1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

""" 

Create the numpy.core.multiarray namespace for backward compatibility. In v1.16 

the multiarray and umath c-extension modules were merged into a single 

_multiarray_umath extension module. So we replicate the old namespace 

by importing from the extension module. 

 

""" 

 

import functools 

import warnings 

 

from . import overrides 

from . import _multiarray_umath 

import numpy as np 

from numpy.core._multiarray_umath import * 

from numpy.core._multiarray_umath import ( 

_fastCopyAndTranspose, _flagdict, _insert, _reconstruct, _vec_string, 

_ARRAY_API, _monotonicity 

) 

 

__all__ = [ 

'_ARRAY_API', 'ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'DATETIMEUNITS', 

'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS', 

'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI', 

'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP', '_fastCopyAndTranspose', 

'_flagdict', '_insert', '_reconstruct', '_vec_string', '_monotonicity', 

'add_docstring', 'arange', 'array', 'bincount', 'broadcast', 

'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast', 

'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2', 

'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data', 

'digitize', 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype', 

'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat', 

'frombuffer', 'fromfile', 'fromiter', 'fromstring', 'getbuffer', 'inner', 

'int_asbuffer', 'interp', 'interp_complex', 'is_busday', 'lexsort', 

'matmul', 'may_share_memory', 'min_scalar_type', 'ndarray', 'nditer', 

'nested_iters', 'newbuffer', 'normalize_axis_index', 'packbits', 

'promote_types', 'putmask', 'ravel_multi_index', 'result_type', 'scalar', 

'set_datetimeparse_function', 'set_legacy_print_mode', 'set_numeric_ops', 

'set_string_function', 'set_typeDict', 'shares_memory', 'test_interrupt', 

'tracemalloc_domain', 'typeinfo', 'unpackbits', 'unravel_index', 'vdot', 

'where', 'zeros'] 

 

# For backward compatibility, make sure pickle imports these functions from here 

_reconstruct.__module__ = 'numpy.core.multiarray' 

scalar.__module__ = 'numpy.core.multiarray' 

 

 

arange.__module__ = 'numpy' 

array.__module__ = 'numpy' 

datetime_data.__module__ = 'numpy' 

empty.__module__ = 'numpy' 

frombuffer.__module__ = 'numpy' 

fromfile.__module__ = 'numpy' 

fromiter.__module__ = 'numpy' 

frompyfunc.__module__ = 'numpy' 

fromstring.__module__ = 'numpy' 

geterrobj.__module__ = 'numpy' 

may_share_memory.__module__ = 'numpy' 

nested_iters.__module__ = 'numpy' 

promote_types.__module__ = 'numpy' 

set_numeric_ops.__module__ = 'numpy' 

seterrobj.__module__ = 'numpy' 

zeros.__module__ = 'numpy' 

 

 

# We can't verify dispatcher signatures because NumPy's C functions don't 

# support introspection. 

array_function_from_c_func_and_dispatcher = functools.partial( 

overrides.array_function_from_dispatcher, 

module='numpy', docs_from_dispatcher=True, verify=False) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.empty_like) 

def empty_like(prototype, dtype=None, order=None, subok=None): 

""" 

empty_like(prototype, dtype=None, order='K', subok=True) 

 

Return a new array with the same shape and type as a given array. 

 

Parameters 

---------- 

prototype : array_like 

The shape and data-type of `prototype` define these same attributes 

of the returned array. 

dtype : data-type, optional 

Overrides the data type of the result. 

 

.. versionadded:: 1.6.0 

order : {'C', 'F', 'A', or 'K'}, optional 

Overrides the memory layout of the result. 'C' means C-order, 

'F' means F-order, 'A' means 'F' if ``prototype`` is Fortran 

contiguous, 'C' otherwise. 'K' means match the layout of ``prototype`` 

as closely as possible. 

 

.. versionadded:: 1.6.0 

subok : bool, optional. 

If True, then the newly created array will use the sub-class 

type of 'a', otherwise it will be a base-class array. Defaults 

to True. 

 

Returns 

------- 

out : ndarray 

Array of uninitialized (arbitrary) data with the same 

shape and type as `prototype`. 

 

See Also 

-------- 

ones_like : Return an array of ones with shape and type of input. 

zeros_like : Return an array of zeros with shape and type of input. 

full_like : Return a new array with shape of input filled with value. 

empty : Return a new uninitialized array. 

 

Notes 

----- 

This function does *not* initialize the returned array; to do that use 

`zeros_like` or `ones_like` instead. It may be marginally faster than 

the functions that do set the array values. 

 

Examples 

-------- 

>>> a = ([1,2,3], [4,5,6]) # a is array-like 

>>> np.empty_like(a) 

array([[-1073741821, -1073741821, 3], #random 

[ 0, 0, -1073741821]]) 

>>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) 

>>> np.empty_like(a) 

array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random 

[ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]]) 

 

""" 

return (prototype,) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.concatenate) 

def concatenate(arrays, axis=None, out=None): 

""" 

concatenate((a1, a2, ...), axis=0, out=None) 

 

Join a sequence of arrays along an existing axis. 

 

Parameters 

---------- 

a1, a2, ... : sequence of array_like 

The arrays must have the same shape, except in the dimension 

corresponding to `axis` (the first, by default). 

axis : int, optional 

The axis along which the arrays will be joined. If axis is None, 

arrays are flattened before use. Default is 0. 

out : ndarray, optional 

If provided, the destination to place the result. The shape must be 

correct, matching that of what concatenate would have returned if no 

out argument were specified. 

 

Returns 

------- 

res : ndarray 

The concatenated array. 

 

See Also 

-------- 

ma.concatenate : Concatenate function that preserves input masks. 

array_split : Split an array into multiple sub-arrays of equal or 

near-equal size. 

split : Split array into a list of multiple sub-arrays of equal size. 

hsplit : Split array into multiple sub-arrays horizontally (column wise) 

vsplit : Split array into multiple sub-arrays vertically (row wise) 

dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). 

stack : Stack a sequence of arrays along a new axis. 

hstack : Stack arrays in sequence horizontally (column wise) 

vstack : Stack arrays in sequence vertically (row wise) 

dstack : Stack arrays in sequence depth wise (along third dimension) 

block : Assemble arrays from blocks. 

 

Notes 

----- 

When one or more of the arrays to be concatenated is a MaskedArray, 

this function will return a MaskedArray object instead of an ndarray, 

but the input masks are *not* preserved. In cases where a MaskedArray 

is expected as input, use the ma.concatenate function from the masked 

array module instead. 

 

Examples 

-------- 

>>> a = np.array([[1, 2], [3, 4]]) 

>>> b = np.array([[5, 6]]) 

>>> np.concatenate((a, b), axis=0) 

array([[1, 2], 

[3, 4], 

[5, 6]]) 

>>> np.concatenate((a, b.T), axis=1) 

array([[1, 2, 5], 

[3, 4, 6]]) 

>>> np.concatenate((a, b), axis=None) 

array([1, 2, 3, 4, 5, 6]) 

 

This function will not preserve masking of MaskedArray inputs. 

 

>>> a = np.ma.arange(3) 

>>> a[1] = np.ma.masked 

>>> b = np.arange(2, 5) 

>>> a 

masked_array(data=[0, --, 2], 

mask=[False, True, False], 

fill_value=999999) 

>>> b 

array([2, 3, 4]) 

>>> np.concatenate([a, b]) 

masked_array(data=[0, 1, 2, 2, 3, 4], 

mask=False, 

fill_value=999999) 

>>> np.ma.concatenate([a, b]) 

masked_array(data=[0, --, 2, 2, 3, 4], 

mask=[False, True, False, False, False, False], 

fill_value=999999) 

 

""" 

if out is not None: 

# optimize for the typical case where only arrays is provided 

arrays = list(arrays) 

arrays.append(out) 

return arrays 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.inner) 

def inner(a, b): 

""" 

inner(a, b) 

 

Inner product of two arrays. 

 

Ordinary inner product of vectors for 1-D arrays (without complex 

conjugation), in higher dimensions a sum product over the last axes. 

 

Parameters 

---------- 

a, b : array_like 

If `a` and `b` are nonscalar, their last dimensions must match. 

 

Returns 

------- 

out : ndarray 

`out.shape = a.shape[:-1] + b.shape[:-1]` 

 

Raises 

------ 

ValueError 

If the last dimension of `a` and `b` has different size. 

 

See Also 

-------- 

tensordot : Sum products over arbitrary axes. 

dot : Generalised matrix product, using second last dimension of `b`. 

einsum : Einstein summation convention. 

 

Notes 

----- 

For vectors (1-D arrays) it computes the ordinary inner-product:: 

 

np.inner(a, b) = sum(a[:]*b[:]) 

 

More generally, if `ndim(a) = r > 0` and `ndim(b) = s > 0`:: 

 

np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) 

 

or explicitly:: 

 

np.inner(a, b)[i0,...,ir-1,j0,...,js-1] 

= sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:]) 

 

In addition `a` or `b` may be scalars, in which case:: 

 

np.inner(a,b) = a*b 

 

Examples 

-------- 

Ordinary inner product for vectors: 

 

>>> a = np.array([1,2,3]) 

>>> b = np.array([0,1,0]) 

>>> np.inner(a, b) 

2 

 

A multidimensional example: 

 

>>> a = np.arange(24).reshape((2,3,4)) 

>>> b = np.arange(4) 

>>> np.inner(a, b) 

array([[ 14, 38, 62], 

[ 86, 110, 134]]) 

 

An example where `b` is a scalar: 

 

>>> np.inner(np.eye(2), 7) 

array([[ 7., 0.], 

[ 0., 7.]]) 

 

""" 

return (a, b) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.where) 

def where(condition, x=None, y=None): 

""" 

where(condition, [x, y]) 

 

Return elements chosen from `x` or `y` depending on `condition`. 

 

.. note:: 

When only `condition` is provided, this function is a shorthand for 

``np.asarray(condition).nonzero()``. Using `nonzero` directly should be 

preferred, as it behaves correctly for subclasses. The rest of this 

documentation covers only the case where all three arguments are 

provided. 

 

Parameters 

---------- 

condition : array_like, bool 

Where True, yield `x`, otherwise yield `y`. 

x, y : array_like 

Values from which to choose. `x`, `y` and `condition` need to be 

broadcastable to some shape. 

 

Returns 

------- 

out : ndarray 

An array with elements from `x` where `condition` is True, and elements 

from `y` elsewhere. 

 

See Also 

-------- 

choose 

nonzero : The function that is called when x and y are omitted 

 

Notes 

----- 

If all the arrays are 1-D, `where` is equivalent to:: 

 

[xv if c else yv 

for c, xv, yv in zip(condition, x, y)] 

 

Examples 

-------- 

>>> a = np.arange(10) 

>>> a 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

>>> np.where(a < 5, a, 10*a) 

array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90]) 

 

This can be used on multidimensional arrays too: 

 

>>> np.where([[True, False], [True, True]], 

... [[1, 2], [3, 4]], 

... [[9, 8], [7, 6]]) 

array([[1, 8], 

[3, 4]]) 

 

The shapes of x, y, and the condition are broadcast together: 

 

>>> x, y = np.ogrid[:3, :4] 

>>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast 

array([[10, 0, 0, 0], 

[10, 11, 1, 1], 

[10, 11, 12, 2]]) 

 

>>> a = np.array([[0, 1, 2], 

... [0, 2, 4], 

... [0, 3, 6]]) 

>>> np.where(a < 4, a, -1) # -1 is broadcast 

array([[ 0, 1, 2], 

[ 0, 2, -1], 

[ 0, 3, -1]]) 

""" 

return (condition, x, y) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.lexsort) 

def lexsort(keys, axis=None): 

""" 

lexsort(keys, axis=-1) 

 

Perform an indirect stable sort using a sequence of keys. 

 

Given multiple sorting keys, which can be interpreted as columns in a 

spreadsheet, lexsort returns an array of integer indices that describes 

the sort order by multiple columns. The last key in the sequence is used 

for the primary sort order, the second-to-last key for the secondary sort 

order, and so on. The keys argument must be a sequence of objects that 

can be converted to arrays of the same shape. If a 2D array is provided 

for the keys argument, it's rows are interpreted as the sorting keys and 

sorting is according to the last row, second last row etc. 

 

Parameters 

---------- 

keys : (k, N) array or tuple containing k (N,)-shaped sequences 

The `k` different "columns" to be sorted. The last column (or row if 

`keys` is a 2D array) is the primary sort key. 

axis : int, optional 

Axis to be indirectly sorted. By default, sort over the last axis. 

 

Returns 

------- 

indices : (N,) ndarray of ints 

Array of indices that sort the keys along the specified axis. 

 

See Also 

-------- 

argsort : Indirect sort. 

ndarray.sort : In-place sort. 

sort : Return a sorted copy of an array. 

 

Examples 

-------- 

Sort names: first by surname, then by name. 

 

>>> surnames = ('Hertz', 'Galilei', 'Hertz') 

>>> first_names = ('Heinrich', 'Galileo', 'Gustav') 

>>> ind = np.lexsort((first_names, surnames)) 

>>> ind 

array([1, 2, 0]) 

 

>>> [surnames[i] + ", " + first_names[i] for i in ind] 

['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich'] 

 

Sort two columns of numbers: 

 

>>> a = [1,5,1,4,3,4,4] # First column 

>>> b = [9,4,0,4,0,2,1] # Second column 

>>> ind = np.lexsort((b,a)) # Sort by a, then by b 

>>> print(ind) 

[2 0 4 6 5 3 1] 

 

>>> [(a[i],b[i]) for i in ind] 

[(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)] 

 

Note that sorting is first according to the elements of ``a``. 

Secondary sorting is according to the elements of ``b``. 

 

A normal ``argsort`` would have yielded: 

 

>>> [(a[i],b[i]) for i in np.argsort(a)] 

[(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)] 

 

Structured arrays are sorted lexically by ``argsort``: 

 

>>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)], 

... dtype=np.dtype([('x', int), ('y', int)])) 

 

>>> np.argsort(x) # or np.argsort(x, order=('x', 'y')) 

array([2, 0, 4, 6, 5, 3, 1]) 

 

""" 

if isinstance(keys, tuple): 

return keys 

else: 

return (keys,) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.can_cast) 

def can_cast(from_, to, casting=None): 

""" 

can_cast(from_, to, casting='safe') 

 

Returns True if cast between data types can occur according to the 

casting rule. If from is a scalar or array scalar, also returns 

True if the scalar value can be cast without overflow or truncation 

to an integer. 

 

Parameters 

---------- 

from_ : dtype, dtype specifier, scalar, or array 

Data type, scalar, or array to cast from. 

to : dtype or dtype specifier 

Data type to cast to. 

casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

Controls what kind of data casting may occur. 

 

* 'no' means the data types should not be cast at all. 

* 'equiv' means only byte-order changes are allowed. 

* 'safe' means only casts which can preserve values are allowed. 

* 'same_kind' means only safe casts or casts within a kind, 

like float64 to float32, are allowed. 

* 'unsafe' means any data conversions may be done. 

 

Returns 

------- 

out : bool 

True if cast can occur according to the casting rule. 

 

Notes 

----- 

Starting in NumPy 1.9, can_cast function now returns False in 'safe' 

casting mode for integer/float dtype and string dtype if the string dtype 

length is not long enough to store the max integer/float value converted 

to a string. Previously can_cast in 'safe' mode returned True for 

integer/float dtype and a string dtype of any length. 

 

See also 

-------- 

dtype, result_type 

 

Examples 

-------- 

Basic examples 

 

>>> np.can_cast(np.int32, np.int64) 

True 

>>> np.can_cast(np.float64, complex) 

True 

>>> np.can_cast(complex, float) 

False 

 

>>> np.can_cast('i8', 'f8') 

True 

>>> np.can_cast('i8', 'f4') 

False 

>>> np.can_cast('i4', 'S4') 

False 

 

Casting scalars 

 

>>> np.can_cast(100, 'i1') 

True 

>>> np.can_cast(150, 'i1') 

False 

>>> np.can_cast(150, 'u1') 

True 

 

>>> np.can_cast(3.5e100, np.float32) 

False 

>>> np.can_cast(1000.0, np.float32) 

True 

 

Array scalar checks the value, array does not 

 

>>> np.can_cast(np.array(1000.0), np.float32) 

True 

>>> np.can_cast(np.array([1000.0]), np.float32) 

False 

 

Using the casting rules 

 

>>> np.can_cast('i8', 'i8', 'no') 

True 

>>> np.can_cast('<i8', '>i8', 'no') 

False 

 

>>> np.can_cast('<i8', '>i8', 'equiv') 

True 

>>> np.can_cast('<i4', '>i8', 'equiv') 

False 

 

>>> np.can_cast('<i4', '>i8', 'safe') 

True 

>>> np.can_cast('<i8', '>i4', 'safe') 

False 

 

>>> np.can_cast('<i8', '>i4', 'same_kind') 

True 

>>> np.can_cast('<i8', '>u4', 'same_kind') 

False 

 

>>> np.can_cast('<i8', '>u4', 'unsafe') 

True 

 

""" 

return (from_,) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.min_scalar_type) 

def min_scalar_type(a): 

""" 

min_scalar_type(a) 

 

For scalar ``a``, returns the data type with the smallest size 

and smallest scalar kind which can hold its value. For non-scalar 

array ``a``, returns the vector's dtype unmodified. 

 

Floating point values are not demoted to integers, 

and complex values are not demoted to floats. 

 

Parameters 

---------- 

a : scalar or array_like 

The value whose minimal data type is to be found. 

 

Returns 

------- 

out : dtype 

The minimal data type. 

 

Notes 

----- 

.. versionadded:: 1.6.0 

 

See Also 

-------- 

result_type, promote_types, dtype, can_cast 

 

Examples 

-------- 

>>> np.min_scalar_type(10) 

dtype('uint8') 

 

>>> np.min_scalar_type(-260) 

dtype('int16') 

 

>>> np.min_scalar_type(3.1) 

dtype('float16') 

 

>>> np.min_scalar_type(1e50) 

dtype('float64') 

 

>>> np.min_scalar_type(np.arange(4,dtype='f8')) 

dtype('float64') 

 

""" 

return (a,) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.result_type) 

def result_type(*arrays_and_dtypes): 

""" 

result_type(*arrays_and_dtypes) 

 

Returns the type that results from applying the NumPy 

type promotion rules to the arguments. 

 

Type promotion in NumPy works similarly to the rules in languages 

like C++, with some slight differences. When both scalars and 

arrays are used, the array's type takes precedence and the actual value 

of the scalar is taken into account. 

 

For example, calculating 3*a, where a is an array of 32-bit floats, 

intuitively should result in a 32-bit float output. If the 3 is a 

32-bit integer, the NumPy rules indicate it can't convert losslessly 

into a 32-bit float, so a 64-bit float should be the result type. 

By examining the value of the constant, '3', we see that it fits in 

an 8-bit integer, which can be cast losslessly into the 32-bit float. 

 

Parameters 

---------- 

arrays_and_dtypes : list of arrays and dtypes 

The operands of some operation whose result type is needed. 

 

Returns 

------- 

out : dtype 

The result type. 

 

See also 

-------- 

dtype, promote_types, min_scalar_type, can_cast 

 

Notes 

----- 

.. versionadded:: 1.6.0 

 

The specific algorithm used is as follows. 

 

Categories are determined by first checking which of boolean, 

integer (int/uint), or floating point (float/complex) the maximum 

kind of all the arrays and the scalars are. 

 

If there are only scalars or the maximum category of the scalars 

is higher than the maximum category of the arrays, 

the data types are combined with :func:`promote_types` 

to produce the return value. 

 

Otherwise, `min_scalar_type` is called on each array, and 

the resulting data types are all combined with :func:`promote_types` 

to produce the return value. 

 

The set of int values is not a subset of the uint values for types 

with the same number of bits, something not reflected in 

:func:`min_scalar_type`, but handled as a special case in `result_type`. 

 

Examples 

-------- 

>>> np.result_type(3, np.arange(7, dtype='i1')) 

dtype('int8') 

 

>>> np.result_type('i4', 'c8') 

dtype('complex128') 

 

>>> np.result_type(3.0, -2) 

dtype('float64') 

 

""" 

return arrays_and_dtypes 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.dot) 

def dot(a, b, out=None): 

""" 

dot(a, b, out=None) 

 

Dot product of two arrays. Specifically, 

 

- If both `a` and `b` are 1-D arrays, it is inner product of vectors 

(without complex conjugation). 

 

- If both `a` and `b` are 2-D arrays, it is matrix multiplication, 

but using :func:`matmul` or ``a @ b`` is preferred. 

 

- If either `a` or `b` is 0-D (scalar), it is equivalent to :func:`multiply` 

and using ``numpy.multiply(a, b)`` or ``a * b`` is preferred. 

 

- If `a` is an N-D array and `b` is a 1-D array, it is a sum product over 

the last axis of `a` and `b`. 

 

- If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a 

sum product over the last axis of `a` and the second-to-last axis of `b`:: 

 

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) 

 

Parameters 

---------- 

a : array_like 

First argument. 

b : array_like 

Second argument. 

out : ndarray, optional 

Output argument. This must have the exact kind that would be returned 

if it was not used. In particular, it must have the right type, must be 

C-contiguous, and its dtype must be the dtype that would be returned 

for `dot(a,b)`. This is a performance feature. Therefore, if these 

conditions are not met, an exception is raised, instead of attempting 

to be flexible. 

 

Returns 

------- 

output : ndarray 

Returns the dot product of `a` and `b`. If `a` and `b` are both 

scalars or both 1-D arrays then a scalar is returned; otherwise 

an array is returned. 

If `out` is given, then it is returned. 

 

Raises 

------ 

ValueError 

If the last dimension of `a` is not the same size as 

the second-to-last dimension of `b`. 

 

See Also 

-------- 

vdot : Complex-conjugating dot product. 

tensordot : Sum products over arbitrary axes. 

einsum : Einstein summation convention. 

matmul : '@' operator as method with out parameter. 

 

Examples 

-------- 

>>> np.dot(3, 4) 

12 

 

Neither argument is complex-conjugated: 

 

>>> np.dot([2j, 3j], [2j, 3j]) 

(-13+0j) 

 

For 2-D arrays it is the matrix product: 

 

>>> a = [[1, 0], [0, 1]] 

>>> b = [[4, 1], [2, 2]] 

>>> np.dot(a, b) 

array([[4, 1], 

[2, 2]]) 

 

>>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) 

>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) 

>>> np.dot(a, b)[2,3,2,1,2,2] 

499128 

>>> sum(a[2,3,2,:] * b[1,2,:,2]) 

499128 

 

""" 

return (a, b, out) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.vdot) 

def vdot(a, b): 

""" 

vdot(a, b) 

 

Return the dot product of two vectors. 

 

The vdot(`a`, `b`) function handles complex numbers differently than 

dot(`a`, `b`). If the first argument is complex the complex conjugate 

of the first argument is used for the calculation of the dot product. 

 

Note that `vdot` handles multidimensional arrays differently than `dot`: 

it does *not* perform a matrix product, but flattens input arguments 

to 1-D vectors first. Consequently, it should only be used for vectors. 

 

Parameters 

---------- 

a : array_like 

If `a` is complex the complex conjugate is taken before calculation 

of the dot product. 

b : array_like 

Second argument to the dot product. 

 

Returns 

------- 

output : ndarray 

Dot product of `a` and `b`. Can be an int, float, or 

complex depending on the types of `a` and `b`. 

 

See Also 

-------- 

dot : Return the dot product without using the complex conjugate of the 

first argument. 

 

Examples 

-------- 

>>> a = np.array([1+2j,3+4j]) 

>>> b = np.array([5+6j,7+8j]) 

>>> np.vdot(a, b) 

(70-8j) 

>>> np.vdot(b, a) 

(70+8j) 

 

Note that higher-dimensional arrays are flattened! 

 

>>> a = np.array([[1, 4], [5, 6]]) 

>>> b = np.array([[4, 1], [2, 2]]) 

>>> np.vdot(a, b) 

30 

>>> np.vdot(b, a) 

30 

>>> 1*4 + 4*1 + 5*2 + 6*2 

30 

 

""" 

return (a, b) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.bincount) 

def bincount(x, weights=None, minlength=None): 

""" 

bincount(x, weights=None, minlength=0) 

 

Count number of occurrences of each value in array of non-negative ints. 

 

The number of bins (of size 1) is one larger than the largest value in 

`x`. If `minlength` is specified, there will be at least this number 

of bins in the output array (though it will be longer if necessary, 

depending on the contents of `x`). 

Each bin gives the number of occurrences of its index value in `x`. 

If `weights` is specified the input array is weighted by it, i.e. if a 

value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead 

of ``out[n] += 1``. 

 

Parameters 

---------- 

x : array_like, 1 dimension, nonnegative ints 

Input array. 

weights : array_like, optional 

Weights, array of the same shape as `x`. 

minlength : int, optional 

A minimum number of bins for the output array. 

 

.. versionadded:: 1.6.0 

 

Returns 

------- 

out : ndarray of ints 

The result of binning the input array. 

The length of `out` is equal to ``np.amax(x)+1``. 

 

Raises 

------ 

ValueError 

If the input is not 1-dimensional, or contains elements with negative 

values, or if `minlength` is negative. 

TypeError 

If the type of the input is float or complex. 

 

See Also 

-------- 

histogram, digitize, unique 

 

Examples 

-------- 

>>> np.bincount(np.arange(5)) 

array([1, 1, 1, 1, 1]) 

>>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7])) 

array([1, 3, 1, 1, 0, 0, 0, 1]) 

 

>>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23]) 

>>> np.bincount(x).size == np.amax(x)+1 

True 

 

The input array needs to be of integer dtype, otherwise a 

TypeError is raised: 

 

>>> np.bincount(np.arange(5, dtype=float)) 

Traceback (most recent call last): 

File "<stdin>", line 1, in <module> 

TypeError: array cannot be safely cast to required type 

 

A possible use of ``bincount`` is to perform sums over 

variable-size chunks of an array, using the ``weights`` keyword. 

 

>>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights 

>>> x = np.array([0, 1, 1, 2, 2, 2]) 

>>> np.bincount(x, weights=w) 

array([ 0.3, 0.7, 1.1]) 

 

""" 

return (x, weights) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.ravel_multi_index) 

def ravel_multi_index(multi_index, dims, mode=None, order=None): 

""" 

ravel_multi_index(multi_index, dims, mode='raise', order='C') 

 

Converts a tuple of index arrays into an array of flat 

indices, applying boundary modes to the multi-index. 

 

Parameters 

---------- 

multi_index : tuple of array_like 

A tuple of integer arrays, one array for each dimension. 

dims : tuple of ints 

The shape of array into which the indices from ``multi_index`` apply. 

mode : {'raise', 'wrap', 'clip'}, optional 

Specifies how out-of-bounds indices are handled. Can specify 

either one mode or a tuple of modes, one mode per index. 

 

* 'raise' -- raise an error (default) 

* 'wrap' -- wrap around 

* 'clip' -- clip to the range 

 

In 'clip' mode, a negative index which would normally 

wrap will clip to 0 instead. 

order : {'C', 'F'}, optional 

Determines whether the multi-index should be viewed as 

indexing in row-major (C-style) or column-major 

(Fortran-style) order. 

 

Returns 

------- 

raveled_indices : ndarray 

An array of indices into the flattened version of an array 

of dimensions ``dims``. 

 

See Also 

-------- 

unravel_index 

 

Notes 

----- 

.. versionadded:: 1.6.0 

 

Examples 

-------- 

>>> arr = np.array([[3,6,6],[4,5,1]]) 

>>> np.ravel_multi_index(arr, (7,6)) 

array([22, 41, 37]) 

>>> np.ravel_multi_index(arr, (7,6), order='F') 

array([31, 41, 13]) 

>>> np.ravel_multi_index(arr, (4,6), mode='clip') 

array([22, 23, 19]) 

>>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap')) 

array([12, 13, 13]) 

 

>>> np.ravel_multi_index((3,1,4,1), (6,7,8,9)) 

1621 

""" 

return multi_index 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.unravel_index) 

def unravel_index(indices, shape=None, order=None, dims=None): 

""" 

unravel_index(indices, shape, order='C') 

 

Converts a flat index or array of flat indices into a tuple 

of coordinate arrays. 

 

Parameters 

---------- 

indices : array_like 

An integer array whose elements are indices into the flattened 

version of an array of dimensions ``shape``. Before version 1.6.0, 

this function accepted just one index value. 

shape : tuple of ints 

The shape of the array to use for unraveling ``indices``. 

 

.. versionchanged:: 1.16.0 

Renamed from ``dims`` to ``shape``. 

 

order : {'C', 'F'}, optional 

Determines whether the indices should be viewed as indexing in 

row-major (C-style) or column-major (Fortran-style) order. 

 

.. versionadded:: 1.6.0 

 

Returns 

------- 

unraveled_coords : tuple of ndarray 

Each array in the tuple has the same shape as the ``indices`` 

array. 

 

See Also 

-------- 

ravel_multi_index 

 

Examples 

-------- 

>>> np.unravel_index([22, 41, 37], (7,6)) 

(array([3, 6, 6]), array([4, 5, 1])) 

>>> np.unravel_index([31, 41, 13], (7,6), order='F') 

(array([3, 6, 6]), array([4, 5, 1])) 

 

>>> np.unravel_index(1621, (6,7,8,9)) 

(3, 1, 4, 1) 

 

""" 

if dims is not None: 

warnings.warn("'shape' argument should be used instead of 'dims'", 

DeprecationWarning, stacklevel=3) 

return (indices,) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.copyto) 

def copyto(dst, src, casting=None, where=None): 

""" 

copyto(dst, src, casting='same_kind', where=True) 

 

Copies values from one array to another, broadcasting as necessary. 

 

Raises a TypeError if the `casting` rule is violated, and if 

`where` is provided, it selects which elements to copy. 

 

.. versionadded:: 1.7.0 

 

Parameters 

---------- 

dst : ndarray 

The array into which values are copied. 

src : array_like 

The array from which values are copied. 

casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

Controls what kind of data casting may occur when copying. 

 

* 'no' means the data types should not be cast at all. 

* 'equiv' means only byte-order changes are allowed. 

* 'safe' means only casts which can preserve values are allowed. 

* 'same_kind' means only safe casts or casts within a kind, 

like float64 to float32, are allowed. 

* 'unsafe' means any data conversions may be done. 

where : array_like of bool, optional 

A boolean array which is broadcasted to match the dimensions 

of `dst`, and selects elements to copy from `src` to `dst` 

wherever it contains the value True. 

""" 

return (dst, src, where) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.putmask) 

def putmask(a, mask, values): 

""" 

putmask(a, mask, values) 

 

Changes elements of an array based on conditional and input values. 

 

Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``. 

 

If `values` is not the same size as `a` and `mask` then it will repeat. 

This gives behavior different from ``a[mask] = values``. 

 

Parameters 

---------- 

a : array_like 

Target array. 

mask : array_like 

Boolean mask array. It has to be the same shape as `a`. 

values : array_like 

Values to put into `a` where `mask` is True. If `values` is smaller 

than `a` it will be repeated. 

 

See Also 

-------- 

place, put, take, copyto 

 

Examples 

-------- 

>>> x = np.arange(6).reshape(2, 3) 

>>> np.putmask(x, x>2, x**2) 

>>> x 

array([[ 0, 1, 2], 

[ 9, 16, 25]]) 

 

If `values` is smaller than `a` it is repeated: 

 

>>> x = np.arange(5) 

>>> np.putmask(x, x>1, [-33, -44]) 

>>> x 

array([ 0, 1, -33, -44, -33]) 

 

""" 

return (a, mask, values) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.packbits) 

def packbits(myarray, axis=None): 

""" 

packbits(myarray, axis=None) 

 

Packs the elements of a binary-valued array into bits in a uint8 array. 

 

The result is padded to full bytes by inserting zero bits at the end. 

 

Parameters 

---------- 

myarray : array_like 

An array of integers or booleans whose elements should be packed to 

bits. 

axis : int, optional 

The dimension over which bit-packing is done. 

``None`` implies packing the flattened array. 

 

Returns 

------- 

packed : ndarray 

Array of type uint8 whose elements represent bits corresponding to the 

logical (0 or nonzero) value of the input elements. The shape of 

`packed` has the same number of dimensions as the input (unless `axis` 

is None, in which case the output is 1-D). 

 

See Also 

-------- 

unpackbits: Unpacks elements of a uint8 array into a binary-valued output 

array. 

 

Examples 

-------- 

>>> a = np.array([[[1,0,1], 

... [0,1,0]], 

... [[1,1,0], 

... [0,0,1]]]) 

>>> b = np.packbits(a, axis=-1) 

>>> b 

array([[[160],[64]],[[192],[32]]], dtype=uint8) 

 

Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, 

and 32 = 0010 0000. 

 

""" 

return (myarray,) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.unpackbits) 

def unpackbits(myarray, axis=None): 

""" 

unpackbits(myarray, axis=None) 

 

Unpacks elements of a uint8 array into a binary-valued output array. 

 

Each element of `myarray` represents a bit-field that should be unpacked 

into a binary-valued output array. The shape of the output array is either 

1-D (if `axis` is None) or the same shape as the input array with unpacking 

done along the axis specified. 

 

Parameters 

---------- 

myarray : ndarray, uint8 type 

Input array. 

axis : int, optional 

The dimension over which bit-unpacking is done. 

``None`` implies unpacking the flattened array. 

 

Returns 

------- 

unpacked : ndarray, uint8 type 

The elements are binary-valued (0 or 1). 

 

See Also 

-------- 

packbits : Packs the elements of a binary-valued array into bits in a uint8 

array. 

 

Examples 

-------- 

>>> a = np.array([[2], [7], [23]], dtype=np.uint8) 

>>> a 

array([[ 2], 

[ 7], 

[23]], dtype=uint8) 

>>> b = np.unpackbits(a, axis=1) 

>>> b 

array([[0, 0, 0, 0, 0, 0, 1, 0], 

[0, 0, 0, 0, 0, 1, 1, 1], 

[0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8) 

 

""" 

return (myarray,) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.shares_memory) 

def shares_memory(a, b, max_work=None): 

""" 

shares_memory(a, b, max_work=None) 

 

Determine if two arrays share memory 

 

Parameters 

---------- 

a, b : ndarray 

Input arrays 

max_work : int, optional 

Effort to spend on solving the overlap problem (maximum number 

of candidate solutions to consider). The following special 

values are recognized: 

 

max_work=MAY_SHARE_EXACT (default) 

The problem is solved exactly. In this case, the function returns 

True only if there is an element shared between the arrays. 

max_work=MAY_SHARE_BOUNDS 

Only the memory bounds of a and b are checked. 

 

Raises 

------ 

numpy.TooHardError 

Exceeded max_work. 

 

Returns 

------- 

out : bool 

 

See Also 

-------- 

may_share_memory 

 

Examples 

-------- 

>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) 

False 

 

""" 

return (a, b) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.may_share_memory) 

def may_share_memory(a, b, max_work=None): 

""" 

may_share_memory(a, b, max_work=None) 

 

Determine if two arrays might share memory 

 

A return of True does not necessarily mean that the two arrays 

share any element. It just means that they *might*. 

 

Only the memory bounds of a and b are checked by default. 

 

Parameters 

---------- 

a, b : ndarray 

Input arrays 

max_work : int, optional 

Effort to spend on solving the overlap problem. See 

`shares_memory` for details. Default for ``may_share_memory`` 

is to do a bounds check. 

 

Returns 

------- 

out : bool 

 

See Also 

-------- 

shares_memory 

 

Examples 

-------- 

>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) 

False 

>>> x = np.zeros([3, 4]) 

>>> np.may_share_memory(x[:,0], x[:,1]) 

True 

 

""" 

return (a, b) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.is_busday) 

def is_busday(dates, weekmask=None, holidays=None, busdaycal=None, out=None): 

""" 

is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None) 

 

Calculates which of the given dates are valid days, and which are not. 

 

.. versionadded:: 1.7.0 

 

Parameters 

---------- 

dates : array_like of datetime64[D] 

The array of dates to process. 

weekmask : str or array_like of bool, optional 

A seven-element array indicating which of Monday through Sunday are 

valid days. May be specified as a length-seven list or array, like 

[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string 

like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for 

weekdays, optionally separated by white space. Valid abbreviations 

are: Mon Tue Wed Thu Fri Sat Sun 

holidays : array_like of datetime64[D], optional 

An array of dates to consider as invalid dates. They may be 

specified in any order, and NaT (not-a-time) dates are ignored. 

This list is saved in a normalized form that is suited for 

fast calculations of valid days. 

busdaycal : busdaycalendar, optional 

A `busdaycalendar` object which specifies the valid days. If this 

parameter is provided, neither weekmask nor holidays may be 

provided. 

out : array of bool, optional 

If provided, this array is filled with the result. 

 

Returns 

------- 

out : array of bool 

An array with the same shape as ``dates``, containing True for 

each valid day, and False for each invalid day. 

 

See Also 

-------- 

busdaycalendar: An object that specifies a custom set of valid days. 

busday_offset : Applies an offset counted in valid days. 

busday_count : Counts how many valid days are in a half-open date range. 

 

Examples 

-------- 

>>> # The weekdays are Friday, Saturday, and Monday 

... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'], 

... holidays=['2011-07-01', '2011-07-04', '2011-07-17']) 

array([False, False, True], dtype='bool') 

""" 

return (dates, weekmask, holidays, out) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_offset) 

def busday_offset(dates, offsets, roll=None, weekmask=None, holidays=None, 

busdaycal=None, out=None): 

""" 

busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None) 

 

First adjusts the date to fall on a valid day according to 

the ``roll`` rule, then applies offsets to the given dates 

counted in valid days. 

 

.. versionadded:: 1.7.0 

 

Parameters 

---------- 

dates : array_like of datetime64[D] 

The array of dates to process. 

offsets : array_like of int 

The array of offsets, which is broadcast with ``dates``. 

roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', 'modifiedfollowing', 'modifiedpreceding'}, optional 

How to treat dates that do not fall on a valid day. The default 

is 'raise'. 

 

* 'raise' means to raise an exception for an invalid day. 

* 'nat' means to return a NaT (not-a-time) for an invalid day. 

* 'forward' and 'following' mean to take the first valid day 

later in time. 

* 'backward' and 'preceding' mean to take the first valid day 

earlier in time. 

* 'modifiedfollowing' means to take the first valid day 

later in time unless it is across a Month boundary, in which 

case to take the first valid day earlier in time. 

* 'modifiedpreceding' means to take the first valid day 

earlier in time unless it is across a Month boundary, in which 

case to take the first valid day later in time. 

weekmask : str or array_like of bool, optional 

A seven-element array indicating which of Monday through Sunday are 

valid days. May be specified as a length-seven list or array, like 

[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string 

like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for 

weekdays, optionally separated by white space. Valid abbreviations 

are: Mon Tue Wed Thu Fri Sat Sun 

holidays : array_like of datetime64[D], optional 

An array of dates to consider as invalid dates. They may be 

specified in any order, and NaT (not-a-time) dates are ignored. 

This list is saved in a normalized form that is suited for 

fast calculations of valid days. 

busdaycal : busdaycalendar, optional 

A `busdaycalendar` object which specifies the valid days. If this 

parameter is provided, neither weekmask nor holidays may be 

provided. 

out : array of datetime64[D], optional 

If provided, this array is filled with the result. 

 

Returns 

------- 

out : array of datetime64[D] 

An array with a shape from broadcasting ``dates`` and ``offsets`` 

together, containing the dates with offsets applied. 

 

See Also 

-------- 

busdaycalendar: An object that specifies a custom set of valid days. 

is_busday : Returns a boolean array indicating valid days. 

busday_count : Counts how many valid days are in a half-open date range. 

 

Examples 

-------- 

>>> # First business day in October 2011 (not accounting for holidays) 

... np.busday_offset('2011-10', 0, roll='forward') 

numpy.datetime64('2011-10-03','D') 

>>> # Last business day in February 2012 (not accounting for holidays) 

... np.busday_offset('2012-03', -1, roll='forward') 

numpy.datetime64('2012-02-29','D') 

>>> # Third Wednesday in January 2011 

... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed') 

numpy.datetime64('2011-01-19','D') 

>>> # 2012 Mother's Day in Canada and the U.S. 

... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun') 

numpy.datetime64('2012-05-13','D') 

 

>>> # First business day on or after a date 

... np.busday_offset('2011-03-20', 0, roll='forward') 

numpy.datetime64('2011-03-21','D') 

>>> np.busday_offset('2011-03-22', 0, roll='forward') 

numpy.datetime64('2011-03-22','D') 

>>> # First business day after a date 

... np.busday_offset('2011-03-20', 1, roll='backward') 

numpy.datetime64('2011-03-21','D') 

>>> np.busday_offset('2011-03-22', 1, roll='backward') 

numpy.datetime64('2011-03-23','D') 

""" 

return (dates, offsets, weekmask, holidays, out) 

 

 

@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_count) 

def busday_count(begindates, enddates, weekmask=None, holidays=None, 

busdaycal=None, out=None): 

""" 

busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None) 

 

Counts the number of valid days between `begindates` and 

`enddates`, not including the day of `enddates`. 

 

If ``enddates`` specifies a date value that is earlier than the 

corresponding ``begindates`` date value, the count will be negative. 

 

.. versionadded:: 1.7.0 

 

Parameters 

---------- 

begindates : array_like of datetime64[D] 

The array of the first dates for counting. 

enddates : array_like of datetime64[D] 

The array of the end dates for counting, which are excluded 

from the count themselves. 

weekmask : str or array_like of bool, optional 

A seven-element array indicating which of Monday through Sunday are 

valid days. May be specified as a length-seven list or array, like 

[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string 

like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for 

weekdays, optionally separated by white space. Valid abbreviations 

are: Mon Tue Wed Thu Fri Sat Sun 

holidays : array_like of datetime64[D], optional 

An array of dates to consider as invalid dates. They may be 

specified in any order, and NaT (not-a-time) dates are ignored. 

This list is saved in a normalized form that is suited for 

fast calculations of valid days. 

busdaycal : busdaycalendar, optional 

A `busdaycalendar` object which specifies the valid days. If this 

parameter is provided, neither weekmask nor holidays may be 

provided. 

out : array of int, optional 

If provided, this array is filled with the result. 

 

Returns 

------- 

out : array of int 

An array with a shape from broadcasting ``begindates`` and ``enddates`` 

together, containing the number of valid days between 

the begin and end dates. 

 

See Also 

-------- 

busdaycalendar: An object that specifies a custom set of valid days. 

is_busday : Returns a boolean array indicating valid days. 

busday_offset : Applies an offset counted in valid days. 

 

Examples 

-------- 

>>> # Number of weekdays in January 2011 

... np.busday_count('2011-01', '2011-02') 

21 

>>> # Number of weekdays in 2011 

... np.busday_count('2011', '2012') 

260 

>>> # Number of Saturdays in 2011 

... np.busday_count('2011', '2012', weekmask='Sat') 

53 

""" 

return (begindates, enddates, weekmask, holidays, out) 

 

 

@array_function_from_c_func_and_dispatcher( 

_multiarray_umath.datetime_as_string) 

def datetime_as_string(arr, unit=None, timezone=None, casting=None): 

""" 

datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind') 

 

Convert an array of datetimes into an array of strings. 

 

Parameters 

---------- 

arr : array_like of datetime64 

The array of UTC timestamps to format. 

unit : str 

One of None, 'auto', or a :ref:`datetime unit <arrays.dtypes.dateunits>`. 

timezone : {'naive', 'UTC', 'local'} or tzinfo 

Timezone information to use when displaying the datetime. If 'UTC', end 

with a Z to indicate UTC time. If 'local', convert to the local timezone 

first, and suffix with a +-#### timezone offset. If a tzinfo object, 

then do as with 'local', but use the specified timezone. 

casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'} 

Casting to allow when changing between datetime units. 

 

Returns 

------- 

str_arr : ndarray 

An array of strings the same shape as `arr`. 

 

Examples 

-------- 

>>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]') 

>>> d 

array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30', 

'2002-10-27T07:30'], dtype='datetime64[m]') 

 

Setting the timezone to UTC shows the same information, but with a Z suffix 

 

>>> np.datetime_as_string(d, timezone='UTC') 

array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z', 

'2002-10-27T07:30Z'], dtype='<U35') 

 

Note that we picked datetimes that cross a DST boundary. Passing in a 

``pytz`` timezone object will print the appropriate offset 

 

>>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern')) 

array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400', 

'2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='<U39') 

 

Passing in a unit will change the precision 

 

>>> np.datetime_as_string(d, unit='h') 

array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'], 

dtype='<U32') 

>>> np.datetime_as_string(d, unit='s') 

array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00', 

'2002-10-27T07:30:00'], dtype='<U38') 

 

'casting' can be used to specify whether precision can be changed 

 

>>> np.datetime_as_string(d, unit='h', casting='safe') 

TypeError: Cannot create a datetime string as units 'h' from a NumPy 

datetime with units 'm' according to the rule 'safe' 

""" 

return (arr,)