type code, optional 

The type used to represent the intermediate results. Defaults 

to the data-type of the output array if this is provided, or 

the data-type of the input array if no output array is provided. 

out : ndarray, None, or tuple of ndarray and None, optional 

A location into which the result is stored. If not provided or `None`, 

a freshly-allocated array is returned. For consistency with 

:ref:`ufunc.__call__`, if given as a keyword, this may be wrapped in a 

1-element tuple. 

 

.. versionchanged:: 1.13.0 

Tuples are allowed for keyword argument. 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the original `arr`. 

 

.. versionadded:: 1.7.0 

initial : scalar, optional 

The value with which to start the reduction. 

If the ufunc has no identity or the dtype is object, this defaults 

to None - otherwise it defaults to ufunc.identity. 

If ``None`` is given, the first element of the reduction is used, 

and an error is thrown if the reduction is empty. 

 

.. versionadded:: 1.15.0 

 

Returns 

------- 

r : ndarray 

The reduced array. If `out` was supplied, `r` is a reference to it. 

 

Examples 

-------- 

>>> np.multiply.reduce([2,3,5]) 

30 

 

A multi-dimensional array example: 

 

>>> X = np.arange(8).reshape((2,2,2)) 

>>> X 

array([[[0, 1], 

[2, 3]], 

[[4, 5], 

[6, 7]]]) 

>>> np.add.reduce(X, 0) 

array([[ 4, 6], 

[ 8, 10]]) 

>>> np.add.reduce(X) # confirm: default axis value is 0 

array([[ 4, 6], 

[ 8, 10]]) 

>>> np.add.reduce(X, 1) 

array([[ 2, 4], 

[10, 12]]) 

>>> np.add.reduce(X, 2) 

array([[ 1, 5], 

[ 9, 13]]) 

 

You can use the ``initial`` keyword argument to initialize the reduction with a 

different value. 

 

>>> np.add.reduce([10], initial=5) 

15 

>>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initializer=10) 

array([14., 14.]) 

 

Allows reductions of empty arrays where they would normally fail, i.e. 

for ufuncs without an identity. 

 

>>> np.minimum.reduce([], initial=np.inf) 

inf 

>>> np.minimum.reduce([]) 

Traceback (most recent call last): 

... 

ValueError: zero-size array to reduction operation minimum which has no identity 

""")) 

 

add_newdoc('numpy.core', 'ufunc', ('accumulate', 

""" 

accumulate(array, axis=0, dtype=None, out=None) 

 

Accumulate the result of applying the operator to all elements. 

 

For a one-dimensional array, accumulate produces results equivalent to:: 

 

r = np.empty(len(A)) 

t = op.identity # op = the ufunc being applied to A's elements 

for i in range(len(A)): 

t = op(t, A[i]) 

r[i] = t 

return r 

 

For example, add.accumulate() is equivalent to np.cumsum(). 

 

For a multi-dimensional array, accumulate is applied along only one 

axis (axis zero by default; see Examples below) so repeated use is 

necessary if one wants to accumulate over multiple axes. 

 

Parameters 

---------- 

array : array_like 

The array to act on. 

axis : int, optional 

The axis along which to apply the accumulation; default is zero. 

dtype : data-type code, optional 

The data-type used to represent the intermediate results. Defaults 

to the data-type of the output array if such is provided, or the 

the data-type of the input array if no output array is provided. 

out : ndarray, None, or tuple of ndarray and None, optional 

A location into which the result is stored. If not provided or `None`, 

a freshly-allocated array is returned. For consistency with 

:ref:`ufunc.__call__`, if given as a keyword, this may be wrapped in a 

1-element tuple. 

 

.. versionchanged:: 1.13.0 

Tuples are allowed for keyword argument. 

 

Returns 

------- 

r : ndarray 

The accumulated values. If `out` was supplied, `r` is a reference to 

`out`. 

 

Examples 

-------- 

1-D array examples: 

 

>>> np.add.accumulate([2, 3, 5]) 

array([ 2, 5, 10]) 

>>> np.multiply.accumulate([2, 3, 5]) 

array([ 2, 6, 30]) 

 

2-D array examples: 

 

>>> I = np.eye(2) 

>>> I 

array([[ 1., 0.], 

[ 0., 1.]]) 

 

Accumulate along axis 0 (rows), down columns: 

 

>>> np.add.accumulate(I, 0) 

array([[ 1., 0.], 

[ 1., 1.]]) 

>>> np.add.accumulate(I) # no axis specified = axis zero 

array([[ 1., 0.], 

[ 1., 1.]]) 

 

Accumulate along axis 1 (columns), through rows: 

 

>>> np.add.accumulate(I, 1) 

array([[ 1., 1.], 

[ 0., 1.]]) 

 

""")) 

 

add_newdoc('numpy.core', 'ufunc', ('reduceat', 

""" 

reduceat(a, indices, axis=0, dtype=None, out=None) 

 

Performs a (local) reduce with specified slices over a single axis. 

 

For i in ``range(len(indices))``, `reduceat` computes 

``ufunc.reduce(a[indices[i]:indices[i+1]])``, which becomes the i-th 

generalized "row" parallel to `axis` in the final result (i.e., in a 

2-D array, for example, if `axis = 0`, it becomes the i-th row, but if 

`axis = 1`, it becomes the i-th column). There are three exceptions to this: 

 

* when ``i = len(indices) - 1`` (so for the last index), 

``indices[i+1] = a.shape[axis]``. 

* if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is 

simply ``a[indices[i]]``. 

* if ``indices[i] >= len(a)`` or ``indices[i] < 0``, an error is raised. 

 

The shape of the output depends on the size of `indices`, and may be 

larger than `a` (this happens if ``len(indices) > a.shape[axis]``). 

 

Parameters 

---------- 

a : array_like 

The array to act on. 

indices : array_like 

Paired indices, comma separated (not colon), specifying slices to 

reduce. 

axis : int, optional 

The axis along which to apply the reduceat. 

dtype : data-type code, optional 

The type used to represent the intermediate results. Defaults 

to the data type of the output array if this is provided, or 

the data type of the input array if no output array is provided. 

out : ndarray, None, or tuple of ndarray and None, optional 

A location into which the result is stored. If not provided or `None`, 

a freshly-allocated array is returned. For consistency with 

:ref:`ufunc.__call__`, if given as a keyword, this may be wrapped in a 

1-element tuple. 

 

.. versionchanged:: 1.13.0 

Tuples are allowed for keyword argument. 

 

Returns 

------- 

r : ndarray 

The reduced values. If `out` was supplied, `r` is a reference to 

`out`. 

 

Notes 

----- 

A descriptive example: 

 

If `a` is 1-D, the function `ufunc.accumulate(a)` is the same as 

``ufunc.reduceat(a, indices)[::2]`` where `indices` is 

``range(len(array) - 1)`` with a zero placed 

in every other element: 

``indices = zeros(2 * len(a) - 1)``, ``indices[1::2] = range(1, len(a))``. 

 

Don't be fooled by this attribute's name: `reduceat(a)` is not 

necessarily smaller than `a`. 

 

Examples 

-------- 

To take the running sum of four successive values: 

 

>>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2] 

array([ 6, 10, 14, 18]) 

 

A 2-D example: 

 

>>> x = np.linspace(0, 15, 16).reshape(4,4) 

>>> x 

array([[ 0., 1., 2., 3.], 

[ 4., 5., 6., 7.], 

[ 8., 9., 10., 11.], 

[ 12., 13., 14., 15.]]) 

 

:: 

 

# reduce such that the result has the following five rows: 

# [row1 + row2 + row3] 

# [row4] 

# [row2] 

# [row3] 

# [row1 + row2 + row3 + row4] 

 

>>> np.add.reduceat(x, [0, 3, 1, 2, 0]) 

array([[ 12., 15., 18., 21.], 

[ 12., 13., 14., 15.], 

[ 4., 5., 6., 7.], 

[ 8., 9., 10., 11.], 

[ 24., 28., 32., 36.]]) 

 

:: 

 

# reduce such that result has the following two columns: 

# [col1 * col2 * col3, col4] 

 

>>> np.multiply.reduceat(x, [0, 3], 1) 

array([[ 0., 3.], 

[ 120., 7.], 

[ 720., 11.], 

[ 2184., 15.]]) 

 

""")) 

 

add_newdoc('numpy.core', 'ufunc', ('outer', 

""" 

outer(A, B, **kwargs) 

 

Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`. 

 

Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of 

``op.outer(A, B)`` is an array of dimension M + N such that: 

 

.. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] = 

op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}]) 

 

For `A` and `B` one-dimensional, this is equivalent to:: 

 

r = empty(len(A),len(B)) 

for i in range(len(A)): 

for j in range(len(B)): 

r[i,j] = op(A[i], B[j]) # op = ufunc in question 

 

Parameters 

---------- 

A : array_like 

First array 

B : array_like 

Second array 

kwargs : any 

Arguments to pass on to the ufunc. Typically `dtype` or `out`. 

 

Returns 

------- 

r : ndarray 

Output array 

 

See Also 

-------- 

numpy.outer 

 

Examples 

-------- 

>>> np.multiply.outer([1, 2, 3], [4, 5, 6]) 

array([[ 4, 5, 6], 

[ 8, 10, 12], 

[12, 15, 18]]) 

 

A multi-dimensional example: 

 

>>> A = np.array([[1, 2, 3], [4, 5, 6]]) 

>>> A.shape 

(2, 3) 

>>> B = np.array([[1, 2, 3, 4]]) 

>>> B.shape 

(1, 4) 

>>> C = np.multiply.outer(A, B) 

>>> C.shape; C 

(2, 3, 1, 4) 

array([[[[ 1, 2, 3, 4]], 

[[ 2, 4, 6, 8]], 

[[ 3, 6, 9, 12]]], 

[[[ 4, 8, 12, 16]], 

[[ 5, 10, 15, 20]], 

[[ 6, 12, 18, 24]]]]) 

 

""")) 

 

add_newdoc('numpy.core', 'ufunc', ('at', 

""" 

at(a, indices, b=None) 

 

Performs unbuffered in place operation on operand 'a' for elements 

specified by 'indices'. For addition ufunc, this method is equivalent to 

``a[indices] += b``, except that results are accumulated for elements that 

are indexed more than once. For example, ``a[[0,0]] += 1`` will only 

increment the first element once because of buffering, whereas 

``add.at(a, [0,0], 1)`` will increment the first element twice. 

 

.. versionadded:: 1.8.0 

 

Parameters 

---------- 

a : array_like 

The array to perform in place operation on. 

indices : array_like or tuple 

Array like index object or slice object for indexing into first 

operand. If first operand has multiple dimensions, indices can be a 

tuple of array like index objects or slice objects. 

b : array_like 

Second operand for ufuncs requiring two operands. Operand must be 

broadcastable over first operand after indexing or slicing. 

 

Examples 

-------- 

Set items 0 and 1 to their negative values: 

 

>>> a = np.array([1, 2, 3, 4]) 

>>> np.negative.at(a, [0, 1]) 

>>> print(a) 

array([-1, -2, 3, 4]) 

 

Increment items 0 and 1, and increment item 2 twice: 

 

>>> a = np.array([1, 2, 3, 4]) 

>>> np.add.at(a, [0, 1, 2, 2], 1) 

>>> print(a) 

array([2, 3, 5, 4]) 

 

Add items 0 and 1 in first array to second array, 

and store results in first array: 

 

>>> a = np.array([1, 2, 3, 4]) 

>>> b = np.array([1, 2]) 

>>> np.add.at(a, [0, 1], b) 

>>> print(a) 

array([2, 4, 3, 4]) 

 

""")) 

 

############################################################################## 

# 

# Documentation for dtype attributes and methods 

# 

############################################################################## 

 

############################################################################## 

# 

# dtype object 

# 

############################################################################## 

 

add_newdoc('numpy.core.multiarray', 'dtype', 

""" 

dtype(obj, align=False, copy=False) 

 

Create a data type object. 

 

A numpy array is homogeneous, and contains elements described by a 

dtype object. A dtype object can be constructed from different 

combinations of fundamental numeric types. 

 

Parameters 

---------- 

obj 

Object to be converted to a data type object. 

align : bool, optional 

Add padding to the fields to match what a C compiler would output 

for a similar C-struct. Can be ``True`` only if `obj` is a dictionary 

or a comma-separated string. If a struct dtype is being created, 

this also sets a sticky alignment flag ``isalignedstruct``. 

copy : bool, optional 

Make a new copy of the data-type object. If ``False``, the result 

may just be a reference to a built-in data-type object. 

 

See also 

-------- 

result_type 

 

Examples 

-------- 

Using array-scalar type: 

 

>>> np.dtype(np.int16) 

dtype('int16') 

 

Structured type, one field name 'f1', containing int16: 

 

>>> np.dtype([('f1', np.int16)]) 

dtype([('f1', '<i2')]) 

 

Structured type, one field named 'f1', in itself containing a structured 

type with one field: 

 

>>> np.dtype([('f1', [('f1', np.int16)])]) 

dtype([('f1', [('f1', '<i2')])]) 

 

Structured type, two fields: the first field contains an unsigned int, the 

second an int32: 

 

>>> np.dtype([('f1', np.uint), ('f2', np.int32)]) 

dtype([('f1', '<u4'), ('f2', '<i4')]) 

 

Using array-protocol type strings: 

 

>>> np.dtype([('a','f8'),('b','S10')]) 

dtype([('a', '<f8'), ('b', '|S10')]) 

 

Using comma-separated field formats. The shape is (2,3): 

 

>>> np.dtype("i4, (2,3)f8") 

dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))]) 

 

Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void`` 

is a flexible type, here of size 10: 

 

>>> np.dtype([('hello',(int,3)),('world',np.void,10)]) 

dtype([('hello', '<i4', 3), ('world', '|V10')]) 

 

Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are 

the offsets in bytes: 

 

>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)})) 

dtype(('<i2', [('x', '|i1'), ('y', '|i1')])) 

 

Using dictionaries. Two fields named 'gender' and 'age': 

 

>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]}) 

dtype([('gender', '|S1'), ('age', '|u1')]) 

 

Offsets in bytes, here 0 and 25: 

 

>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)}) 

dtype([('surname', '|S25'), ('age', '|u1')]) 

 

""") 

 

############################################################################## 

# 

# dtype attributes 

# 

############################################################################## 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('alignment', 

""" 

The required alignment (bytes) of this data-type according to the compiler. 

 

More information is available in the C-API section of the manual. 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('byteorder', 

""" 

A character indicating the byte-order of this data-type object. 

 

One of: 

 

=== ============== 

'=' native 

'<' little-endian 

'>' big-endian 

'|' not applicable 

=== ============== 

 

All built-in data-type objects have byteorder either '=' or '|'. 

 

Examples 

-------- 

 

>>> dt = np.dtype('i2') 

>>> dt.byteorder 

'=' 

>>> # endian is not relevant for 8 bit numbers 

>>> np.dtype('i1').byteorder 

'|' 

>>> # or ASCII strings 

>>> np.dtype('S2').byteorder 

'|' 

>>> # Even if specific code is given, and it is native 

>>> # '=' is the byteorder 

>>> import sys 

>>> sys_is_le = sys.byteorder == 'little' 

>>> native_code = sys_is_le and '<' or '>' 

>>> swapped_code = sys_is_le and '>' or '<' 

>>> dt = np.dtype(native_code + 'i2') 

>>> dt.byteorder 

'=' 

>>> # Swapped code shows up as itself 

>>> dt = np.dtype(swapped_code + 'i2') 

>>> dt.byteorder == swapped_code 

True 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('char', 

"""A unique character code for each of the 21 different built-in types.""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('descr', 

""" 

`__array_interface__` description of the data-type. 

 

The format is that required by the 'descr' key in the 

`__array_interface__` attribute. 

 

Warning: This attribute exists specifically for `__array_interface__`, 

and is not a datatype description compatible with `np.dtype`. 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('fields', 

""" 

Dictionary of named fields defined for this data type, or ``None``. 

 

The dictionary is indexed by keys that are the names of the fields. 

Each entry in the dictionary is a tuple fully describing the field:: 

 

(dtype, offset[, title]) 

 

Offset is limited to C int, which is signed and usually 32 bits. 

If present, the optional title can be any object (if it is a string 

or unicode then it will also be a key in the fields dictionary, 

otherwise it's meta-data). Notice also that the first two elements 

of the tuple can be passed directly as arguments to the ``ndarray.getfield`` 

and ``ndarray.setfield`` methods. 

 

See Also 

-------- 

ndarray.getfield, ndarray.setfield 

 

Examples 

-------- 

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) 

>>> print(dt.fields) 

{'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)} 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('flags', 

""" 

Bit-flags describing how this data type is to be interpreted. 

 

Bit-masks are in `numpy.core.multiarray` as the constants 

`ITEM_HASOBJECT`, `LIST_PICKLE`, `ITEM_IS_POINTER`, `NEEDS_INIT`, 

`NEEDS_PYAPI`, `USE_GETITEM`, `USE_SETITEM`. A full explanation 

of these flags is in C-API documentation; they are largely useful 

for user-defined data-types. 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('hasobject', 

""" 

Boolean indicating whether this dtype contains any reference-counted 

objects in any fields or sub-dtypes. 

 

Recall that what is actually in the ndarray memory representing 

the Python object is the memory address of that object (a pointer). 

Special handling may be required, and this attribute is useful for 

distinguishing data types that may contain arbitrary Python objects 

and data-types that won't. 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('isbuiltin', 

""" 

Integer indicating how this dtype relates to the built-in dtypes. 

 

Read-only. 

 

= ======================================================================== 

0 if this is a structured array type, with fields 

1 if this is a dtype compiled into numpy (such as ints, floats etc) 

2 if the dtype is for a user-defined numpy type 

A user-defined type uses the numpy C-API machinery to extend 

numpy to handle a new array type. See 

:ref:`user.user-defined-data-types` in the NumPy manual. 

= ======================================================================== 

 

Examples 

-------- 

>>> dt = np.dtype('i2') 

>>> dt.isbuiltin 

1 

>>> dt = np.dtype('f8') 

>>> dt.isbuiltin 

1 

>>> dt = np.dtype([('field1', 'f8')]) 

>>> dt.isbuiltin 

0 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('isnative', 

""" 

Boolean indicating whether the byte order of this dtype is native 

to the platform. 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('isalignedstruct', 

""" 

Boolean indicating whether the dtype is a struct which maintains 

field alignment. This flag is sticky, so when combining multiple 

structs together, it is preserved and produces new dtypes which 

are also aligned. 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('itemsize', 

""" 

The element size of this data-type object. 

 

For 18 of the 21 types this number is fixed by the data-type. 

For the flexible data-types, this number can be anything. 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('kind', 

""" 

A character code (one of 'biufcmMOSUV') identifying the general kind of data. 

 

= ====================== 

b boolean 

i signed integer 

u unsigned integer 

f floating-point 

c complex floating-point 

m timedelta 

M datetime 

O object 

S (byte-)string 

U Unicode 

V void 

= ====================== 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('name', 

""" 

A bit-width name for this data-type. 

 

Un-sized flexible data-type objects do not have this attribute. 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('names', 

""" 

Ordered list of field names, or ``None`` if there are no fields. 

 

The names are ordered according to increasing byte offset. This can be 

used, for example, to walk through all of the named fields in offset order. 

 

Examples 

-------- 

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) 

>>> dt.names 

('name', 'grades') 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('num', 

""" 

A unique number for each of the 21 different built-in types. 

 

These are roughly ordered from least-to-most precision. 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('shape', 

""" 

Shape tuple of the sub-array if this data type describes a sub-array, 

and ``()`` otherwise. 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('ndim', 

""" 

Number of dimensions of the sub-array if this data type describes a 

sub-array, and ``0`` otherwise. 

 

.. versionadded:: 1.13.0 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('str', 

"""The array-protocol typestring of this data-type object.""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('subdtype', 

""" 

Tuple ``(item_dtype, shape)`` if this `dtype` describes a sub-array, and 

None otherwise. 

 

The *shape* is the fixed shape of the sub-array described by this 

data type, and *item_dtype* the data type of the array. 

 

If a field whose dtype object has this attribute is retrieved, 

then the extra dimensions implied by *shape* are tacked on to 

the end of the retrieved array. 

 

""")) 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('type', 

"""The type object used to instantiate a scalar of this data-type.""")) 

 

############################################################################## 

# 

# dtype methods 

# 

############################################################################## 

 

add_newdoc('numpy.core.multiarray', 'dtype', ('newbyteorder', 

""" 

newbyteorder(new_order='S') 

 

Return a new dtype with a different byte order. 

 

Changes are also made in all fields and sub-arrays of the data type. 

 

Parameters 

---------- 

new_order : string, optional 

Byte order to force; a value from the byte order specifications 

below. The default value ('S') results in swapping the current 

byte order. `new_order` codes can be any of: 

 

* 'S' - swap dtype from current to opposite endian 

* {'<', 'L'} - little endian 

* {'>', 'B'} - big endian 

* {'=', 'N'} - native order 

* {'|', 'I'} - ignore (no change to byte order) 

 

The code does a case-insensitive check on the first letter of 

`new_order` for these alternatives. For example, any of '>' 

or 'B' or 'b' or 'brian' are valid to specify big-endian. 

 

Returns 

------- 

new_dtype : dtype 

New dtype object with the given change to the byte order. 

 

Notes 

----- 

Changes are also made in all fields and sub-arrays of the data type. 

 

Examples 

-------- 

>>> import sys 

>>> sys_is_le = sys.byteorder == 'little' 

>>> native_code = sys_is_le and '<' or '>' 

>>> swapped_code = sys_is_le and '>' or '<' 

>>> native_dt = np.dtype(native_code+'i2') 

>>> swapped_dt = np.dtype(swapped_code+'i2') 

>>> native_dt.newbyteorder('S') == swapped_dt 

True 

>>> native_dt.newbyteorder() == swapped_dt 

True 

>>> native_dt == swapped_dt.newbyteorder('S') 

True 

>>> native_dt == swapped_dt.newbyteorder('=') 

True 

>>> native_dt == swapped_dt.newbyteorder('N') 

True 

>>> native_dt == native_dt.newbyteorder('|') 

True 

>>> np.dtype('<i2') == native_dt.newbyteorder('<') 

True 

>>> np.dtype('<i2') == native_dt.newbyteorder('L') 

True 

>>> np.dtype('>i2') == native_dt.newbyteorder('>') 

True 

>>> np.dtype('>i2') == native_dt.newbyteorder('B') 

True 

 

""")) 

 

 

############################################################################## 

# 

# Datetime-related Methods 

# 

############################################################################## 

 

add_newdoc('numpy.core.multiarray', 'busdaycalendar', 

""" 

busdaycalendar(weekmask='1111100', holidays=None) 

 

A business day calendar object that efficiently stores information 

defining valid days for the busday family of functions. 

 

The default valid days are Monday through Friday ("business days"). 

A busdaycalendar object can be specified with any set of weekly 

valid days, plus an optional "holiday" dates that always will be invalid. 

 

Once a busdaycalendar object is created, the weekmask and holidays 

cannot be modified. 

 

.. versionadded:: 1.7.0 

 

Parameters 

---------- 

weekmask : str or array_like of bool, optional 

A seven-element array indicating which of Monday through Sunday are 

valid days. May be specified as a length-seven list or array, like 

[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string 

like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for 

weekdays, optionally separated by white space. Valid abbreviations 

are: Mon Tue Wed Thu Fri Sat Sun 

holidays : array_like of datetime64[D], optional 

An array of dates to consider as invalid dates, no matter which 

weekday they fall upon. Holiday dates may be specified in any 

order, and NaT (not-a-time) dates are ignored. This list is 

saved in a normalized form that is suited for fast calculations 

of valid days. 

 

Returns 

------- 

out : busdaycalendar 

A business day calendar object containing the specified 

weekmask and holidays values. 

 

See Also 

-------- 

is_busday : Returns a boolean array indicating valid days. 

busday_offset : Applies an offset counted in valid days. 

busday_count : Counts how many valid days are in a half-open date range. 

 

Attributes 

---------- 

Note: once a busdaycalendar object is created, you cannot modify the 

weekmask or holidays. The attributes return copies of internal data. 

weekmask : (copy) seven-element array of bool 

holidays : (copy) sorted array of datetime64[D] 

 

Examples 

-------- 

>>> # Some important days in July 

... bdd = np.busdaycalendar( 

... holidays=['2011-07-01', '2011-07-04', '2011-07-17']) 

>>> # Default is Monday to Friday weekdays 

... bdd.weekmask 

array([ True, True, True, True, True, False, False], dtype='bool') 

>>> # Any holidays already on the weekend are removed 

... bdd.holidays 

array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]') 

""") 

 

add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('weekmask', 

"""A copy of the seven-element boolean mask indicating valid days.""")) 

 

add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('holidays', 

"""A copy of the holiday array indicating additional invalid days.""")) 

 

add_newdoc('numpy.core.multiarray', 'normalize_axis_index', 

""" 

normalize_axis_index(axis, ndim, msg_prefix=None) 

 

Normalizes an axis index, `axis`, such that is a valid positive index into 

the shape of array with `ndim` dimensions. Raises an AxisError with an 

appropriate message if this is not possible. 

 

Used internally by all axis-checking logic. 

 

.. versionadded:: 1.13.0 

 

Parameters 

---------- 

axis : int 

The un-normalized index of the axis. Can be negative 

ndim : int 

The number of dimensions of the array that `axis` should be normalized 

against 

msg_prefix : str 

A prefix to put before the message, typically the name of the argument 

 

Returns 

------- 

normalized_axis : int 

The normalized axis index, such that `0 <= normalized_axis < ndim` 

 

Raises 

------ 

AxisError 

If the axis index is invalid, when `-ndim <= axis < ndim` is false. 

 

Examples 

-------- 

>>> normalize_axis_index(0, ndim=3) 

0 

>>> normalize_axis_index(1, ndim=3) 

1 

>>> normalize_axis_index(-1, ndim=3) 

2 

 

>>> normalize_axis_index(3, ndim=3) 

Traceback (most recent call last): 

... 

AxisError: axis 3 is out of bounds for array of dimension 3 

>>> normalize_axis_index(-4, ndim=3, msg_prefix='axes_arg') 

Traceback (most recent call last): 

... 

AxisError: axes_arg: axis -4 is out of bounds for array of dimension 3 

""") 

 

add_newdoc('numpy.core.multiarray', 'datetime_data', 

""" 

datetime_data(dtype, /) 

 

Get information about the step size of a date or time type. 

 

The returned tuple can be passed as the second argument of `numpy.datetime64` and 

`numpy.timedelta64`. 

 

Parameters 

---------- 

dtype : dtype 

The dtype object, which must be a `datetime64` or `timedelta64` type. 

 

Returns 

------- 

unit : str 

The :ref:`datetime unit <arrays.dtypes.dateunits>` on which this dtype 

is based. 

count : int 

The number of base units in a step. 

 

Examples 

-------- 

>>> dt_25s = np.dtype('timedelta64[25s]') 

>>> np.datetime_data(dt_25s) 

('s', 25) 

>>> np.array(10, dt_25s).astype('timedelta64[s]') 

array(250, dtype='timedelta64[s]') 

 

The result can be used to construct a datetime that uses the same units 

as a timedelta 

 

>>> np.datetime64('2010', np.datetime_data(dt_25s)) 

numpy.datetime64('2010-01-01T00:00:00', '25s') 

""") 

 

 

############################################################################## 

# 

# Documentation for `generic` attributes and methods 

# 

############################################################################## 

 

add_newdoc('numpy.core.numerictypes', 'generic', 

""" 

Base class for numpy scalar types. 

 

Class from which most (all?) numpy scalar types are derived. For 

consistency, exposes the same API as `ndarray`, despite many 

consequent attributes being either "get-only," or completely irrelevant. 

This is the class from which it is strongly suggested users should derive 

custom scalar types. 

 

""") 

 

# Attributes 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('T', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class so as to 

provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('base', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class so as to 

a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('data', 

"""Pointer to start of data.""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('dtype', 

"""Get array data-descriptor.""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('flags', 

"""The integer value of flags.""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('flat', 

"""A 1-D view of the scalar.""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('imag', 

"""The imaginary part of the scalar.""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('itemsize', 

"""The length of one element in bytes.""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('nbytes', 

"""The length of the scalar in bytes.""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('ndim', 

"""The number of array dimensions.""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('real', 

"""The real part of the scalar.""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('shape', 

"""Tuple of array dimensions.""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('size', 

"""The number of elements in the gentype.""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('strides', 

"""Tuple of bytes steps in each dimension.""")) 

 

# Methods 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('all', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('any', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('argmax', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('argmin', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('argsort', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('astype', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('byteswap', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class so as to 

provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('choose', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('clip', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('compress', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('conjugate', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('copy', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('cumprod', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('cumsum', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('diagonal', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('dump', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('dumps', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('fill', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('flatten', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('getfield', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('item', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('itemset', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('max', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('mean', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('min', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('newbyteorder', 

""" 

newbyteorder(new_order='S') 

 

Return a new `dtype` with a different byte order. 

 

Changes are also made in all fields and sub-arrays of the data type. 

 

The `new_order` code can be any from the following: 

 

* 'S' - swap dtype from current to opposite endian 

* {'<', 'L'} - little endian 

* {'>', 'B'} - big endian 

* {'=', 'N'} - native order 

* {'|', 'I'} - ignore (no change to byte order) 

 

Parameters 

---------- 

new_order : str, optional 

Byte order to force; a value from the byte order specifications 

above. The default value ('S') results in swapping the current 

byte order. The code does a case-insensitive check on the first 

letter of `new_order` for the alternatives above. For example, 

any of 'B' or 'b' or 'biggish' are valid to specify big-endian. 

 

 

Returns 

------- 

new_dtype : dtype 

New `dtype` object with the given change to the byte order. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('nonzero', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('prod', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('ptp', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('put', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('ravel', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('repeat', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('reshape', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('resize', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('round', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('searchsorted', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('setfield', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('setflags', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class so as to 

provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('sort', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('squeeze', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('std', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('sum', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('swapaxes', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('take', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('tofile', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('tolist', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('tostring', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('trace', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('transpose', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('var', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

add_newdoc('numpy.core.numerictypes', 'generic', ('view', 

""" 

Not implemented (virtual attribute) 

 

Class generic exists solely to derive numpy scalars from, and possesses, 

albeit unimplemented, all the attributes of the ndarray class 

so as to provide a uniform API. 

 

See Also 

-------- 

The corresponding attribute of the derived class of interest. 

 

""")) 

 

 

############################################################################## 

# 

# Documentation for scalar type abstract base classes in type hierarchy 

# 

############################################################################## 

 

 

add_newdoc('numpy.core.numerictypes', 'number', 

""" 

Abstract base class of all numeric scalar types. 

 

""") 

 

add_newdoc('numpy.core.numerictypes', 'integer', 

""" 

Abstract base class of all integer scalar types. 

 

""") 

 

add_newdoc('numpy.core.numerictypes', 'signedinteger', 

""" 

Abstract base class of all signed integer scalar types. 

 

""") 

 

add_newdoc('numpy.core.numerictypes', 'unsignedinteger', 

""" 

Abstract base class of all unsigned integer scalar types. 

 

""") 

 

add_newdoc('numpy.core.numerictypes', 'inexact', 

""" 

Abstract base class of all numeric scalar types with a (potentially) 

inexact representation of the values in its range, such as 

floating-point numbers. 

 

""") 

 

add_newdoc('numpy.core.numerictypes', 'floating', 

""" 

Abstract base class of all floating-point scalar types. 

 

""") 

 

add_newdoc('numpy.core.numerictypes', 'complexfloating', 

""" 

Abstract base class of all complex number scalar types that are made up of 

floating-point numbers. 

 

""") 

 

add_newdoc('numpy.core.numerictypes', 'flexible', 

""" 

Abstract base class of all scalar types without predefined length. 

The actual size of these types depends on the specific `np.dtype` 

instantiation. 

 

""") 

 

add_newdoc('numpy.core.numerictypes', 'character', 

""" 

Abstract base class of all character string scalar types. 

 

""") 

 

 

############################################################################## 

# 

# Documentation for concrete scalar classes 

# 

############################################################################## 

 

def numeric_type_aliases(aliases): 

def type_aliases_gen(): 

for alias, doc in aliases: 

try: 

alias_type = getattr(_numerictypes, alias) 

except AttributeError: 

# The set of aliases that actually exist varies between platforms 

pass 

else: 

yield (alias_type, alias, doc) 

return list(type_aliases_gen()) 

 

 

possible_aliases = numeric_type_aliases([ 

('int8', '8-bit signed integer (-128 to 127)'), 

('int16', '16-bit signed integer (-32768 to 32767)'), 

('int32', '32-bit signed integer (-2147483648 to 2147483647)'), 

('int64', '64-bit signed integer (-9223372036854775808 to 9223372036854775807)'), 

('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'), 

('uint8', '8-bit unsigned integer (0 to 255)'), 

('uint16', '16-bit unsigned integer (0 to 65535)'), 

('uint32', '32-bit unsigned integer (0 to 4294967295)'), 

('uint64', '64-bit unsigned integer (0 to 18446744073709551615)'), 

('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'), 

('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'), 

('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'), 

('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'), 

('float96', '96-bit extended-precision floating-point number type'), 

('float128', '128-bit extended-precision floating-point number type'), 

('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'), 

('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'), 

('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'), 

('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'), 

]) 

 

 

def add_newdoc_for_scalar_type(obj, fixed_aliases, doc): 

o = getattr(_numerictypes, obj) 

 

character_code = dtype(o).char 

canonical_name_doc = "" if obj == o.__name__ else "Canonical name: ``np.{}``.\n ".format(obj) 

alias_doc = ''.join("Alias: ``np.{}``.\n ".format(alias) for alias in fixed_aliases) 

alias_doc += ''.join("Alias *on this platform*: ``np.{}``: {}.\n ".format(alias, doc) 

for (alias_type, alias, doc) in possible_aliases if alias_type is o) 

 

docstring = """ 

{doc} 

Character code: ``'{character_code}'``. 

{canonical_name_doc}{alias_doc} 

""".format(doc=doc.strip(), character_code=character_code, 

canonical_name_doc=canonical_name_doc, alias_doc=alias_doc) 

 

add_newdoc('numpy.core.numerictypes', obj, docstring) 

 

 

add_newdoc_for_scalar_type('bool_', ['bool8'], 

""" 

Boolean type (True or False), stored as a byte. 

""") 

 

add_newdoc_for_scalar_type('byte', [], 

""" 

Signed integer type, compatible with C ``char``. 

""") 

 

add_newdoc_for_scalar_type('short', [], 

""" 

Signed integer type, compatible with C ``short``. 

""") 

 

add_newdoc_for_scalar_type('intc', [], 

""" 

Signed integer type, compatible with C ``int``. 

""") 

 

add_newdoc_for_scalar_type('int_', [], 

""" 

Signed integer type, compatible with Python `int` anc C ``long``. 

""") 

 

add_newdoc_for_scalar_type('longlong', [], 

""" 

Signed integer type, compatible with C ``long long``. 

""") 

 

add_newdoc_for_scalar_type('ubyte', [], 

""" 

Unsigned integer type, compatible with C ``unsigned char``. 

""") 

 

add_newdoc_for_scalar_type('ushort', [], 

""" 

Unsigned integer type, compatible with C ``unsigned short``. 

""") 

 

add_newdoc_for_scalar_type('uintc', [], 

""" 

Unsigned integer type, compatible with C ``unsigned int``. 

""") 

 

add_newdoc_for_scalar_type('uint', [], 

""" 

Unsigned integer type, compatible with C ``unsigned long``. 

""") 

 

add_newdoc_for_scalar_type('ulonglong', [], 

""" 

Signed integer type, compatible with C ``unsigned long long``. 

""") 

 

add_newdoc_for_scalar_type('half', [], 

""" 

Half-precision floating-point number type. 

""") 

 

add_newdoc_for_scalar_type('single', [], 

""" 

Single-precision floating-point number type, compatible with C ``float``. 

""") 

 

add_newdoc_for_scalar_type('double', ['float_'], 

""" 

Double-precision floating-point number type, compatible with Python `float` 

and C ``double``. 

""") 

 

add_newdoc_for_scalar_type('longdouble', ['longfloat'], 

""" 

Extended-precision floating-point number type, compatible with C 

``long double`` but not necessarily with IEEE 754 quadruple-precision. 

""") 

 

add_newdoc_for_scalar_type('csingle', ['singlecomplex'], 

""" 

Complex number type composed of two single-precision floating-point 

numbers. 

""") 

 

add_newdoc_for_scalar_type('cdouble', ['cfloat', 'complex_'], 

""" 

Complex number type composed of two double-precision floating-point 

numbers, compatible with Python `complex`. 

""") 

 

add_newdoc_for_scalar_type('clongdouble', ['clongfloat', 'longcomplex'], 

""" 

Complex number type composed of two extended-precision floating-point 

numbers. 

""") 

 

add_newdoc_for_scalar_type('object_', [], 

""" 

Any Python object. 

""")