1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

"""Module containing non-deprecated functions borrowed from Numeric. 

 

""" 

from __future__ import division, absolute_import, print_function 

 

import functools 

import types 

import warnings 

 

import numpy as np 

from .. import VisibleDeprecationWarning 

from . import multiarray as mu 

from . import overrides 

from . import umath as um 

from . import numerictypes as nt 

from .numeric import asarray, array, asanyarray, concatenate 

from . import _methods 

 

_dt_ = nt.sctype2char 

 

# functions that are methods 

__all__ = [ 

'alen', 'all', 'alltrue', 'amax', 'amin', 'any', 'argmax', 

'argmin', 'argpartition', 'argsort', 'around', 'choose', 'clip', 

'compress', 'cumprod', 'cumproduct', 'cumsum', 'diagonal', 'mean', 

'ndim', 'nonzero', 'partition', 'prod', 'product', 'ptp', 'put', 

'rank', 'ravel', 'repeat', 'reshape', 'resize', 'round_', 

'searchsorted', 'shape', 'size', 'sometrue', 'sort', 'squeeze', 

'std', 'sum', 'swapaxes', 'take', 'trace', 'transpose', 'var', 

] 

 

_gentype = types.GeneratorType 

# save away Python sum 

_sum_ = sum 

 

array_function_dispatch = functools.partial( 

overrides.array_function_dispatch, module='numpy') 

 

 

# functions that are now methods 

def _wrapit(obj, method, *args, **kwds): 

try: 

wrap = obj.__array_wrap__ 

except AttributeError: 

wrap = None 

result = getattr(asarray(obj), method)(*args, **kwds) 

if wrap: 

if not isinstance(result, mu.ndarray): 

result = asarray(result) 

result = wrap(result) 

return result 

 

 

def _wrapfunc(obj, method, *args, **kwds): 

try: 

return getattr(obj, method)(*args, **kwds) 

 

# An AttributeError occurs if the object does not have 

# such a method in its class. 

 

# A TypeError occurs if the object does have such a method 

# in its class, but its signature is not identical to that 

# of NumPy's. This situation has occurred in the case of 

# a downstream library like 'pandas'. 

except (AttributeError, TypeError): 

return _wrapit(obj, method, *args, **kwds) 

 

 

def _wrapreduction(obj, ufunc, method, axis, dtype, out, **kwargs): 

passkwargs = {k: v for k, v in kwargs.items() 

if v is not np._NoValue} 

 

if type(obj) is not mu.ndarray: 

try: 

reduction = getattr(obj, method) 

except AttributeError: 

pass 

else: 

# This branch is needed for reductions like any which don't 

# support a dtype. 

if dtype is not None: 

return reduction(axis=axis, dtype=dtype, out=out, **passkwargs) 

else: 

return reduction(axis=axis, out=out, **passkwargs) 

 

return ufunc.reduce(obj, axis, dtype, out, **passkwargs) 

 

 

def _take_dispatcher(a, indices, axis=None, out=None, mode=None): 

return (a, out) 

 

 

@array_function_dispatch(_take_dispatcher) 

def take(a, indices, axis=None, out=None, mode='raise'): 

""" 

Take elements from an array along an axis. 

 

When axis is not None, this function does the same thing as "fancy" 

indexing (indexing arrays using arrays); however, it can be easier to use 

if you need elements along a given axis. A call such as 

``np.take(arr, indices, axis=3)`` is equivalent to 

``arr[:,:,:,indices,...]``. 

 

Explained without fancy indexing, this is equivalent to the following use 

of `ndindex`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of 

indices:: 

 

Ni, Nk = a.shape[:axis], a.shape[axis+1:] 

Nj = indices.shape 

for ii in ndindex(Ni): 

for jj in ndindex(Nj): 

for kk in ndindex(Nk): 

out[ii + jj + kk] = a[ii + (indices[jj],) + kk] 

 

Parameters 

---------- 

a : array_like (Ni..., M, Nk...) 

The source array. 

indices : array_like (Nj...) 

The indices of the values to extract. 

 

.. versionadded:: 1.8.0 

 

Also allow scalars for indices. 

axis : int, optional 

The axis over which to select values. By default, the flattened 

input array is used. 

out : ndarray, optional (Ni..., Nj..., Nk...) 

If provided, the result will be placed in this array. It should 

be of the appropriate shape and dtype. 

mode : {'raise', 'wrap', 'clip'}, optional 

Specifies how out-of-bounds indices will behave. 

 

* 'raise' -- raise an error (default) 

* 'wrap' -- wrap around 

* 'clip' -- clip to the range 

 

'clip' mode means that all indices that are too large are replaced 

by the index that addresses the last element along that axis. Note 

that this disables indexing with negative numbers. 

 

Returns 

------- 

out : ndarray (Ni..., Nj..., Nk...) 

The returned array has the same type as `a`. 

 

See Also 

-------- 

compress : Take elements using a boolean mask 

ndarray.take : equivalent method 

take_along_axis : Take elements by matching the array and the index arrays 

 

Notes 

----- 

 

By eliminating the inner loop in the description above, and using `s_` to 

build simple slice objects, `take` can be expressed in terms of applying 

fancy indexing to each 1-d slice:: 

 

Ni, Nk = a.shape[:axis], a.shape[axis+1:] 

for ii in ndindex(Ni): 

for kk in ndindex(Nj): 

out[ii + s_[...,] + kk] = a[ii + s_[:,] + kk][indices] 

 

For this reason, it is equivalent to (but faster than) the following use 

of `apply_along_axis`:: 

 

out = np.apply_along_axis(lambda a_1d: a_1d[indices], axis, a) 

 

Examples 

-------- 

>>> a = [4, 3, 5, 7, 6, 8] 

>>> indices = [0, 1, 4] 

>>> np.take(a, indices) 

array([4, 3, 6]) 

 

In this example if `a` is an ndarray, "fancy" indexing can be used. 

 

>>> a = np.array(a) 

>>> a[indices] 

array([4, 3, 6]) 

 

If `indices` is not one dimensional, the output also has these dimensions. 

 

>>> np.take(a, [[0, 1], [2, 3]]) 

array([[4, 3], 

[5, 7]]) 

""" 

return _wrapfunc(a, 'take', indices, axis=axis, out=out, mode=mode) 

 

 

def _reshape_dispatcher(a, newshape, order=None): 

return (a,) 

 

 

# not deprecated --- copy if necessary, view otherwise 

@array_function_dispatch(_reshape_dispatcher) 

def reshape(a, newshape, order='C'): 

""" 

Gives a new shape to an array without changing its data. 

 

Parameters 

---------- 

a : array_like 

Array to be reshaped. 

newshape : int or tuple of ints 

The new shape should be compatible with the original shape. If 

an integer, then the result will be a 1-D array of that length. 

One shape dimension can be -1. In this case, the value is 

inferred from the length of the array and remaining dimensions. 

order : {'C', 'F', 'A'}, optional 

Read the elements of `a` using this index order, and place the 

elements into the reshaped array using this index order. 'C' 

means to read / write the elements using C-like index order, 

with the last axis index changing fastest, back to the first 

axis index changing slowest. 'F' means to read / write the 

elements using Fortran-like index order, with the first index 

changing fastest, and the last index changing slowest. Note that 

the 'C' and 'F' options take no account of the memory layout of 

the underlying array, and only refer to the order of indexing. 

'A' means to read / write the elements in Fortran-like index 

order if `a` is Fortran *contiguous* in memory, C-like order 

otherwise. 

 

Returns 

------- 

reshaped_array : ndarray 

This will be a new view object if possible; otherwise, it will 

be a copy. Note there is no guarantee of the *memory layout* (C- or 

Fortran- contiguous) of the returned array. 

 

See Also 

-------- 

ndarray.reshape : Equivalent method. 

 

Notes 

----- 

It is not always possible to change the shape of an array without 

copying the data. If you want an error to be raised when the data is copied, 

you should assign the new shape to the shape attribute of the array:: 

 

>>> a = np.zeros((10, 2)) 

# A transpose makes the array non-contiguous 

>>> b = a.T 

# Taking a view makes it possible to modify the shape without modifying 

# the initial object. 

>>> c = b.view() 

>>> c.shape = (20) 

AttributeError: incompatible shape for a non-contiguous array 

 

The `order` keyword gives the index ordering both for *fetching* the values 

from `a`, and then *placing* the values into the output array. 

For example, let's say you have an array: 

 

>>> a = np.arange(6).reshape((3, 2)) 

>>> a 

array([[0, 1], 

[2, 3], 

[4, 5]]) 

 

You can think of reshaping as first raveling the array (using the given 

index order), then inserting the elements from the raveled array into the 

new array using the same kind of index ordering as was used for the 

raveling. 

 

>>> np.reshape(a, (2, 3)) # C-like index ordering 

array([[0, 1, 2], 

[3, 4, 5]]) 

>>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape 

array([[0, 1, 2], 

[3, 4, 5]]) 

>>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering 

array([[0, 4, 3], 

[2, 1, 5]]) 

>>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F') 

array([[0, 4, 3], 

[2, 1, 5]]) 

 

Examples 

-------- 

>>> a = np.array([[1,2,3], [4,5,6]]) 

>>> np.reshape(a, 6) 

array([1, 2, 3, 4, 5, 6]) 

>>> np.reshape(a, 6, order='F') 

array([1, 4, 2, 5, 3, 6]) 

 

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2 

array([[1, 2], 

[3, 4], 

[5, 6]]) 

""" 

return _wrapfunc(a, 'reshape', newshape, order=order) 

 

 

def _choose_dispatcher(a, choices, out=None, mode=None): 

yield a 

for c in choices: 

yield c 

yield out 

 

 

@array_function_dispatch(_choose_dispatcher) 

def choose(a, choices, out=None, mode='raise'): 

""" 

Construct an array from an index array and a set of arrays to choose from. 

 

First of all, if confused or uncertain, definitely look at the Examples - 

in its full generality, this function is less simple than it might 

seem from the following code description (below ndi = 

`numpy.lib.index_tricks`): 

 

``np.choose(a,c) == np.array([c[a[I]][I] for I in ndi.ndindex(a.shape)])``. 

 

But this omits some subtleties. Here is a fully general summary: 

 

Given an "index" array (`a`) of integers and a sequence of `n` arrays 

(`choices`), `a` and each choice array are first broadcast, as necessary, 

to arrays of a common shape; calling these *Ba* and *Bchoices[i], i = 

0,...,n-1* we have that, necessarily, ``Ba.shape == Bchoices[i].shape`` 

for each `i`. Then, a new array with shape ``Ba.shape`` is created as 

follows: 

 

* if ``mode=raise`` (the default), then, first of all, each element of 

`a` (and thus `Ba`) must be in the range `[0, n-1]`; now, suppose that 

`i` (in that range) is the value at the `(j0, j1, ..., jm)` position 

in `Ba` - then the value at the same position in the new array is the 

value in `Bchoices[i]` at that same position; 

 

* if ``mode=wrap``, values in `a` (and thus `Ba`) may be any (signed) 

integer; modular arithmetic is used to map integers outside the range 

`[0, n-1]` back into that range; and then the new array is constructed 

as above; 

 

* if ``mode=clip``, values in `a` (and thus `Ba`) may be any (signed) 

integer; negative integers are mapped to 0; values greater than `n-1` 

are mapped to `n-1`; and then the new array is constructed as above. 

 

Parameters 

---------- 

a : int array 

This array must contain integers in `[0, n-1]`, where `n` is the number 

of choices, unless ``mode=wrap`` or ``mode=clip``, in which cases any 

integers are permissible. 

choices : sequence of arrays 

Choice arrays. `a` and all of the choices must be broadcastable to the 

same shape. If `choices` is itself an array (not recommended), then 

its outermost dimension (i.e., the one corresponding to 

``choices.shape[0]``) is taken as defining the "sequence". 

out : array, optional 

If provided, the result will be inserted into this array. It should 

be of the appropriate shape and dtype. 

mode : {'raise' (default), 'wrap', 'clip'}, optional 

Specifies how indices outside `[0, n-1]` will be treated: 

 

* 'raise' : an exception is raised 

* 'wrap' : value becomes value mod `n` 

* 'clip' : values < 0 are mapped to 0, values > n-1 are mapped to n-1 

 

Returns 

------- 

merged_array : array 

The merged result. 

 

Raises 

------ 

ValueError: shape mismatch 

If `a` and each choice array are not all broadcastable to the same 

shape. 

 

See Also 

-------- 

ndarray.choose : equivalent method 

 

Notes 

----- 

To reduce the chance of misinterpretation, even though the following 

"abuse" is nominally supported, `choices` should neither be, nor be 

thought of as, a single array, i.e., the outermost sequence-like container 

should be either a list or a tuple. 

 

Examples 

-------- 

 

>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], 

... [20, 21, 22, 23], [30, 31, 32, 33]] 

>>> np.choose([2, 3, 1, 0], choices 

... # the first element of the result will be the first element of the 

... # third (2+1) "array" in choices, namely, 20; the second element 

... # will be the second element of the fourth (3+1) choice array, i.e., 

... # 31, etc. 

... ) 

array([20, 31, 12, 3]) 

>>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1) 

array([20, 31, 12, 3]) 

>>> # because there are 4 choice arrays 

>>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4) 

array([20, 1, 12, 3]) 

>>> # i.e., 0 

 

A couple examples illustrating how choose broadcasts: 

 

>>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]] 

>>> choices = [-10, 10] 

>>> np.choose(a, choices) 

array([[ 10, -10, 10], 

[-10, 10, -10], 

[ 10, -10, 10]]) 

 

>>> # With thanks to Anne Archibald 

>>> a = np.array([0, 1]).reshape((2,1,1)) 

>>> c1 = np.array([1, 2, 3]).reshape((1,3,1)) 

>>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5)) 

>>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2 

array([[[ 1, 1, 1, 1, 1], 

[ 2, 2, 2, 2, 2], 

[ 3, 3, 3, 3, 3]], 

[[-1, -2, -3, -4, -5], 

[-1, -2, -3, -4, -5], 

[-1, -2, -3, -4, -5]]]) 

 

""" 

return _wrapfunc(a, 'choose', choices, out=out, mode=mode) 

 

 

def _repeat_dispatcher(a, repeats, axis=None): 

return (a,) 

 

 

@array_function_dispatch(_repeat_dispatcher) 

def repeat(a, repeats, axis=None): 

""" 

Repeat elements of an array. 

 

Parameters 

---------- 

a : array_like 

Input array. 

repeats : int or array of ints 

The number of repetitions for each element. `repeats` is broadcasted 

to fit the shape of the given axis. 

axis : int, optional 

The axis along which to repeat values. By default, use the 

flattened input array, and return a flat output array. 

 

Returns 

------- 

repeated_array : ndarray 

Output array which has the same shape as `a`, except along 

the given axis. 

 

See Also 

-------- 

tile : Tile an array. 

 

Examples 

-------- 

>>> np.repeat(3, 4) 

array([3, 3, 3, 3]) 

>>> x = np.array([[1,2],[3,4]]) 

>>> np.repeat(x, 2) 

array([1, 1, 2, 2, 3, 3, 4, 4]) 

>>> np.repeat(x, 3, axis=1) 

array([[1, 1, 1, 2, 2, 2], 

[3, 3, 3, 4, 4, 4]]) 

>>> np.repeat(x, [1, 2], axis=0) 

array([[1, 2], 

[3, 4], 

[3, 4]]) 

 

""" 

return _wrapfunc(a, 'repeat', repeats, axis=axis) 

 

 

def _put_dispatcher(a, ind, v, mode=None): 

return (a, ind, v) 

 

 

@array_function_dispatch(_put_dispatcher) 

def put(a, ind, v, mode='raise'): 

""" 

Replaces specified elements of an array with given values. 

 

The indexing works on the flattened target array. `put` is roughly 

equivalent to: 

 

:: 

 

a.flat[ind] = v 

 

Parameters 

---------- 

a : ndarray 

Target array. 

ind : array_like 

Target indices, interpreted as integers. 

v : array_like 

Values to place in `a` at target indices. If `v` is shorter than 

`ind` it will be repeated as necessary. 

mode : {'raise', 'wrap', 'clip'}, optional 

Specifies how out-of-bounds indices will behave. 

 

* 'raise' -- raise an error (default) 

* 'wrap' -- wrap around 

* 'clip' -- clip to the range 

 

'clip' mode means that all indices that are too large are replaced 

by the index that addresses the last element along that axis. Note 

that this disables indexing with negative numbers. 

 

See Also 

-------- 

putmask, place 

put_along_axis : Put elements by matching the array and the index arrays 

 

Examples 

-------- 

>>> a = np.arange(5) 

>>> np.put(a, [0, 2], [-44, -55]) 

>>> a 

array([-44, 1, -55, 3, 4]) 

 

>>> a = np.arange(5) 

>>> np.put(a, 22, -5, mode='clip') 

>>> a 

array([ 0, 1, 2, 3, -5]) 

 

""" 

try: 

put = a.put 

except AttributeError: 

raise TypeError("argument 1 must be numpy.ndarray, " 

"not {name}".format(name=type(a).__name__)) 

 

return put(ind, v, mode=mode) 

 

 

def _swapaxes_dispatcher(a, axis1, axis2): 

return (a,) 

 

 

@array_function_dispatch(_swapaxes_dispatcher) 

def swapaxes(a, axis1, axis2): 

""" 

Interchange two axes of an array. 

 

Parameters 

---------- 

a : array_like 

Input array. 

axis1 : int 

First axis. 

axis2 : int 

Second axis. 

 

Returns 

------- 

a_swapped : ndarray 

For NumPy >= 1.10.0, if `a` is an ndarray, then a view of `a` is 

returned; otherwise a new array is created. For earlier NumPy 

versions a view of `a` is returned only if the order of the 

axes is changed, otherwise the input array is returned. 

 

Examples 

-------- 

>>> x = np.array([[1,2,3]]) 

>>> np.swapaxes(x,0,1) 

array([[1], 

[2], 

[3]]) 

 

>>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]]) 

>>> x 

array([[[0, 1], 

[2, 3]], 

[[4, 5], 

[6, 7]]]) 

 

>>> np.swapaxes(x,0,2) 

array([[[0, 4], 

[2, 6]], 

[[1, 5], 

[3, 7]]]) 

 

""" 

return _wrapfunc(a, 'swapaxes', axis1, axis2) 

 

 

def _transpose_dispatcher(a, axes=None): 

return (a,) 

 

 

@array_function_dispatch(_transpose_dispatcher) 

def transpose(a, axes=None): 

""" 

Permute the dimensions of an array. 

 

Parameters 

---------- 

a : array_like 

Input array. 

axes : list of ints, optional 

By default, reverse the dimensions, otherwise permute the axes 

according to the values given. 

 

Returns 

------- 

p : ndarray 

`a` with its axes permuted. A view is returned whenever 

possible. 

 

See Also 

-------- 

moveaxis 

argsort 

 

Notes 

----- 

Use `transpose(a, argsort(axes))` to invert the transposition of tensors 

when using the `axes` keyword argument. 

 

Transposing a 1-D array returns an unchanged view of the original array. 

 

Examples 

-------- 

>>> x = np.arange(4).reshape((2,2)) 

>>> x 

array([[0, 1], 

[2, 3]]) 

 

>>> np.transpose(x) 

array([[0, 2], 

[1, 3]]) 

 

>>> x = np.ones((1, 2, 3)) 

>>> np.transpose(x, (1, 0, 2)).shape 

(2, 1, 3) 

 

""" 

return _wrapfunc(a, 'transpose', axes) 

 

 

def _partition_dispatcher(a, kth, axis=None, kind=None, order=None): 

return (a,) 

 

 

@array_function_dispatch(_partition_dispatcher) 

def partition(a, kth, axis=-1, kind='introselect', order=None): 

""" 

Return a partitioned copy of an array. 

 

Creates a copy of the array with its elements rearranged in such a 

way that the value of the element in k-th position is in the 

position it would be in a sorted array. All elements smaller than 

the k-th element are moved before this element and all equal or 

greater are moved behind it. The ordering of the elements in the two 

partitions is undefined. 

 

.. versionadded:: 1.8.0 

 

Parameters 

---------- 

a : array_like 

Array to be sorted. 

kth : int or sequence of ints 

Element index to partition by. The k-th value of the element 

will be in its final sorted position and all smaller elements 

will be moved before it and all equal or greater elements behind 

it. The order of all elements in the partitions is undefined. If 

provided with a sequence of k-th it will partition all elements 

indexed by k-th of them into their sorted position at once. 

axis : int or None, optional 

Axis along which to sort. If None, the array is flattened before 

sorting. The default is -1, which sorts along the last axis. 

kind : {'introselect'}, optional 

Selection algorithm. Default is 'introselect'. 

order : str or list of str, optional 

When `a` is an array with fields defined, this argument 

specifies which fields to compare first, second, etc. A single 

field can be specified as a string. Not all fields need be 

specified, but unspecified fields will still be used, in the 

order in which they come up in the dtype, to break ties. 

 

Returns 

------- 

partitioned_array : ndarray 

Array of the same type and shape as `a`. 

 

See Also 

-------- 

ndarray.partition : Method to sort an array in-place. 

argpartition : Indirect partition. 

sort : Full sorting 

 

Notes 

----- 

The various selection algorithms are characterized by their average 

speed, worst case performance, work space size, and whether they are 

stable. A stable sort keeps items with the same key in the same 

relative order. The available algorithms have the following 

properties: 

 

================= ======= ============= ============ ======= 

kind speed worst case work space stable 

================= ======= ============= ============ ======= 

'introselect' 1 O(n) 0 no 

================= ======= ============= ============ ======= 

 

All the partition algorithms make temporary copies of the data when 

partitioning along any but the last axis. Consequently, 

partitioning along the last axis is faster and uses less space than 

partitioning along any other axis. 

 

The sort order for complex numbers is lexicographic. If both the 

real and imaginary parts are non-nan then the order is determined by 

the real parts except when they are equal, in which case the order 

is determined by the imaginary parts. 

 

Examples 

-------- 

>>> a = np.array([3, 4, 2, 1]) 

>>> np.partition(a, 3) 

array([2, 1, 3, 4]) 

 

>>> np.partition(a, (1, 3)) 

array([1, 2, 3, 4]) 

 

""" 

if axis is None: 

# flatten returns (1, N) for np.matrix, so always use the last axis 

a = asanyarray(a).flatten() 

axis = -1 

else: 

a = asanyarray(a).copy(order="K") 

a.partition(kth, axis=axis, kind=kind, order=order) 

return a 

 

 

def _argpartition_dispatcher(a, kth, axis=None, kind=None, order=None): 

return (a,) 

 

 

@array_function_dispatch(_argpartition_dispatcher) 

def argpartition(a, kth, axis=-1, kind='introselect', order=None): 

""" 

Perform an indirect partition along the given axis using the 

algorithm specified by the `kind` keyword. It returns an array of 

indices of the same shape as `a` that index data along the given 

axis in partitioned order. 

 

.. versionadded:: 1.8.0 

 

Parameters 

---------- 

a : array_like 

Array to sort. 

kth : int or sequence of ints 

Element index to partition by. The k-th element will be in its 

final sorted position and all smaller elements will be moved 

before it and all larger elements behind it. The order all 

elements in the partitions is undefined. If provided with a 

sequence of k-th it will partition all of them into their sorted 

position at once. 

axis : int or None, optional 

Axis along which to sort. The default is -1 (the last axis). If 

None, the flattened array is used. 

kind : {'introselect'}, optional 

Selection algorithm. Default is 'introselect' 

order : str or list of str, optional 

When `a` is an array with fields defined, this argument 

specifies which fields to compare first, second, etc. A single 

field can be specified as a string, and not all fields need be 

specified, but unspecified fields will still be used, in the 

order in which they come up in the dtype, to break ties. 

 

Returns 

------- 

index_array : ndarray, int 

Array of indices that partition `a` along the specified axis. 

If `a` is one-dimensional, ``a[index_array]`` yields a partitioned `a`. 

More generally, ``np.take_along_axis(a, index_array, axis=a)`` always 

yields the partitioned `a`, irrespective of dimensionality. 

 

See Also 

-------- 

partition : Describes partition algorithms used. 

ndarray.partition : Inplace partition. 

argsort : Full indirect sort 

 

Notes 

----- 

See `partition` for notes on the different selection algorithms. 

 

Examples 

-------- 

One dimensional array: 

 

>>> x = np.array([3, 4, 2, 1]) 

>>> x[np.argpartition(x, 3)] 

array([2, 1, 3, 4]) 

>>> x[np.argpartition(x, (1, 3))] 

array([1, 2, 3, 4]) 

 

>>> x = [3, 4, 2, 1] 

>>> np.array(x)[np.argpartition(x, 3)] 

array([2, 1, 3, 4]) 

 

""" 

return _wrapfunc(a, 'argpartition', kth, axis=axis, kind=kind, order=order) 

 

 

def _sort_dispatcher(a, axis=None, kind=None, order=None): 

return (a,) 

 

 

@array_function_dispatch(_sort_dispatcher) 

def sort(a, axis=-1, kind='quicksort', order=None): 

""" 

Return a sorted copy of an array. 

 

Parameters 

---------- 

a : array_like 

Array to be sorted. 

axis : int or None, optional 

Axis along which to sort. If None, the array is flattened before 

sorting. The default is -1, which sorts along the last axis. 

kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional 

Sorting algorithm. Default is 'quicksort'. 

order : str or list of str, optional 

When `a` is an array with fields defined, this argument specifies 

which fields to compare first, second, etc. A single field can 

be specified as a string, and not all fields need be specified, 

but unspecified fields will still be used, in the order in which 

they come up in the dtype, to break ties. 

 

Returns 

------- 

sorted_array : ndarray 

Array of the same type and shape as `a`. 

 

See Also 

-------- 

ndarray.sort : Method to sort an array in-place. 

argsort : Indirect sort. 

lexsort : Indirect stable sort on multiple keys. 

searchsorted : Find elements in a sorted array. 

partition : Partial sort. 

 

Notes 

----- 

The various sorting algorithms are characterized by their average speed, 

worst case performance, work space size, and whether they are stable. A 

stable sort keeps items with the same key in the same relative 

order. The three available algorithms have the following 

properties: 

 

=========== ======= ============= ============ ======== 

kind speed worst case work space stable 

=========== ======= ============= ============ ======== 

'quicksort' 1 O(n^2) 0 no 

'mergesort' 2 O(n*log(n)) ~n/2 yes 

'heapsort' 3 O(n*log(n)) 0 no 

=========== ======= ============= ============ ======== 

 

All the sort algorithms make temporary copies of the data when 

sorting along any but the last axis. Consequently, sorting along 

the last axis is faster and uses less space than sorting along 

any other axis. 

 

The sort order for complex numbers is lexicographic. If both the real 

and imaginary parts are non-nan then the order is determined by the 

real parts except when they are equal, in which case the order is 

determined by the imaginary parts. 

 

Previous to numpy 1.4.0 sorting real and complex arrays containing nan 

values led to undefined behaviour. In numpy versions >= 1.4.0 nan 

values are sorted to the end. The extended sort order is: 

 

* Real: [R, nan] 

* Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj] 

 

where R is a non-nan real value. Complex values with the same nan 

placements are sorted according to the non-nan part if it exists. 

Non-nan values are sorted as before. 

 

.. versionadded:: 1.12.0 

 

quicksort has been changed to an introsort which will switch 

heapsort when it does not make enough progress. This makes its 

worst case O(n*log(n)). 

 

'stable' automatically choses the best stable sorting algorithm 

for the data type being sorted. It is currently mapped to 

merge sort. 

 

Examples 

-------- 

>>> a = np.array([[1,4],[3,1]]) 

>>> np.sort(a) # sort along the last axis 

array([[1, 4], 

[1, 3]]) 

>>> np.sort(a, axis=None) # sort the flattened array 

array([1, 1, 3, 4]) 

>>> np.sort(a, axis=0) # sort along the first axis 

array([[1, 1], 

[3, 4]]) 

 

Use the `order` keyword to specify a field to use when sorting a 

structured array: 

 

>>> dtype = [('name', 'S10'), ('height', float), ('age', int)] 

>>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38), 

... ('Galahad', 1.7, 38)] 

>>> a = np.array(values, dtype=dtype) # create a structured array 

>>> np.sort(a, order='height') # doctest: +SKIP 

array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), 

('Lancelot', 1.8999999999999999, 38)], 

dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) 

 

Sort by age, then height if ages are equal: 

 

>>> np.sort(a, order=['age', 'height']) # doctest: +SKIP 

array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38), 

('Arthur', 1.8, 41)], 

dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) 

 

""" 

if axis is None: 

# flatten returns (1, N) for np.matrix, so always use the last axis 

a = asanyarray(a).flatten() 

axis = -1 

else: 

a = asanyarray(a).copy(order="K") 

a.sort(axis=axis, kind=kind, order=order) 

return a 

 

 

def _argsort_dispatcher(a, axis=None, kind=None, order=None): 

return (a,) 

 

 

@array_function_dispatch(_argsort_dispatcher) 

def argsort(a, axis=-1, kind='quicksort', order=None): 

""" 

Returns the indices that would sort an array. 

 

Perform an indirect sort along the given axis using the algorithm specified 

by the `kind` keyword. It returns an array of indices of the same shape as 

`a` that index data along the given axis in sorted order. 

 

Parameters 

---------- 

a : array_like 

Array to sort. 

axis : int or None, optional 

Axis along which to sort. The default is -1 (the last axis). If None, 

the flattened array is used. 

kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional 

Sorting algorithm. 

order : str or list of str, optional 

When `a` is an array with fields defined, this argument specifies 

which fields to compare first, second, etc. A single field can 

be specified as a string, and not all fields need be specified, 

but unspecified fields will still be used, in the order in which 

they come up in the dtype, to break ties. 

 

Returns 

------- 

index_array : ndarray, int 

Array of indices that sort `a` along the specified axis. 

If `a` is one-dimensional, ``a[index_array]`` yields a sorted `a`. 

More generally, ``np.take_along_axis(a, index_array, axis=a)`` always 

yields the sorted `a`, irrespective of dimensionality. 

 

See Also 

-------- 

sort : Describes sorting algorithms used. 

lexsort : Indirect stable sort with multiple keys. 

ndarray.sort : Inplace sort. 

argpartition : Indirect partial sort. 

 

Notes 

----- 

See `sort` for notes on the different sorting algorithms. 

 

As of NumPy 1.4.0 `argsort` works with real/complex arrays containing 

nan values. The enhanced sort order is documented in `sort`. 

 

Examples 

-------- 

One dimensional array: 

 

>>> x = np.array([3, 1, 2]) 

>>> np.argsort(x) 

array([1, 2, 0]) 

 

Two-dimensional array: 

 

>>> x = np.array([[0, 3], [2, 2]]) 

>>> x 

array([[0, 3], 

[2, 2]]) 

 

>>> np.argsort(x, axis=0) # sorts along first axis (down) 

array([[0, 1], 

[1, 0]]) 

 

>>> np.argsort(x, axis=1) # sorts along last axis (across) 

array([[0, 1], 

[0, 1]]) 

 

Indices of the sorted elements of a N-dimensional array: 

 

>>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape) 

>>> ind 

(array([0, 1, 1, 0]), array([0, 0, 1, 1])) 

>>> x[ind] # same as np.sort(x, axis=None) 

array([0, 2, 2, 3]) 

 

Sorting with keys: 

 

>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')]) 

>>> x 

array([(1, 0), (0, 1)], 

dtype=[('x', '<i4'), ('y', '<i4')]) 

 

>>> np.argsort(x, order=('x','y')) 

array([1, 0]) 

 

>>> np.argsort(x, order=('y','x')) 

array([0, 1]) 

 

""" 

return _wrapfunc(a, 'argsort', axis=axis, kind=kind, order=order) 

 

 

def _argmax_dispatcher(a, axis=None, out=None): 

return (a, out) 

 

 

@array_function_dispatch(_argmax_dispatcher) 

def argmax(a, axis=None, out=None): 

""" 

Returns the indices of the maximum values along an axis. 

 

Parameters 

---------- 

a : array_like 

Input array. 

axis : int, optional 

By default, the index is into the flattened array, otherwise 

along the specified axis. 

out : array, optional 

If provided, the result will be inserted into this array. It should 

be of the appropriate shape and dtype. 

 

Returns 

------- 

index_array : ndarray of ints 

Array of indices into the array. It has the same shape as `a.shape` 

with the dimension along `axis` removed. 

 

See Also 

-------- 

ndarray.argmax, argmin 

amax : The maximum value along a given axis. 

unravel_index : Convert a flat index into an index tuple. 

 

Notes 

----- 

In case of multiple occurrences of the maximum values, the indices 

corresponding to the first occurrence are returned. 

 

Examples 

-------- 

>>> a = np.arange(6).reshape(2,3) + 10 

>>> a 

array([[10, 11, 12], 

[13, 14, 15]]) 

>>> np.argmax(a) 

5 

>>> np.argmax(a, axis=0) 

array([1, 1, 1]) 

>>> np.argmax(a, axis=1) 

array([2, 2]) 

 

Indexes of the maximal elements of a N-dimensional array: 

 

>>> ind = np.unravel_index(np.argmax(a, axis=None), a.shape) 

>>> ind 

(1, 2) 

>>> a[ind] 

15 

 

>>> b = np.arange(6) 

>>> b[1] = 5 

>>> b 

array([0, 5, 2, 3, 4, 5]) 

>>> np.argmax(b) # Only the first occurrence is returned. 

1 

 

""" 

return _wrapfunc(a, 'argmax', axis=axis, out=out) 

 

 

def _argmin_dispatcher(a, axis=None, out=None): 

return (a, out) 

 

 

@array_function_dispatch(_argmin_dispatcher) 

def argmin(a, axis=None, out=None): 

""" 

Returns the indices of the minimum values along an axis. 

 

Parameters 

---------- 

a : array_like 

Input array. 

axis : int, optional 

By default, the index is into the flattened array, otherwise 

along the specified axis. 

out : array, optional 

If provided, the result will be inserted into this array. It should 

be of the appropriate shape and dtype. 

 

Returns 

------- 

index_array : ndarray of ints 

Array of indices into the array. It has the same shape as `a.shape` 

with the dimension along `axis` removed. 

 

See Also 

-------- 

ndarray.argmin, argmax 

amin : The minimum value along a given axis. 

unravel_index : Convert a flat index into an index tuple. 

 

Notes 

----- 

In case of multiple occurrences of the minimum values, the indices 

corresponding to the first occurrence are returned. 

 

Examples 

-------- 

>>> a = np.arange(6).reshape(2,3) + 10 

>>> a 

array([[10, 11, 12], 

[13, 14, 15]]) 

>>> np.argmin(a) 

0 

>>> np.argmin(a, axis=0) 

array([0, 0, 0]) 

>>> np.argmin(a, axis=1) 

array([0, 0]) 

 

Indices of the minimum elements of a N-dimensional array: 

 

>>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape) 

>>> ind 

(0, 0) 

>>> a[ind] 

10 

 

>>> b = np.arange(6) + 10 

>>> b[4] = 10 

>>> b 

array([10, 11, 12, 13, 10, 15]) 

>>> np.argmin(b) # Only the first occurrence is returned. 

0 

 

""" 

return _wrapfunc(a, 'argmin', axis=axis, out=out) 

 

 

def _searchsorted_dispatcher(a, v, side=None, sorter=None): 

return (a, v, sorter) 

 

 

@array_function_dispatch(_searchsorted_dispatcher) 

def searchsorted(a, v, side='left', sorter=None): 

""" 

Find indices where elements should be inserted to maintain order. 

 

Find the indices into a sorted array `a` such that, if the 

corresponding elements in `v` were inserted before the indices, the 

order of `a` would be preserved. 

 

Assuming that `a` is sorted: 

 

====== ============================ 

`side` returned index `i` satisfies 

====== ============================ 

left ``a[i-1] < v <= a[i]`` 

right ``a[i-1] <= v < a[i]`` 

====== ============================ 

 

Parameters 

---------- 

a : 1-D array_like 

Input array. If `sorter` is None, then it must be sorted in 

ascending order, otherwise `sorter` must be an array of indices 

that sort it. 

v : array_like 

Values to insert into `a`. 

side : {'left', 'right'}, optional 

If 'left', the index of the first suitable location found is given. 

If 'right', return the last such index. If there is no suitable 

index, return either 0 or N (where N is the length of `a`). 

sorter : 1-D array_like, optional 

Optional array of integer indices that sort array a into ascending 

order. They are typically the result of argsort. 

 

.. versionadded:: 1.7.0 

 

Returns 

------- 

indices : array of ints 

Array of insertion points with the same shape as `v`. 

 

See Also 

-------- 

sort : Return a sorted copy of an array. 

histogram : Produce histogram from 1-D data. 

 

Notes 

----- 

Binary search is used to find the required insertion points. 

 

As of NumPy 1.4.0 `searchsorted` works with real/complex arrays containing 

`nan` values. The enhanced sort order is documented in `sort`. 

 

This function is a faster version of the builtin python `bisect.bisect_left` 

(``side='left'``) and `bisect.bisect_right` (``side='right'``) functions, 

which is also vectorized in the `v` argument. 

 

Examples 

-------- 

>>> np.searchsorted([1,2,3,4,5], 3) 

2 

>>> np.searchsorted([1,2,3,4,5], 3, side='right') 

3 

>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3]) 

array([0, 5, 1, 2]) 

 

""" 

return _wrapfunc(a, 'searchsorted', v, side=side, sorter=sorter) 

 

 

def _resize_dispatcher(a, new_shape): 

return (a,) 

 

 

@array_function_dispatch(_resize_dispatcher) 

def resize(a, new_shape): 

""" 

Return a new array with the specified shape. 

 

If the new array is larger than the original array, then the new 

array is filled with repeated copies of `a`. Note that this behavior 

is different from a.resize(new_shape) which fills with zeros instead 

of repeated copies of `a`. 

 

Parameters 

---------- 

a : array_like 

Array to be resized. 

 

new_shape : int or tuple of int 

Shape of resized array. 

 

Returns 

------- 

reshaped_array : ndarray 

The new array is formed from the data in the old array, repeated 

if necessary to fill out the required number of elements. The 

data are repeated in the order that they are stored in memory. 

 

See Also 

-------- 

ndarray.resize : resize an array in-place. 

 

Notes 

----- 

Warning: This functionality does **not** consider axes separately, 

i.e. it does not apply interpolation/extrapolation. 

It fills the return array with the required number of elements, taken 

from `a` as they are laid out in memory, disregarding strides and axes. 

(This is in case the new shape is smaller. For larger, see above.) 

This functionality is therefore not suitable to resize images, 

or data where each axis represents a separate and distinct entity. 

 

Examples 

-------- 

>>> a=np.array([[0,1],[2,3]]) 

>>> np.resize(a,(2,3)) 

array([[0, 1, 2], 

[3, 0, 1]]) 

>>> np.resize(a,(1,4)) 

array([[0, 1, 2, 3]]) 

>>> np.resize(a,(2,4)) 

array([[0, 1, 2, 3], 

[0, 1, 2, 3]]) 

 

""" 

if isinstance(new_shape, (int, nt.integer)): 

new_shape = (new_shape,) 

a = ravel(a) 

Na = len(a) 

total_size = um.multiply.reduce(new_shape) 

if Na == 0 or total_size == 0: 

return mu.zeros(new_shape, a.dtype) 

 

n_copies = int(total_size / Na) 

extra = total_size % Na 

 

if extra != 0: 

n_copies = n_copies + 1 

extra = Na - extra 

 

a = concatenate((a,) * n_copies) 

if extra > 0: 

a = a[:-extra] 

 

return reshape(a, new_shape) 

 

 

def _squeeze_dispatcher(a, axis=None): 

return (a,) 

 

 

@array_function_dispatch(_squeeze_dispatcher) 

def squeeze(a, axis=None): 

""" 

Remove single-dimensional entries from the shape of an array. 

 

Parameters 

---------- 

a : array_like 

Input data. 

axis : None or int or tuple of ints, optional 

.. versionadded:: 1.7.0 

 

Selects a subset of the single-dimensional entries in the 

shape. If an axis is selected with shape entry greater than 

one, an error is raised. 

 

Returns 

------- 

squeezed : ndarray 

The input array, but with all or a subset of the 

dimensions of length 1 removed. This is always `a` itself 

or a view into `a`. 

 

Raises 

------ 

ValueError 

If `axis` is not `None`, and an axis being squeezed is not of length 1 

 

See Also 

-------- 

expand_dims : The inverse operation, adding singleton dimensions 

reshape : Insert, remove, and combine dimensions, and resize existing ones 

 

Examples 

-------- 

>>> x = np.array([[[0], [1], [2]]]) 

>>> x.shape 

(1, 3, 1) 

>>> np.squeeze(x).shape 

(3,) 

>>> np.squeeze(x, axis=0).shape 

(3, 1) 

>>> np.squeeze(x, axis=1).shape 

Traceback (most recent call last): 

... 

ValueError: cannot select an axis to squeeze out which has size not equal to one 

>>> np.squeeze(x, axis=2).shape 

(1, 3) 

 

""" 

try: 

squeeze = a.squeeze 

except AttributeError: 

return _wrapit(a, 'squeeze') 

if axis is None: 

return squeeze() 

else: 

return squeeze(axis=axis) 

 

 

def _diagonal_dispatcher(a, offset=None, axis1=None, axis2=None): 

return (a,) 

 

 

@array_function_dispatch(_diagonal_dispatcher) 

def diagonal(a, offset=0, axis1=0, axis2=1): 

""" 

Return specified diagonals. 

 

If `a` is 2-D, returns the diagonal of `a` with the given offset, 

i.e., the collection of elements of the form ``a[i, i+offset]``. If 

`a` has more than two dimensions, then the axes specified by `axis1` 

and `axis2` are used to determine the 2-D sub-array whose diagonal is 

returned. The shape of the resulting array can be determined by 

removing `axis1` and `axis2` and appending an index to the right equal 

to the size of the resulting diagonals. 

 

In versions of NumPy prior to 1.7, this function always returned a new, 

independent array containing a copy of the values in the diagonal. 

 

In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal, 

but depending on this fact is deprecated. Writing to the resulting 

array continues to work as it used to, but a FutureWarning is issued. 

 

Starting in NumPy 1.9 it returns a read-only view on the original array. 

Attempting to write to the resulting array will produce an error. 

 

In some future release, it will return a read/write view and writing to 

the returned array will alter your original array. The returned array 

will have the same type as the input array. 

 

If you don't write to the array returned by this function, then you can 

just ignore all of the above. 

 

If you depend on the current behavior, then we suggest copying the 

returned array explicitly, i.e., use ``np.diagonal(a).copy()`` instead 

of just ``np.diagonal(a)``. This will work with both past and future 

versions of NumPy. 

 

Parameters 

---------- 

a : array_like 

Array from which the diagonals are taken. 

offset : int, optional 

Offset of the diagonal from the main diagonal. Can be positive or 

negative. Defaults to main diagonal (0). 

axis1 : int, optional 

Axis to be used as the first axis of the 2-D sub-arrays from which 

the diagonals should be taken. Defaults to first axis (0). 

axis2 : int, optional 

Axis to be used as the second axis of the 2-D sub-arrays from 

which the diagonals should be taken. Defaults to second axis (1). 

 

Returns 

------- 

array_of_diagonals : ndarray 

If `a` is 2-D, then a 1-D array containing the diagonal and of the 

same type as `a` is returned unless `a` is a `matrix`, in which case 

a 1-D array rather than a (2-D) `matrix` is returned in order to 

maintain backward compatibility. 

 

If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2` 

are removed, and a new axis inserted at the end corresponding to the 

diagonal. 

 

Raises 

------ 

ValueError 

If the dimension of `a` is less than 2. 

 

See Also 

-------- 

diag : MATLAB work-a-like for 1-D and 2-D arrays. 

diagflat : Create diagonal arrays. 

trace : Sum along diagonals. 

 

Examples 

-------- 

>>> a = np.arange(4).reshape(2,2) 

>>> a 

array([[0, 1], 

[2, 3]]) 

>>> a.diagonal() 

array([0, 3]) 

>>> a.diagonal(1) 

array([1]) 

 

A 3-D example: 

 

>>> a = np.arange(8).reshape(2,2,2); a 

array([[[0, 1], 

[2, 3]], 

[[4, 5], 

[6, 7]]]) 

>>> a.diagonal(0, # Main diagonals of two arrays created by skipping 

... 0, # across the outer(left)-most axis last and 

... 1) # the "middle" (row) axis first. 

array([[0, 6], 

[1, 7]]) 

 

The sub-arrays whose main diagonals we just obtained; note that each 

corresponds to fixing the right-most (column) axis, and that the 

diagonals are "packed" in rows. 

 

>>> a[:,:,0] # main diagonal is [0 6] 

array([[0, 2], 

[4, 6]]) 

>>> a[:,:,1] # main diagonal is [1 7] 

array([[1, 3], 

[5, 7]]) 

 

""" 

if isinstance(a, np.matrix): 

# Make diagonal of matrix 1-D to preserve backward compatibility. 

return asarray(a).diagonal(offset=offset, axis1=axis1, axis2=axis2) 

else: 

return asanyarray(a).diagonal(offset=offset, axis1=axis1, axis2=axis2) 

 

 

def _trace_dispatcher( 

a, offset=None, axis1=None, axis2=None, dtype=None, out=None): 

return (a, out) 

 

 

@array_function_dispatch(_trace_dispatcher) 

def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None): 

""" 

Return the sum along diagonals of the array. 

 

If `a` is 2-D, the sum along its diagonal with the given offset 

is returned, i.e., the sum of elements ``a[i,i+offset]`` for all i. 

 

If `a` has more than two dimensions, then the axes specified by axis1 and 

axis2 are used to determine the 2-D sub-arrays whose traces are returned. 

The shape of the resulting array is the same as that of `a` with `axis1` 

and `axis2` removed. 

 

Parameters 

---------- 

a : array_like 

Input array, from which the diagonals are taken. 

offset : int, optional 

Offset of the diagonal from the main diagonal. Can be both positive 

and negative. Defaults to 0. 

axis1, axis2 : int, optional 

Axes to be used as the first and second axis of the 2-D sub-arrays 

from which the diagonals should be taken. Defaults are the first two 

axes of `a`. 

dtype : dtype, optional 

Determines the data-type of the returned array and of the accumulator 

where the elements are summed. If dtype has the value None and `a` is 

of integer type of precision less than the default integer 

precision, then the default integer precision is used. Otherwise, 

the precision is the same as that of `a`. 

out : ndarray, optional 

Array into which the output is placed. Its type is preserved and 

it must be of the right shape to hold the output. 

 

Returns 

------- 

sum_along_diagonals : ndarray 

If `a` is 2-D, the sum along the diagonal is returned. If `a` has 

larger dimensions, then an array of sums along diagonals is returned. 

 

See Also 

-------- 

diag, diagonal, diagflat 

 

Examples 

-------- 

>>> np.trace(np.eye(3)) 

3.0 

>>> a = np.arange(8).reshape((2,2,2)) 

>>> np.trace(a) 

array([6, 8]) 

 

>>> a = np.arange(24).reshape((2,2,2,3)) 

>>> np.trace(a).shape 

(2, 3) 

 

""" 

if isinstance(a, np.matrix): 

# Get trace of matrix via an array to preserve backward compatibility. 

return asarray(a).trace(offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=out) 

else: 

return asanyarray(a).trace(offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=out) 

 

 

def _ravel_dispatcher(a, order=None): 

return (a,) 

 

 

@array_function_dispatch(_ravel_dispatcher) 

def ravel(a, order='C'): 

"""Return a contiguous flattened array. 

 

A 1-D array, containing the elements of the input, is returned. A copy is 

made only if needed. 

 

As of NumPy 1.10, the returned array will have the same type as the input 

array. (for example, a masked array will be returned for a masked array 

input) 

 

Parameters 

---------- 

a : array_like 

Input array. The elements in `a` are read in the order specified by 

`order`, and packed as a 1-D array. 

order : {'C','F', 'A', 'K'}, optional 

 

The elements of `a` are read using this index order. 'C' means 

to index the elements in row-major, C-style order, 

with the last axis index changing fastest, back to the first 

axis index changing slowest. 'F' means to index the elements 

in column-major, Fortran-style order, with the 

first index changing fastest, and the last index changing 

slowest. Note that the 'C' and 'F' options take no account of 

the memory layout of the underlying array, and only refer to 

the order of axis indexing. 'A' means to read the elements in 

Fortran-like index order if `a` is Fortran *contiguous* in 

memory, C-like order otherwise. 'K' means to read the 

elements in the order they occur in memory, except for 

reversing the data when strides are negative. By default, 'C' 

index order is used. 

 

Returns 

------- 

y : array_like 

y is an array of the same subtype as `a`, with shape ``(a.size,)``. 

Note that matrices are special cased for backward compatibility, if `a` 

is a matrix, then y is a 1-D ndarray. 

 

See Also 

-------- 

ndarray.flat : 1-D iterator over an array. 

ndarray.flatten : 1-D array copy of the elements of an array 

in row-major order. 

ndarray.reshape : Change the shape of an array without changing its data. 

 

Notes 

----- 

In row-major, C-style order, in two dimensions, the row index 

varies the slowest, and the column index the quickest. This can 

be generalized to multiple dimensions, where row-major order 

implies that the index along the first axis varies slowest, and 

the index along the last quickest. The opposite holds for 

column-major, Fortran-style index ordering. 

 

When a view is desired in as many cases as possible, ``arr.reshape(-1)`` 

may be preferable. 

 

Examples 

-------- 

It is equivalent to ``reshape(-1, order=order)``. 

 

>>> x = np.array([[1, 2, 3], [4, 5, 6]]) 

>>> print(np.ravel(x)) 

[1 2 3 4 5 6] 

 

>>> print(x.reshape(-1)) 

[1 2 3 4 5 6] 

 

>>> print(np.ravel(x, order='F')) 

[1 4 2 5 3 6] 

 

When ``order`` is 'A', it will preserve the array's 'C' or 'F' ordering: 

 

>>> print(np.ravel(x.T)) 

[1 4 2 5 3 6] 

>>> print(np.ravel(x.T, order='A')) 

[1 2 3 4 5 6] 

 

When ``order`` is 'K', it will preserve orderings that are neither 'C' 

nor 'F', but won't reverse axes: 

 

>>> a = np.arange(3)[::-1]; a 

array([2, 1, 0]) 

>>> a.ravel(order='C') 

array([2, 1, 0]) 

>>> a.ravel(order='K') 

array([2, 1, 0]) 

 

>>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a 

array([[[ 0, 2, 4], 

[ 1, 3, 5]], 

[[ 6, 8, 10], 

[ 7, 9, 11]]]) 

>>> a.ravel(order='C') 

array([ 0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11]) 

>>> a.ravel(order='K') 

array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) 

 

""" 

if isinstance(a, np.matrix): 

return asarray(a).ravel(order=order) 

else: 

return asanyarray(a).ravel(order=order) 

 

 

def _nonzero_dispatcher(a): 

return (a,) 

 

 

@array_function_dispatch(_nonzero_dispatcher) 

def nonzero(a): 

""" 

Return the indices of the elements that are non-zero. 

 

Returns a tuple of arrays, one for each dimension of `a`, 

containing the indices of the non-zero elements in that 

dimension. The values in `a` are always tested and returned in 

row-major, C-style order. The corresponding non-zero 

values can be obtained with:: 

 

a[nonzero(a)] 

 

To group the indices by element, rather than dimension, use:: 

 

transpose(nonzero(a)) 

 

The result of this is always a 2-D array, with a row for 

each non-zero element. 

 

Parameters 

---------- 

a : array_like 

Input array. 

 

Returns 

------- 

tuple_of_arrays : tuple 

Indices of elements that are non-zero. 

 

See Also 

-------- 

flatnonzero : 

Return indices that are non-zero in the flattened version of the input 

array. 

ndarray.nonzero : 

Equivalent ndarray method. 

count_nonzero : 

Counts the number of non-zero elements in the input array. 

 

Examples 

-------- 

>>> x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]]) 

>>> x 

array([[3, 0, 0], 

[0, 4, 0], 

[5, 6, 0]]) 

>>> np.nonzero(x) 

(array([0, 1, 2, 2]), array([0, 1, 0, 1])) 

 

>>> x[np.nonzero(x)] 

array([3, 4, 5, 6]) 

>>> np.transpose(np.nonzero(x)) 

array([[0, 0], 

[1, 1], 

[2, 0], 

[2, 1]) 

 

A common use for ``nonzero`` is to find the indices of an array, where 

a condition is True. Given an array `a`, the condition `a` > 3 is a 

boolean array and since False is interpreted as 0, np.nonzero(a > 3) 

yields the indices of the `a` where the condition is true. 

 

>>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 

>>> a > 3 

array([[False, False, False], 

[ True, True, True], 

[ True, True, True]]) 

>>> np.nonzero(a > 3) 

(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) 

 

Using this result to index `a` is equivalent to using the mask directly: 

 

>>> a[np.nonzero(a > 3)] 

array([4, 5, 6, 7, 8, 9]) 

>>> a[a > 3] # prefer this spelling 

array([4, 5, 6, 7, 8, 9]) 

 

``nonzero`` can also be called as a method of the array. 

 

>>> (a > 3).nonzero() 

(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) 

 

""" 

return _wrapfunc(a, 'nonzero') 

 

 

def _shape_dispatcher(a): 

return (a,) 

 

 

@array_function_dispatch(_shape_dispatcher) 

def shape(a): 

""" 

Return the shape of an array. 

 

Parameters 

---------- 

a : array_like 

Input array. 

 

Returns 

------- 

shape : tuple of ints 

The elements of the shape tuple give the lengths of the 

corresponding array dimensions. 

 

See Also 

-------- 

alen 

ndarray.shape : Equivalent array method. 

 

Examples 

-------- 

>>> np.shape(np.eye(3)) 

(3, 3) 

>>> np.shape([[1, 2]]) 

(1, 2) 

>>> np.shape([0]) 

(1,) 

>>> np.shape(0) 

() 

 

>>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) 

>>> np.shape(a) 

(2,) 

>>> a.shape 

(2,) 

 

""" 

try: 

result = a.shape 

except AttributeError: 

result = asarray(a).shape 

return result 

 

 

def _compress_dispatcher(condition, a, axis=None, out=None): 

return (condition, a, out) 

 

 

@array_function_dispatch(_compress_dispatcher) 

def compress(condition, a, axis=None, out=None): 

""" 

Return selected slices of an array along given axis. 

 

When working along a given axis, a slice along that axis is returned in 

`output` for each index where `condition` evaluates to True. When 

working on a 1-D array, `compress` is equivalent to `extract`. 

 

Parameters 

---------- 

condition : 1-D array of bools 

Array that selects which entries to return. If len(condition) 

is less than the size of `a` along the given axis, then output is 

truncated to the length of the condition array. 

a : array_like 

Array from which to extract a part. 

axis : int, optional 

Axis along which to take slices. If None (default), work on the 

flattened array. 

out : ndarray, optional 

Output array. Its type is preserved and it must be of the right 

shape to hold the output. 

 

Returns 

------- 

compressed_array : ndarray 

A copy of `a` without the slices along axis for which `condition` 

is false. 

 

See Also 

-------- 

take, choose, diag, diagonal, select 

ndarray.compress : Equivalent method in ndarray 

np.extract: Equivalent method when working on 1-D arrays 

numpy.doc.ufuncs : Section "Output arguments" 

 

Examples 

-------- 

>>> a = np.array([[1, 2], [3, 4], [5, 6]]) 

>>> a 

array([[1, 2], 

[3, 4], 

[5, 6]]) 

>>> np.compress([0, 1], a, axis=0) 

array([[3, 4]]) 

>>> np.compress([False, True, True], a, axis=0) 

array([[3, 4], 

[5, 6]]) 

>>> np.compress([False, True], a, axis=1) 

array([[2], 

[4], 

[6]]) 

 

Working on the flattened array does not return slices along an axis but 

selects elements. 

 

>>> np.compress([False, True], a) 

array([2]) 

 

""" 

return _wrapfunc(a, 'compress', condition, axis=axis, out=out) 

 

 

def _clip_dispatcher(a, a_min, a_max, out=None): 

return (a, a_min, a_max) 

 

 

@array_function_dispatch(_clip_dispatcher) 

def clip(a, a_min, a_max, out=None): 

""" 

Clip (limit) the values in an array. 

 

Given an interval, values outside the interval are clipped to 

the interval edges. For example, if an interval of ``[0, 1]`` 

is specified, values smaller than 0 become 0, and values larger 

than 1 become 1. 

 

Parameters 

---------- 

a : array_like 

Array containing elements to clip. 

a_min : scalar or array_like or `None` 

Minimum value. If `None`, clipping is not performed on lower 

interval edge. Not more than one of `a_min` and `a_max` may be 

`None`. 

a_max : scalar or array_like or `None` 

Maximum value. If `None`, clipping is not performed on upper 

interval edge. Not more than one of `a_min` and `a_max` may be 

`None`. If `a_min` or `a_max` are array_like, then the three 

arrays will be broadcasted to match their shapes. 

out : ndarray, optional 

The results will be placed in this array. It may be the input 

array for in-place clipping. `out` must be of the right shape 

to hold the output. Its type is preserved. 

 

Returns 

------- 

clipped_array : ndarray 

An array with the elements of `a`, but where values 

< `a_min` are replaced with `a_min`, and those > `a_max` 

with `a_max`. 

 

See Also 

-------- 

numpy.doc.ufuncs : Section "Output arguments" 

 

Examples 

-------- 

>>> a = np.arange(10) 

>>> np.clip(a, 1, 8) 

array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) 

>>> a 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

>>> np.clip(a, 3, 6, out=a) 

array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) 

>>> a = np.arange(10) 

>>> a 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

>>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8) 

array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8]) 

 

""" 

return _wrapfunc(a, 'clip', a_min, a_max, out=out) 

 

 

def _sum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, 

initial=None): 

return (a, out) 

 

 

@array_function_dispatch(_sum_dispatcher) 

def sum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, initial=np._NoValue): 

""" 

Sum of array elements over a given axis. 

 

Parameters 

---------- 

a : array_like 

Elements to sum. 

axis : None or int or tuple of ints, optional 

Axis or axes along which a sum is performed. The default, 

axis=None, will sum all of the elements of the input array. If 

axis is negative it counts from the last to the first axis. 

 

.. versionadded:: 1.7.0 

 

If axis is a tuple of ints, a sum is performed on all of the axes 

specified in the tuple instead of a single axis or all the axes as 

before. 

dtype : dtype, optional 

The type of the returned array and of the accumulator in which the 

elements are summed. The dtype of `a` is used by default unless `a` 

has an integer dtype of less precision than the default platform 

integer. In that case, if `a` is signed then the platform integer 

is used while if `a` is unsigned then an unsigned integer of the 

same precision as the platform integer is used. 

out : ndarray, optional 

Alternative output array in which to place the result. It must have 

the same shape as the expected output, but the type of the output 

values will be cast if necessary. 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the input array. 

 

If the default value is passed, then `keepdims` will not be 

passed through to the `sum` method of sub-classes of 

`ndarray`, however any non-default value will be. If the 

sub-class' method does not implement `keepdims` any 

exceptions will be raised. 

initial : scalar, optional 

Starting value for the sum. See `~numpy.ufunc.reduce` for details. 

 

.. versionadded:: 1.15.0 

 

Returns 

------- 

sum_along_axis : ndarray 

An array with the same shape as `a`, with the specified 

axis removed. If `a` is a 0-d array, or if `axis` is None, a scalar 

is returned. If an output array is specified, a reference to 

`out` is returned. 

 

See Also 

-------- 

ndarray.sum : Equivalent method. 

 

cumsum : Cumulative sum of array elements. 

 

trapz : Integration of array values using the composite trapezoidal rule. 

 

mean, average 

 

Notes 

----- 

Arithmetic is modular when using integer types, and no error is 

raised on overflow. 

 

The sum of an empty array is the neutral element 0: 

 

>>> np.sum([]) 

0.0 

 

Examples 

-------- 

>>> np.sum([0.5, 1.5]) 

2.0 

>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32) 

1 

>>> np.sum([[0, 1], [0, 5]]) 

6 

>>> np.sum([[0, 1], [0, 5]], axis=0) 

array([0, 6]) 

>>> np.sum([[0, 1], [0, 5]], axis=1) 

array([1, 5]) 

 

If the accumulator is too small, overflow occurs: 

 

>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) 

-128 

 

You can also start the sum with a value other than zero: 

 

>>> np.sum([10], initial=5) 

15 

""" 

if isinstance(a, _gentype): 

# 2018-02-25, 1.15.0 

warnings.warn( 

"Calling np.sum(generator) is deprecated, and in the future will give a different result. " 

"Use np.sum(np.fromiter(generator)) or the python sum builtin instead.", 

DeprecationWarning, stacklevel=2) 

 

res = _sum_(a) 

if out is not None: 

out[...] = res 

return out 

return res 

 

return _wrapreduction(a, np.add, 'sum', axis, dtype, out, keepdims=keepdims, 

initial=initial) 

 

 

def _any_dispatcher(a, axis=None, out=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_any_dispatcher) 

def any(a, axis=None, out=None, keepdims=np._NoValue): 

""" 

Test whether any array element along a given axis evaluates to True. 

 

Returns single boolean unless `axis` is not ``None`` 

 

Parameters 

---------- 

a : array_like 

Input array or object that can be converted to an array. 

axis : None or int or tuple of ints, optional 

Axis or axes along which a logical OR reduction is performed. 

The default (`axis` = `None`) is to perform a logical OR over all 

the dimensions of the input array. `axis` may be negative, in 

which case it counts from the last to the first axis. 

 

.. versionadded:: 1.7.0 

 

If this is a tuple of ints, a reduction is performed on multiple 

axes, instead of a single axis or all the axes as before. 

out : ndarray, optional 

Alternate output array in which to place the result. It must have 

the same shape as the expected output and its type is preserved 

(e.g., if it is of type float, then it will remain so, returning 

1.0 for True and 0.0 for False, regardless of the type of `a`). 

See `doc.ufuncs` (Section "Output arguments") for details. 

 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the input array. 

 

If the default value is passed, then `keepdims` will not be 

passed through to the `any` method of sub-classes of 

`ndarray`, however any non-default value will be. If the 

sub-class' method does not implement `keepdims` any 

exceptions will be raised. 

 

Returns 

------- 

any : bool or ndarray 

A new boolean or `ndarray` is returned unless `out` is specified, 

in which case a reference to `out` is returned. 

 

See Also 

-------- 

ndarray.any : equivalent method 

 

all : Test whether all elements along a given axis evaluate to True. 

 

Notes 

----- 

Not a Number (NaN), positive infinity and negative infinity evaluate 

to `True` because these are not equal to zero. 

 

Examples 

-------- 

>>> np.any([[True, False], [True, True]]) 

True 

 

>>> np.any([[True, False], [False, False]], axis=0) 

array([ True, False]) 

 

>>> np.any([-1, 0, 5]) 

True 

 

>>> np.any(np.nan) 

True 

 

>>> o=np.array([False]) 

>>> z=np.any([-1, 4, 5], out=o) 

>>> z, o 

(array([ True]), array([ True])) 

>>> # Check now that z is a reference to o 

>>> z is o 

True 

>>> id(z), id(o) # identity of z and o # doctest: +SKIP 

(191614240, 191614240) 

 

""" 

return _wrapreduction(a, np.logical_or, 'any', axis, None, out, keepdims=keepdims) 

 

 

def _all_dispatcher(a, axis=None, out=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_all_dispatcher) 

def all(a, axis=None, out=None, keepdims=np._NoValue): 

""" 

Test whether all array elements along a given axis evaluate to True. 

 

Parameters 

---------- 

a : array_like 

Input array or object that can be converted to an array. 

axis : None or int or tuple of ints, optional 

Axis or axes along which a logical AND reduction is performed. 

The default (`axis` = `None`) is to perform a logical AND over all 

the dimensions of the input array. `axis` may be negative, in 

which case it counts from the last to the first axis. 

 

.. versionadded:: 1.7.0 

 

If this is a tuple of ints, a reduction is performed on multiple 

axes, instead of a single axis or all the axes as before. 

out : ndarray, optional 

Alternate output array in which to place the result. 

It must have the same shape as the expected output and its 

type is preserved (e.g., if ``dtype(out)`` is float, the result 

will consist of 0.0's and 1.0's). See `doc.ufuncs` (Section 

"Output arguments") for more details. 

 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the input array. 

 

If the default value is passed, then `keepdims` will not be 

passed through to the `all` method of sub-classes of 

`ndarray`, however any non-default value will be. If the 

sub-class' method does not implement `keepdims` any 

exceptions will be raised. 

 

Returns 

------- 

all : ndarray, bool 

A new boolean or array is returned unless `out` is specified, 

in which case a reference to `out` is returned. 

 

See Also 

-------- 

ndarray.all : equivalent method 

 

any : Test whether any element along a given axis evaluates to True. 

 

Notes 

----- 

Not a Number (NaN), positive infinity and negative infinity 

evaluate to `True` because these are not equal to zero. 

 

Examples 

-------- 

>>> np.all([[True,False],[True,True]]) 

False 

 

>>> np.all([[True,False],[True,True]], axis=0) 

array([ True, False]) 

 

>>> np.all([-1, 4, 5]) 

True 

 

>>> np.all([1.0, np.nan]) 

True 

 

>>> o=np.array([False]) 

>>> z=np.all([-1, 4, 5], out=o) 

>>> id(z), id(o), z # doctest: +SKIP 

(28293632, 28293632, array([ True])) 

 

""" 

return _wrapreduction(a, np.logical_and, 'all', axis, None, out, keepdims=keepdims) 

 

 

def _cumsum_dispatcher(a, axis=None, dtype=None, out=None): 

return (a, out) 

 

 

@array_function_dispatch(_cumsum_dispatcher) 

def cumsum(a, axis=None, dtype=None, out=None): 

""" 

Return the cumulative sum of the elements along a given axis. 

 

Parameters 

---------- 

a : array_like 

Input array. 

axis : int, optional 

Axis along which the cumulative sum is computed. The default 

(None) is to compute the cumsum over the flattened array. 

dtype : dtype, optional 

Type of the returned array and of the accumulator in which the 

elements are summed. If `dtype` is not specified, it defaults 

to the dtype of `a`, unless `a` has an integer dtype with a 

precision less than that of the default platform integer. In 

that case, the default platform integer is used. 

out : ndarray, optional 

Alternative output array in which to place the result. It must 

have the same shape and buffer length as the expected output 

but the type will be cast if necessary. See `doc.ufuncs` 

(Section "Output arguments") for more details. 

 

Returns 

------- 

cumsum_along_axis : ndarray. 

A new array holding the result is returned unless `out` is 

specified, in which case a reference to `out` is returned. The 

result has the same size as `a`, and the same shape as `a` if 

`axis` is not None or `a` is a 1-d array. 

 

 

See Also 

-------- 

sum : Sum array elements. 

 

trapz : Integration of array values using the composite trapezoidal rule. 

 

diff : Calculate the n-th discrete difference along given axis. 

 

Notes 

----- 

Arithmetic is modular when using integer types, and no error is 

raised on overflow. 

 

Examples 

-------- 

>>> a = np.array([[1,2,3], [4,5,6]]) 

>>> a 

array([[1, 2, 3], 

[4, 5, 6]]) 

>>> np.cumsum(a) 

array([ 1, 3, 6, 10, 15, 21]) 

>>> np.cumsum(a, dtype=float) # specifies type of output value(s) 

array([ 1., 3., 6., 10., 15., 21.]) 

 

>>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns 

array([[1, 2, 3], 

[5, 7, 9]]) 

>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows 

array([[ 1, 3, 6], 

[ 4, 9, 15]]) 

 

""" 

return _wrapfunc(a, 'cumsum', axis=axis, dtype=dtype, out=out) 

 

 

def _ptp_dispatcher(a, axis=None, out=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_ptp_dispatcher) 

def ptp(a, axis=None, out=None, keepdims=np._NoValue): 

""" 

Range of values (maximum - minimum) along an axis. 

 

The name of the function comes from the acronym for 'peak to peak'. 

 

Parameters 

---------- 

a : array_like 

Input values. 

axis : None or int or tuple of ints, optional 

Axis along which to find the peaks. By default, flatten the 

array. `axis` may be negative, in 

which case it counts from the last to the first axis. 

 

.. versionadded:: 1.15.0 

 

If this is a tuple of ints, a reduction is performed on multiple 

axes, instead of a single axis or all the axes as before. 

out : array_like 

Alternative output array in which to place the result. It must 

have the same shape and buffer length as the expected output, 

but the type of the output values will be cast if necessary. 

 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the input array. 

 

If the default value is passed, then `keepdims` will not be 

passed through to the `ptp` method of sub-classes of 

`ndarray`, however any non-default value will be. If the 

sub-class' method does not implement `keepdims` any 

exceptions will be raised. 

 

Returns 

------- 

ptp : ndarray 

A new array holding the result, unless `out` was 

specified, in which case a reference to `out` is returned. 

 

Examples 

-------- 

>>> x = np.arange(4).reshape((2,2)) 

>>> x 

array([[0, 1], 

[2, 3]]) 

 

>>> np.ptp(x, axis=0) 

array([2, 2]) 

 

>>> np.ptp(x, axis=1) 

array([1, 1]) 

 

""" 

kwargs = {} 

if keepdims is not np._NoValue: 

kwargs['keepdims'] = keepdims 

if type(a) is not mu.ndarray: 

try: 

ptp = a.ptp 

except AttributeError: 

pass 

else: 

return ptp(axis=axis, out=out, **kwargs) 

return _methods._ptp(a, axis=axis, out=out, **kwargs) 

 

 

def _amax_dispatcher(a, axis=None, out=None, keepdims=None, initial=None): 

return (a, out) 

 

 

@array_function_dispatch(_amax_dispatcher) 

def amax(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue): 

""" 

Return the maximum of an array or maximum along an axis. 

 

Parameters 

---------- 

a : array_like 

Input data. 

axis : None or int or tuple of ints, optional 

Axis or axes along which to operate. By default, flattened input is 

used. 

 

.. versionadded:: 1.7.0 

 

If this is a tuple of ints, the maximum is selected over multiple axes, 

instead of a single axis or all the axes as before. 

out : ndarray, optional 

Alternative output array in which to place the result. Must 

be of the same shape and buffer length as the expected output. 

See `doc.ufuncs` (Section "Output arguments") for more details. 

 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the input array. 

 

If the default value is passed, then `keepdims` will not be 

passed through to the `amax` method of sub-classes of 

`ndarray`, however any non-default value will be. If the 

sub-class' method does not implement `keepdims` any 

exceptions will be raised. 

 

initial : scalar, optional 

The minimum value of an output element. Must be present to allow 

computation on empty slice. See `~numpy.ufunc.reduce` for details. 

 

.. versionadded:: 1.15.0 

 

 

Returns 

------- 

amax : ndarray or scalar 

Maximum of `a`. If `axis` is None, the result is a scalar value. 

If `axis` is given, the result is an array of dimension 

``a.ndim - 1``. 

 

See Also 

-------- 

amin : 

The minimum value of an array along a given axis, propagating any NaNs. 

nanmax : 

The maximum value of an array along a given axis, ignoring any NaNs. 

maximum : 

Element-wise maximum of two arrays, propagating any NaNs. 

fmax : 

Element-wise maximum of two arrays, ignoring any NaNs. 

argmax : 

Return the indices of the maximum values. 

 

nanmin, minimum, fmin 

 

Notes 

----- 

NaN values are propagated, that is if at least one item is NaN, the 

corresponding max value will be NaN as well. To ignore NaN values 

(MATLAB behavior), please use nanmax. 

 

Don't use `amax` for element-wise comparison of 2 arrays; when 

``a.shape[0]`` is 2, ``maximum(a[0], a[1])`` is faster than 

``amax(a, axis=0)``. 

 

Examples 

-------- 

>>> a = np.arange(4).reshape((2,2)) 

>>> a 

array([[0, 1], 

[2, 3]]) 

>>> np.amax(a) # Maximum of the flattened array 

3 

>>> np.amax(a, axis=0) # Maxima along the first axis 

array([2, 3]) 

>>> np.amax(a, axis=1) # Maxima along the second axis 

array([1, 3]) 

 

>>> b = np.arange(5, dtype=float) 

>>> b[2] = np.NaN 

>>> np.amax(b) 

nan 

>>> np.nanmax(b) 

4.0 

 

You can use an initial value to compute the maximum of an empty slice, or 

to initialize it to a different value: 

 

>>> np.max([[-50], [10]], axis=-1, initial=0) 

array([ 0, 10]) 

 

Notice that the initial value is used as one of the elements for which the 

maximum is determined, unlike for the default argument Python's max 

function, which is only used for empty iterables. 

 

>>> np.max([5], initial=6) 

6 

>>> max([5], default=6) 

5 

""" 

return _wrapreduction(a, np.maximum, 'max', axis, None, out, keepdims=keepdims, 

initial=initial) 

 

 

def _amin_dispatcher(a, axis=None, out=None, keepdims=None, initial=None): 

return (a, out) 

 

 

@array_function_dispatch(_amin_dispatcher) 

def amin(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue): 

""" 

Return the minimum of an array or minimum along an axis. 

 

Parameters 

---------- 

a : array_like 

Input data. 

axis : None or int or tuple of ints, optional 

Axis or axes along which to operate. By default, flattened input is 

used. 

 

.. versionadded:: 1.7.0 

 

If this is a tuple of ints, the minimum is selected over multiple axes, 

instead of a single axis or all the axes as before. 

out : ndarray, optional 

Alternative output array in which to place the result. Must 

be of the same shape and buffer length as the expected output. 

See `doc.ufuncs` (Section "Output arguments") for more details. 

 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the input array. 

 

If the default value is passed, then `keepdims` will not be 

passed through to the `amin` method of sub-classes of 

`ndarray`, however any non-default value will be. If the 

sub-class' method does not implement `keepdims` any 

exceptions will be raised. 

 

initial : scalar, optional 

The maximum value of an output element. Must be present to allow 

computation on empty slice. See `~numpy.ufunc.reduce` for details. 

 

.. versionadded:: 1.15.0 

 

Returns 

------- 

amin : ndarray or scalar 

Minimum of `a`. If `axis` is None, the result is a scalar value. 

If `axis` is given, the result is an array of dimension 

``a.ndim - 1``. 

 

See Also 

-------- 

amax : 

The maximum value of an array along a given axis, propagating any NaNs. 

nanmin : 

The minimum value of an array along a given axis, ignoring any NaNs. 

minimum : 

Element-wise minimum of two arrays, propagating any NaNs. 

fmin : 

Element-wise minimum of two arrays, ignoring any NaNs. 

argmin : 

Return the indices of the minimum values. 

 

nanmax, maximum, fmax 

 

Notes 

----- 

NaN values are propagated, that is if at least one item is NaN, the 

corresponding min value will be NaN as well. To ignore NaN values 

(MATLAB behavior), please use nanmin. 

 

Don't use `amin` for element-wise comparison of 2 arrays; when 

``a.shape[0]`` is 2, ``minimum(a[0], a[1])`` is faster than 

``amin(a, axis=0)``. 

 

Examples 

-------- 

>>> a = np.arange(4).reshape((2,2)) 

>>> a 

array([[0, 1], 

[2, 3]]) 

>>> np.amin(a) # Minimum of the flattened array 

0 

>>> np.amin(a, axis=0) # Minima along the first axis 

array([0, 1]) 

>>> np.amin(a, axis=1) # Minima along the second axis 

array([0, 2]) 

 

>>> b = np.arange(5, dtype=float) 

>>> b[2] = np.NaN 

>>> np.amin(b) 

nan 

>>> np.nanmin(b) 

0.0 

 

>>> np.min([[-50], [10]], axis=-1, initial=0) 

array([-50, 0]) 

 

Notice that the initial value is used as one of the elements for which the 

minimum is determined, unlike for the default argument Python's max 

function, which is only used for empty iterables. 

 

Notice that this isn't the same as Python's ``default`` argument. 

 

>>> np.min([6], initial=5) 

5 

>>> min([6], default=5) 

6 

""" 

return _wrapreduction(a, np.minimum, 'min', axis, None, out, keepdims=keepdims, 

initial=initial) 

 

 

def _alen_dispathcer(a): 

return (a,) 

 

 

@array_function_dispatch(_alen_dispathcer) 

def alen(a): 

""" 

Return the length of the first dimension of the input array. 

 

Parameters 

---------- 

a : array_like 

Input array. 

 

Returns 

------- 

alen : int 

Length of the first dimension of `a`. 

 

See Also 

-------- 

shape, size 

 

Examples 

-------- 

>>> a = np.zeros((7,4,5)) 

>>> a.shape[0] 

7 

>>> np.alen(a) 

7 

 

""" 

try: 

return len(a) 

except TypeError: 

return len(array(a, ndmin=1)) 

 

 

def _prod_dispatcher( 

a, axis=None, dtype=None, out=None, keepdims=None, initial=None): 

return (a, out) 

 

 

@array_function_dispatch(_prod_dispatcher) 

def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, initial=np._NoValue): 

""" 

Return the product of array elements over a given axis. 

 

Parameters 

---------- 

a : array_like 

Input data. 

axis : None or int or tuple of ints, optional 

Axis or axes along which a product is performed. The default, 

axis=None, will calculate the product of all the elements in the 

input array. If axis is negative it counts from the last to the 

first axis. 

 

.. versionadded:: 1.7.0 

 

If axis is a tuple of ints, a product is performed on all of the 

axes specified in the tuple instead of a single axis or all the 

axes as before. 

dtype : dtype, optional 

The type of the returned array, as well as of the accumulator in 

which the elements are multiplied. The dtype of `a` is used by 

default unless `a` has an integer dtype of less precision than the 

default platform integer. In that case, if `a` is signed then the 

platform integer is used while if `a` is unsigned then an unsigned 

integer of the same precision as the platform integer is used. 

out : ndarray, optional 

Alternative output array in which to place the result. It must have 

the same shape as the expected output, but the type of the output 

values will be cast if necessary. 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left in the 

result as dimensions with size one. With this option, the result 

will broadcast correctly against the input array. 

 

If the default value is passed, then `keepdims` will not be 

passed through to the `prod` method of sub-classes of 

`ndarray`, however any non-default value will be. If the 

sub-class' method does not implement `keepdims` any 

exceptions will be raised. 

initial : scalar, optional 

The starting value for this product. See `~numpy.ufunc.reduce` for details. 

 

.. versionadded:: 1.15.0 

 

Returns 

------- 

product_along_axis : ndarray, see `dtype` parameter above. 

An array shaped as `a` but with the specified axis removed. 

Returns a reference to `out` if specified. 

 

See Also 

-------- 

ndarray.prod : equivalent method 

numpy.doc.ufuncs : Section "Output arguments" 

 

Notes 

----- 

Arithmetic is modular when using integer types, and no error is 

raised on overflow. That means that, on a 32-bit platform: 

 

>>> x = np.array([536870910, 536870910, 536870910, 536870910]) 

>>> np.prod(x) # random 

16 

 

The product of an empty array is the neutral element 1: 

 

>>> np.prod([]) 

1.0 

 

Examples 

-------- 

By default, calculate the product of all elements: 

 

>>> np.prod([1.,2.]) 

2.0 

 

Even when the input array is two-dimensional: 

 

>>> np.prod([[1.,2.],[3.,4.]]) 

24.0 

 

But we can also specify the axis over which to multiply: 

 

>>> np.prod([[1.,2.],[3.,4.]], axis=1) 

array([ 2., 12.]) 

 

If the type of `x` is unsigned, then the output type is 

the unsigned platform integer: 

 

>>> x = np.array([1, 2, 3], dtype=np.uint8) 

>>> np.prod(x).dtype == np.uint 

True 

 

If `x` is of a signed integer type, then the output type 

is the default platform integer: 

 

>>> x = np.array([1, 2, 3], dtype=np.int8) 

>>> np.prod(x).dtype == int 

True 

 

You can also start the product with a value other than one: 

 

>>> np.prod([1, 2], initial=5) 

10 

""" 

return _wrapreduction(a, np.multiply, 'prod', axis, dtype, out, keepdims=keepdims, 

initial=initial) 

 

 

def _cumprod_dispatcher(a, axis=None, dtype=None, out=None): 

return (a, out) 

 

 

@array_function_dispatch(_cumprod_dispatcher) 

def cumprod(a, axis=None, dtype=None, out=None): 

""" 

Return the cumulative product of elements along a given axis. 

 

Parameters 

---------- 

a : array_like 

Input array. 

axis : int, optional 

Axis along which the cumulative product is computed. By default 

the input is flattened. 

dtype : dtype, optional 

Type of the returned array, as well as of the accumulator in which 

the elements are multiplied. If *dtype* is not specified, it 

defaults to the dtype of `a`, unless `a` has an integer dtype with 

a precision less than that of the default platform integer. In 

that case, the default platform integer is used instead. 

out : ndarray, optional 

Alternative output array in which to place the result. It must 

have the same shape and buffer length as the expected output 

but the type of the resulting values will be cast if necessary. 

 

Returns 

------- 

cumprod : ndarray 

A new array holding the result is returned unless `out` is 

specified, in which case a reference to out is returned. 

 

See Also 

-------- 

numpy.doc.ufuncs : Section "Output arguments" 

 

Notes 

----- 

Arithmetic is modular when using integer types, and no error is 

raised on overflow. 

 

Examples 

-------- 

>>> a = np.array([1,2,3]) 

>>> np.cumprod(a) # intermediate results 1, 1*2 

... # total product 1*2*3 = 6 

array([1, 2, 6]) 

>>> a = np.array([[1, 2, 3], [4, 5, 6]]) 

>>> np.cumprod(a, dtype=float) # specify type of output 

array([ 1., 2., 6., 24., 120., 720.]) 

 

The cumulative product for each column (i.e., over the rows) of `a`: 

 

>>> np.cumprod(a, axis=0) 

array([[ 1, 2, 3], 

[ 4, 10, 18]]) 

 

The cumulative product for each row (i.e. over the columns) of `a`: 

 

>>> np.cumprod(a,axis=1) 

array([[ 1, 2, 6], 

[ 4, 20, 120]]) 

 

""" 

return _wrapfunc(a, 'cumprod', axis=axis, dtype=dtype, out=out) 

 

 

def _ndim_dispatcher(a): 

return (a,) 

 

 

@array_function_dispatch(_ndim_dispatcher) 

def ndim(a): 

""" 

Return the number of dimensions of an array. 

 

Parameters 

---------- 

a : array_like 

Input array. If it is not already an ndarray, a conversion is 

attempted. 

 

Returns 

------- 

number_of_dimensions : int 

The number of dimensions in `a`. Scalars are zero-dimensional. 

 

See Also 

-------- 

ndarray.ndim : equivalent method 

shape : dimensions of array 

ndarray.shape : dimensions of array 

 

Examples 

-------- 

>>> np.ndim([[1,2,3],[4,5,6]]) 

2 

>>> np.ndim(np.array([[1,2,3],[4,5,6]])) 

2 

>>> np.ndim(1) 

0 

 

""" 

try: 

return a.ndim 

except AttributeError: 

return asarray(a).ndim 

 

 

def _size_dispatcher(a, axis=None): 

return (a,) 

 

 

@array_function_dispatch(_size_dispatcher) 

def size(a, axis=None): 

""" 

Return the number of elements along a given axis. 

 

Parameters 

---------- 

a : array_like 

Input data. 

axis : int, optional 

Axis along which the elements are counted. By default, give 

the total number of elements. 

 

Returns 

------- 

element_count : int 

Number of elements along the specified axis. 

 

See Also 

-------- 

shape : dimensions of array 

ndarray.shape : dimensions of array 

ndarray.size : number of elements in array 

 

Examples 

-------- 

>>> a = np.array([[1,2,3],[4,5,6]]) 

>>> np.size(a) 

6 

>>> np.size(a,1) 

3 

>>> np.size(a,0) 

2 

 

""" 

if axis is None: 

try: 

return a.size 

except AttributeError: 

return asarray(a).size 

else: 

try: 

return a.shape[axis] 

except AttributeError: 

return asarray(a).shape[axis] 

 

 

def _around_dispatcher(a, decimals=None, out=None): 

return (a, out) 

 

 

@array_function_dispatch(_around_dispatcher) 

def around(a, decimals=0, out=None): 

""" 

Evenly round to the given number of decimals. 

 

Parameters 

---------- 

a : array_like 

Input data. 

decimals : int, optional 

Number of decimal places to round to (default: 0). If 

decimals is negative, it specifies the number of positions to 

the left of the decimal point. 

out : ndarray, optional 

Alternative output array in which to place the result. It must have 

the same shape as the expected output, but the type of the output 

values will be cast if necessary. See `doc.ufuncs` (Section 

"Output arguments") for details. 

 

Returns 

------- 

rounded_array : ndarray 

An array of the same type as `a`, containing the rounded values. 

Unless `out` was specified, a new array is created. A reference to 

the result is returned. 

 

The real and imaginary parts of complex numbers are rounded 

separately. The result of rounding a float is a float. 

 

See Also 

-------- 

ndarray.round : equivalent method 

 

ceil, fix, floor, rint, trunc 

 

 

Notes 

----- 

For values exactly halfway between rounded decimal values, NumPy 

rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0, 

-0.5 and 0.5 round to 0.0, etc. Results may also be surprising due 

to the inexact representation of decimal fractions in the IEEE 

floating point standard [1]_ and errors introduced when scaling 

by powers of ten. 

 

References 

---------- 

.. [1] "Lecture Notes on the Status of IEEE 754", William Kahan, 

https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF 

.. [2] "How Futile are Mindless Assessments of 

Roundoff in Floating-Point Computation?", William Kahan, 

https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf 

 

Examples 

-------- 

>>> np.around([0.37, 1.64]) 

array([ 0., 2.]) 

>>> np.around([0.37, 1.64], decimals=1) 

array([ 0.4, 1.6]) 

>>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value 

array([ 0., 2., 2., 4., 4.]) 

>>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned 

array([ 1, 2, 3, 11]) 

>>> np.around([1,2,3,11], decimals=-1) 

array([ 0, 0, 0, 10]) 

 

""" 

return _wrapfunc(a, 'round', decimals=decimals, out=out) 

 

 

def _mean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_mean_dispatcher) 

def mean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): 

""" 

Compute the arithmetic mean along the specified axis. 

 

Returns the average of the array elements. The average is taken over 

the flattened array by default, otherwise over the specified axis. 

`float64` intermediate and return values are used for integer inputs. 

 

Parameters 

---------- 

a : array_like 

Array containing numbers whose mean is desired. If `a` is not an 

array, a conversion is attempted. 

axis : None or int or tuple of ints, optional 

Axis or axes along which the means are computed. The default is to 

compute the mean of the flattened array. 

 

.. versionadded:: 1.7.0 

 

If this is a tuple of ints, a mean is performed over multiple axes, 

instead of a single axis or all the axes as before. 

dtype : data-type, optional 

Type to use in computing the mean. For integer inputs, the default 

is `float64`; for floating point inputs, it is the same as the 

input dtype. 

out : ndarray, optional 

Alternate output array in which to place the result. The default 

is ``None``; if provided, it must have the same shape as the 

expected output, but the type will be cast if necessary. 

See `doc.ufuncs` for details. 

 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the input array. 

 

If the default value is passed, then `keepdims` will not be 

passed through to the `mean` method of sub-classes of 

`ndarray`, however any non-default value will be. If the 

sub-class' method does not implement `keepdims` any 

exceptions will be raised. 

 

Returns 

------- 

m : ndarray, see dtype parameter above 

If `out=None`, returns a new array containing the mean values, 

otherwise a reference to the output array is returned. 

 

See Also 

-------- 

average : Weighted average 

std, var, nanmean, nanstd, nanvar 

 

Notes 

----- 

The arithmetic mean is the sum of the elements along the axis divided 

by the number of elements. 

 

Note that for floating-point input, the mean is computed using the 

same precision the input has. Depending on the input data, this can 

cause the results to be inaccurate, especially for `float32` (see 

example below). Specifying a higher-precision accumulator using the 

`dtype` keyword can alleviate this issue. 

 

By default, `float16` results are computed using `float32` intermediates 

for extra precision. 

 

Examples 

-------- 

>>> a = np.array([[1, 2], [3, 4]]) 

>>> np.mean(a) 

2.5 

>>> np.mean(a, axis=0) 

array([ 2., 3.]) 

>>> np.mean(a, axis=1) 

array([ 1.5, 3.5]) 

 

In single precision, `mean` can be inaccurate: 

 

>>> a = np.zeros((2, 512*512), dtype=np.float32) 

>>> a[0, :] = 1.0 

>>> a[1, :] = 0.1 

>>> np.mean(a) 

0.54999924 

 

Computing the mean in float64 is more accurate: 

 

>>> np.mean(a, dtype=np.float64) 

0.55000000074505806 

 

""" 

kwargs = {} 

if keepdims is not np._NoValue: 

kwargs['keepdims'] = keepdims 

if type(a) is not mu.ndarray: 

try: 

mean = a.mean 

except AttributeError: 

pass 

else: 

return mean(axis=axis, dtype=dtype, out=out, **kwargs) 

 

return _methods._mean(a, axis=axis, dtype=dtype, 

out=out, **kwargs) 

 

 

def _std_dispatcher( 

a, axis=None, dtype=None, out=None, ddof=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_std_dispatcher) 

def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue): 

""" 

Compute the standard deviation along the specified axis. 

 

Returns the standard deviation, a measure of the spread of a distribution, 

of the array elements. The standard deviation is computed for the 

flattened array by default, otherwise over the specified axis. 

 

Parameters 

---------- 

a : array_like 

Calculate the standard deviation of these values. 

axis : None or int or tuple of ints, optional 

Axis or axes along which the standard deviation is computed. The 

default is to compute the standard deviation of the flattened array. 

 

.. versionadded:: 1.7.0 

 

If this is a tuple of ints, a standard deviation is performed over 

multiple axes, instead of a single axis or all the axes as before. 

dtype : dtype, optional 

Type to use in computing the standard deviation. For arrays of 

integer type the default is float64, for arrays of float types it is 

the same as the array type. 

out : ndarray, optional 

Alternative output array in which to place the result. It must have 

the same shape as the expected output but the type (of the calculated 

values) will be cast if necessary. 

ddof : int, optional 

Means Delta Degrees of Freedom. The divisor used in calculations 

is ``N - ddof``, where ``N`` represents the number of elements. 

By default `ddof` is zero. 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the input array. 

 

If the default value is passed, then `keepdims` will not be 

passed through to the `std` method of sub-classes of 

`ndarray`, however any non-default value will be. If the 

sub-class' method does not implement `keepdims` any 

exceptions will be raised. 

 

Returns 

------- 

standard_deviation : ndarray, see dtype parameter above. 

If `out` is None, return a new array containing the standard deviation, 

otherwise return a reference to the output array. 

 

See Also 

-------- 

var, mean, nanmean, nanstd, nanvar 

numpy.doc.ufuncs : Section "Output arguments" 

 

Notes 

----- 

The standard deviation is the square root of the average of the squared 

deviations from the mean, i.e., ``std = sqrt(mean(abs(x - x.mean())**2))``. 

 

The average squared deviation is normally calculated as 

``x.sum() / N``, where ``N = len(x)``. If, however, `ddof` is specified, 

the divisor ``N - ddof`` is used instead. In standard statistical 

practice, ``ddof=1`` provides an unbiased estimator of the variance 

of the infinite population. ``ddof=0`` provides a maximum likelihood 

estimate of the variance for normally distributed variables. The 

standard deviation computed in this function is the square root of 

the estimated variance, so even with ``ddof=1``, it will not be an 

unbiased estimate of the standard deviation per se. 

 

Note that, for complex numbers, `std` takes the absolute 

value before squaring, so that the result is always real and nonnegative. 

 

For floating-point input, the *std* is computed using the same 

precision the input has. Depending on the input data, this can cause 

the results to be inaccurate, especially for float32 (see example below). 

Specifying a higher-accuracy accumulator using the `dtype` keyword can 

alleviate this issue. 

 

Examples 

-------- 

>>> a = np.array([[1, 2], [3, 4]]) 

>>> np.std(a) 

1.1180339887498949 

>>> np.std(a, axis=0) 

array([ 1., 1.]) 

>>> np.std(a, axis=1) 

array([ 0.5, 0.5]) 

 

In single precision, std() can be inaccurate: 

 

>>> a = np.zeros((2, 512*512), dtype=np.float32) 

>>> a[0, :] = 1.0 

>>> a[1, :] = 0.1 

>>> np.std(a) 

0.45000005 

 

Computing the standard deviation in float64 is more accurate: 

 

>>> np.std(a, dtype=np.float64) 

0.44999999925494177 

 

""" 

kwargs = {} 

if keepdims is not np._NoValue: 

kwargs['keepdims'] = keepdims 

 

if type(a) is not mu.ndarray: 

try: 

std = a.std 

except AttributeError: 

pass 

else: 

return std(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs) 

 

return _methods._std(a, axis=axis, dtype=dtype, out=out, ddof=ddof, 

**kwargs) 

 

 

def _var_dispatcher( 

a, axis=None, dtype=None, out=None, ddof=None, keepdims=None): 

return (a, out) 

 

 

@array_function_dispatch(_var_dispatcher) 

def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue): 

""" 

Compute the variance along the specified axis. 

 

Returns the variance of the array elements, a measure of the spread of a 

distribution. The variance is computed for the flattened array by 

default, otherwise over the specified axis. 

 

Parameters 

---------- 

a : array_like 

Array containing numbers whose variance is desired. If `a` is not an 

array, a conversion is attempted. 

axis : None or int or tuple of ints, optional 

Axis or axes along which the variance is computed. The default is to 

compute the variance of the flattened array. 

 

.. versionadded:: 1.7.0 

 

If this is a tuple of ints, a variance is performed over multiple axes, 

instead of a single axis or all the axes as before. 

dtype : data-type, optional 

Type to use in computing the variance. For arrays of integer type 

the default is `float32`; for arrays of float types it is the same as 

the array type. 

out : ndarray, optional 

Alternate output array in which to place the result. It must have 

the same shape as the expected output, but the type is cast if 

necessary. 

ddof : int, optional 

"Delta Degrees of Freedom": the divisor used in the calculation is 

``N - ddof``, where ``N`` represents the number of elements. By 

default `ddof` is zero. 

keepdims : bool, optional 

If this is set to True, the axes which are reduced are left 

in the result as dimensions with size one. With this option, 

the result will broadcast correctly against the input array. 

 

If the default value is passed, then `keepdims` will not be 

passed through to the `var` method of sub-classes of 

`ndarray`, however any non-default value will be. If the 

sub-class' method does not implement `keepdims` any 

exceptions will be raised. 

 

Returns 

------- 

variance : ndarray, see dtype parameter above 

If ``out=None``, returns a new array containing the variance; 

otherwise, a reference to the output array is returned. 

 

See Also 

-------- 

std , mean, nanmean, nanstd, nanvar 

numpy.doc.ufuncs : Section "Output arguments" 

 

Notes 

----- 

The variance is the average of the squared deviations from the mean, 

i.e., ``var = mean(abs(x - x.mean())**2)``. 

 

The mean is normally calculated as ``x.sum() / N``, where ``N = len(x)``. 

If, however, `ddof` is specified, the divisor ``N - ddof`` is used 

instead. In standard statistical practice, ``ddof=1`` provides an 

unbiased estimator of the variance of a hypothetical infinite population. 

``ddof=0`` provides a maximum likelihood estimate of the variance for 

normally distributed variables. 

 

Note that for complex numbers, the absolute value is taken before 

squaring, so that the result is always real and nonnegative. 

 

For floating-point input, the variance is computed using the same 

precision the input has. Depending on the input data, this can cause 

the results to be inaccurate, especially for `float32` (see example 

below). Specifying a higher-accuracy accumulator using the ``dtype`` 

keyword can alleviate this issue. 

 

Examples 

-------- 

>>> a = np.array([[1, 2], [3, 4]]) 

>>> np.var(a) 

1.25 

>>> np.var(a, axis=0) 

array([ 1., 1.]) 

>>> np.var(a, axis=1) 

array([ 0.25, 0.25]) 

 

In single precision, var() can be inaccurate: 

 

>>> a = np.zeros((2, 512*512), dtype=np.float32) 

>>> a[0, :] = 1.0 

>>> a[1, :] = 0.1 

>>> np.var(a) 

0.20250003 

 

Computing the variance in float64 is more accurate: 

 

>>> np.var(a, dtype=np.float64) 

0.20249999932944759 

>>> ((1-0.55)**2 + (0.1-0.55)**2)/2 

0.2025 

 

""" 

kwargs = {} 

if keepdims is not np._NoValue: 

kwargs['keepdims'] = keepdims 

 

if type(a) is not mu.ndarray: 

try: 

var = a.var 

 

except AttributeError: 

pass 

else: 

return var(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs) 

 

return _methods._var(a, axis=axis, dtype=dtype, out=out, ddof=ddof, 

**kwargs) 

 

 

# Aliases of other functions. These have their own definitions only so that 

# they can have unique docstrings. 

 

@array_function_dispatch(_around_dispatcher) 

def round_(a, decimals=0, out=None): 

""" 

Round an array to the given number of decimals. 

 

See Also 

-------- 

around : equivalent function; see for details. 

""" 

return around(a, decimals=decimals, out=out) 

 

 

@array_function_dispatch(_prod_dispatcher, verify=False) 

def product(*args, **kwargs): 

""" 

Return the product of array elements over a given axis. 

 

See Also 

-------- 

prod : equivalent function; see for details. 

""" 

return prod(*args, **kwargs) 

 

 

@array_function_dispatch(_cumprod_dispatcher, verify=False) 

def cumproduct(*args, **kwargs): 

""" 

Return the cumulative product over the given axis. 

 

See Also 

-------- 

cumprod : equivalent function; see for details. 

""" 

return cumprod(*args, **kwargs) 

 

 

@array_function_dispatch(_any_dispatcher, verify=False) 

def sometrue(*args, **kwargs): 

""" 

Check whether some values are true. 

 

Refer to `any` for full documentation. 

 

See Also 

-------- 

any : equivalent function; see for details. 

""" 

return any(*args, **kwargs) 

 

 

@array_function_dispatch(_all_dispatcher, verify=False) 

def alltrue(*args, **kwargs): 

""" 

Check if all elements of input array are true. 

 

See Also 

-------- 

numpy.all : Equivalent function; see for details. 

""" 

return all(*args, **kwargs) 

 

 

@array_function_dispatch(_ndim_dispatcher) 

def rank(a): 

""" 

Return the number of dimensions of an array. 

 

.. note:: 

This function is deprecated in NumPy 1.9 to avoid confusion with 

`numpy.linalg.matrix_rank`. The ``ndim`` attribute or function 

should be used instead. 

 

See Also 

-------- 

ndim : equivalent non-deprecated function 

 

Notes 

----- 

In the old Numeric package, `rank` was the term used for the number of 

dimensions, but in NumPy `ndim` is used instead. 

""" 

# 2014-04-12, 1.9 

warnings.warn( 

"`rank` is deprecated; use the `ndim` attribute or function instead. " 

"To find the rank of a matrix see `numpy.linalg.matrix_rank`.", 

VisibleDeprecationWarning, stacklevel=2) 

return ndim(a)