1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

from __future__ import division, absolute_import, print_function 

 

try: 

# Accessing collections abstract classes from collections 

# has been deprecated since Python 3.3 

import collections.abc as collections_abc 

except ImportError: 

import collections as collections_abc 

import functools 

import itertools 

import operator 

import sys 

import warnings 

import numbers 

 

import numpy as np 

from . import multiarray 

from .multiarray import ( 

_fastCopyAndTranspose as fastCopyAndTranspose, ALLOW_THREADS, 

BUFSIZE, CLIP, MAXDIMS, MAY_SHARE_BOUNDS, MAY_SHARE_EXACT, RAISE, 

WRAP, arange, array, broadcast, can_cast, compare_chararrays, 

concatenate, copyto, dot, dtype, empty, 

empty_like, flatiter, frombuffer, fromfile, fromiter, fromstring, 

inner, int_asbuffer, lexsort, matmul, may_share_memory, 

min_scalar_type, ndarray, nditer, nested_iters, promote_types, 

putmask, result_type, set_numeric_ops, shares_memory, vdot, where, 

zeros, normalize_axis_index) 

if sys.version_info[0] < 3: 

from .multiarray import newbuffer, getbuffer 

 

from . import overrides 

from . import umath 

from .overrides import set_module 

from .umath import (multiply, invert, sin, UFUNC_BUFSIZE_DEFAULT, 

ERR_IGNORE, ERR_WARN, ERR_RAISE, ERR_CALL, ERR_PRINT, 

ERR_LOG, ERR_DEFAULT, PINF, NAN) 

from . import numerictypes 

from .numerictypes import longlong, intc, int_, float_, complex_, bool_ 

from ._internal import TooHardError, AxisError 

 

bitwise_not = invert 

ufunc = type(sin) 

newaxis = None 

 

if sys.version_info[0] >= 3: 

if sys.version_info[1] in (6, 7): 

try: 

import pickle5 as pickle 

except ImportError: 

import pickle 

else: 

import pickle 

basestring = str 

import builtins 

else: 

import cPickle as pickle 

import __builtin__ as builtins 

 

 

array_function_dispatch = functools.partial( 

overrides.array_function_dispatch, module='numpy') 

 

 

def loads(*args, **kwargs): 

# NumPy 1.15.0, 2017-12-10 

warnings.warn( 

"np.core.numeric.loads is deprecated, use pickle.loads instead", 

DeprecationWarning, stacklevel=2) 

return pickle.loads(*args, **kwargs) 

 

 

__all__ = [ 

'newaxis', 'ndarray', 'flatiter', 'nditer', 'nested_iters', 'ufunc', 

'arange', 'array', 'zeros', 'count_nonzero', 'empty', 'broadcast', 'dtype', 

'fromstring', 'fromfile', 'frombuffer', 'int_asbuffer', 'where', 

'argwhere', 'copyto', 'concatenate', 'fastCopyAndTranspose', 'lexsort', 

'set_numeric_ops', 'can_cast', 'promote_types', 'min_scalar_type', 

'result_type', 'asarray', 'asanyarray', 'ascontiguousarray', 

'asfortranarray', 'isfortran', 'empty_like', 'zeros_like', 'ones_like', 

'correlate', 'convolve', 'inner', 'dot', 'outer', 'vdot', 'roll', 

'rollaxis', 'moveaxis', 'cross', 'tensordot', 'little_endian', 'require', 

'fromiter', 'array_equal', 'array_equiv', 'indices', 'fromfunction', 

'isclose', 'load', 'loads', 'isscalar', 'binary_repr', 'base_repr', 'ones', 

'identity', 'allclose', 'compare_chararrays', 'putmask', 'seterr', 

'geterr', 'setbufsize', 'getbufsize', 'seterrcall', 'geterrcall', 

'errstate', 'flatnonzero', 'Inf', 'inf', 'infty', 'Infinity', 'nan', 'NaN', 

'False_', 'True_', 'bitwise_not', 'CLIP', 'RAISE', 'WRAP', 'MAXDIMS', 

'BUFSIZE', 'ALLOW_THREADS', 'ComplexWarning', 'full', 'full_like', 

'matmul', 'shares_memory', 'may_share_memory', 'MAY_SHARE_BOUNDS', 

'MAY_SHARE_EXACT', 'TooHardError', 'AxisError'] 

 

if sys.version_info[0] < 3: 

__all__.extend(['getbuffer', 'newbuffer']) 

 

 

@set_module('numpy') 

class ComplexWarning(RuntimeWarning): 

""" 

The warning raised when casting a complex dtype to a real dtype. 

 

As implemented, casting a complex number to a real discards its imaginary 

part, but this behavior may not be what the user actually wants. 

 

""" 

pass 

 

 

def _zeros_like_dispatcher(a, dtype=None, order=None, subok=None): 

return (a,) 

 

 

@array_function_dispatch(_zeros_like_dispatcher) 

def zeros_like(a, dtype=None, order='K', subok=True): 

""" 

Return an array of zeros with the same shape and type as a given array. 

 

Parameters 

---------- 

a : array_like 

The shape and data-type of `a` define these same attributes of 

the returned array. 

dtype : data-type, optional 

Overrides the data type of the result. 

 

.. versionadded:: 1.6.0 

order : {'C', 'F', 'A', or 'K'}, optional 

Overrides the memory layout of the result. 'C' means C-order, 

'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 

'C' otherwise. 'K' means match the layout of `a` as closely 

as possible. 

 

.. versionadded:: 1.6.0 

subok : bool, optional. 

If True, then the newly created array will use the sub-class 

type of 'a', otherwise it will be a base-class array. Defaults 

to True. 

 

Returns 

------- 

out : ndarray 

Array of zeros with the same shape and type as `a`. 

 

See Also 

-------- 

empty_like : Return an empty array with shape and type of input. 

ones_like : Return an array of ones with shape and type of input. 

full_like : Return a new array with shape of input filled with value. 

zeros : Return a new array setting values to zero. 

 

Examples 

-------- 

>>> x = np.arange(6) 

>>> x = x.reshape((2, 3)) 

>>> x 

array([[0, 1, 2], 

[3, 4, 5]]) 

>>> np.zeros_like(x) 

array([[0, 0, 0], 

[0, 0, 0]]) 

 

>>> y = np.arange(3, dtype=float) 

>>> y 

array([ 0., 1., 2.]) 

>>> np.zeros_like(y) 

array([ 0., 0., 0.]) 

 

""" 

res = empty_like(a, dtype=dtype, order=order, subok=subok) 

# needed instead of a 0 to get same result as zeros for for string dtypes 

z = zeros(1, dtype=res.dtype) 

multiarray.copyto(res, z, casting='unsafe') 

return res 

 

 

@set_module('numpy') 

def ones(shape, dtype=None, order='C'): 

""" 

Return a new array of given shape and type, filled with ones. 

 

Parameters 

---------- 

shape : int or sequence of ints 

Shape of the new array, e.g., ``(2, 3)`` or ``2``. 

dtype : data-type, optional 

The desired data-type for the array, e.g., `numpy.int8`. Default is 

`numpy.float64`. 

order : {'C', 'F'}, optional, default: C 

Whether to store multi-dimensional data in row-major 

(C-style) or column-major (Fortran-style) order in 

memory. 

 

Returns 

------- 

out : ndarray 

Array of ones with the given shape, dtype, and order. 

 

See Also 

-------- 

ones_like : Return an array of ones with shape and type of input. 

empty : Return a new uninitialized array. 

zeros : Return a new array setting values to zero. 

full : Return a new array of given shape filled with value. 

 

 

Examples 

-------- 

>>> np.ones(5) 

array([ 1., 1., 1., 1., 1.]) 

 

>>> np.ones((5,), dtype=int) 

array([1, 1, 1, 1, 1]) 

 

>>> np.ones((2, 1)) 

array([[ 1.], 

[ 1.]]) 

 

>>> s = (2,2) 

>>> np.ones(s) 

array([[ 1., 1.], 

[ 1., 1.]]) 

 

""" 

a = empty(shape, dtype, order) 

multiarray.copyto(a, 1, casting='unsafe') 

return a 

 

 

def _ones_like_dispatcher(a, dtype=None, order=None, subok=None): 

return (a,) 

 

 

@array_function_dispatch(_ones_like_dispatcher) 

def ones_like(a, dtype=None, order='K', subok=True): 

""" 

Return an array of ones with the same shape and type as a given array. 

 

Parameters 

---------- 

a : array_like 

The shape and data-type of `a` define these same attributes of 

the returned array. 

dtype : data-type, optional 

Overrides the data type of the result. 

 

.. versionadded:: 1.6.0 

order : {'C', 'F', 'A', or 'K'}, optional 

Overrides the memory layout of the result. 'C' means C-order, 

'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 

'C' otherwise. 'K' means match the layout of `a` as closely 

as possible. 

 

.. versionadded:: 1.6.0 

subok : bool, optional. 

If True, then the newly created array will use the sub-class 

type of 'a', otherwise it will be a base-class array. Defaults 

to True. 

 

Returns 

------- 

out : ndarray 

Array of ones with the same shape and type as `a`. 

 

See Also 

-------- 

empty_like : Return an empty array with shape and type of input. 

zeros_like : Return an array of zeros with shape and type of input. 

full_like : Return a new array with shape of input filled with value. 

ones : Return a new array setting values to one. 

 

Examples 

-------- 

>>> x = np.arange(6) 

>>> x = x.reshape((2, 3)) 

>>> x 

array([[0, 1, 2], 

[3, 4, 5]]) 

>>> np.ones_like(x) 

array([[1, 1, 1], 

[1, 1, 1]]) 

 

>>> y = np.arange(3, dtype=float) 

>>> y 

array([ 0., 1., 2.]) 

>>> np.ones_like(y) 

array([ 1., 1., 1.]) 

 

""" 

res = empty_like(a, dtype=dtype, order=order, subok=subok) 

multiarray.copyto(res, 1, casting='unsafe') 

return res 

 

 

@set_module('numpy') 

def full(shape, fill_value, dtype=None, order='C'): 

""" 

Return a new array of given shape and type, filled with `fill_value`. 

 

Parameters 

---------- 

shape : int or sequence of ints 

Shape of the new array, e.g., ``(2, 3)`` or ``2``. 

fill_value : scalar 

Fill value. 

dtype : data-type, optional 

The desired data-type for the array The default, `None`, means 

`np.array(fill_value).dtype`. 

order : {'C', 'F'}, optional 

Whether to store multidimensional data in C- or Fortran-contiguous 

(row- or column-wise) order in memory. 

 

Returns 

------- 

out : ndarray 

Array of `fill_value` with the given shape, dtype, and order. 

 

See Also 

-------- 

full_like : Return a new array with shape of input filled with value. 

empty : Return a new uninitialized array. 

ones : Return a new array setting values to one. 

zeros : Return a new array setting values to zero. 

 

Examples 

-------- 

>>> np.full((2, 2), np.inf) 

array([[ inf, inf], 

[ inf, inf]]) 

>>> np.full((2, 2), 10) 

array([[10, 10], 

[10, 10]]) 

 

""" 

if dtype is None: 

dtype = array(fill_value).dtype 

a = empty(shape, dtype, order) 

multiarray.copyto(a, fill_value, casting='unsafe') 

return a 

 

 

def _full_like_dispatcher(a, fill_value, dtype=None, order=None, subok=None): 

return (a,) 

 

 

@array_function_dispatch(_full_like_dispatcher) 

def full_like(a, fill_value, dtype=None, order='K', subok=True): 

""" 

Return a full array with the same shape and type as a given array. 

 

Parameters 

---------- 

a : array_like 

The shape and data-type of `a` define these same attributes of 

the returned array. 

fill_value : scalar 

Fill value. 

dtype : data-type, optional 

Overrides the data type of the result. 

order : {'C', 'F', 'A', or 'K'}, optional 

Overrides the memory layout of the result. 'C' means C-order, 

'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 

'C' otherwise. 'K' means match the layout of `a` as closely 

as possible. 

subok : bool, optional. 

If True, then the newly created array will use the sub-class 

type of 'a', otherwise it will be a base-class array. Defaults 

to True. 

 

Returns 

------- 

out : ndarray 

Array of `fill_value` with the same shape and type as `a`. 

 

See Also 

-------- 

empty_like : Return an empty array with shape and type of input. 

ones_like : Return an array of ones with shape and type of input. 

zeros_like : Return an array of zeros with shape and type of input. 

full : Return a new array of given shape filled with value. 

 

Examples 

-------- 

>>> x = np.arange(6, dtype=int) 

>>> np.full_like(x, 1) 

array([1, 1, 1, 1, 1, 1]) 

>>> np.full_like(x, 0.1) 

array([0, 0, 0, 0, 0, 0]) 

>>> np.full_like(x, 0.1, dtype=np.double) 

array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) 

>>> np.full_like(x, np.nan, dtype=np.double) 

array([ nan, nan, nan, nan, nan, nan]) 

 

>>> y = np.arange(6, dtype=np.double) 

>>> np.full_like(y, 0.1) 

array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) 

 

""" 

res = empty_like(a, dtype=dtype, order=order, subok=subok) 

multiarray.copyto(res, fill_value, casting='unsafe') 

return res 

 

 

def _count_nonzero_dispatcher(a, axis=None): 

return (a,) 

 

 

@array_function_dispatch(_count_nonzero_dispatcher) 

def count_nonzero(a, axis=None): 

""" 

Counts the number of non-zero values in the array ``a``. 

 

The word "non-zero" is in reference to the Python 2.x 

built-in method ``__nonzero__()`` (renamed ``__bool__()`` 

in Python 3.x) of Python objects that tests an object's 

"truthfulness". For example, any number is considered 

truthful if it is nonzero, whereas any string is considered 

truthful if it is not the empty string. Thus, this function 

(recursively) counts how many elements in ``a`` (and in 

sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` 

method evaluated to ``True``. 

 

Parameters 

---------- 

a : array_like 

The array for which to count non-zeros. 

axis : int or tuple, optional 

Axis or tuple of axes along which to count non-zeros. 

Default is None, meaning that non-zeros will be counted 

along a flattened version of ``a``. 

 

.. versionadded:: 1.12.0 

 

Returns 

------- 

count : int or array of int 

Number of non-zero values in the array along a given axis. 

Otherwise, the total number of non-zero values in the array 

is returned. 

 

See Also 

-------- 

nonzero : Return the coordinates of all the non-zero values. 

 

Examples 

-------- 

>>> np.count_nonzero(np.eye(4)) 

4 

>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) 

5 

>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) 

array([1, 1, 1, 1, 1]) 

>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) 

array([2, 3]) 

 

""" 

if axis is None: 

return multiarray.count_nonzero(a) 

 

a = asanyarray(a) 

 

# TODO: this works around .astype(bool) not working properly (gh-9847) 

if np.issubdtype(a.dtype, np.character): 

a_bool = a != a.dtype.type() 

else: 

a_bool = a.astype(np.bool_, copy=False) 

 

return a_bool.sum(axis=axis, dtype=np.intp) 

 

 

@set_module('numpy') 

def asarray(a, dtype=None, order=None): 

"""Convert the input to an array. 

 

Parameters 

---------- 

a : array_like 

Input data, in any form that can be converted to an array. This 

includes lists, lists of tuples, tuples, tuples of tuples, tuples 

of lists and ndarrays. 

dtype : data-type, optional 

By default, the data-type is inferred from the input data. 

order : {'C', 'F'}, optional 

Whether to use row-major (C-style) or 

column-major (Fortran-style) memory representation. 

Defaults to 'C'. 

 

Returns 

------- 

out : ndarray 

Array interpretation of `a`. No copy is performed if the input 

is already an ndarray with matching dtype and order. If `a` is a 

subclass of ndarray, a base class ndarray is returned. 

 

See Also 

-------- 

asanyarray : Similar function which passes through subclasses. 

ascontiguousarray : Convert input to a contiguous array. 

asfarray : Convert input to a floating point ndarray. 

asfortranarray : Convert input to an ndarray with column-major 

memory order. 

asarray_chkfinite : Similar function which checks input for NaNs and Infs. 

fromiter : Create an array from an iterator. 

fromfunction : Construct an array by executing a function on grid 

positions. 

 

Examples 

-------- 

Convert a list into an array: 

 

>>> a = [1, 2] 

>>> np.asarray(a) 

array([1, 2]) 

 

Existing arrays are not copied: 

 

>>> a = np.array([1, 2]) 

>>> np.asarray(a) is a 

True 

 

If `dtype` is set, array is copied only if dtype does not match: 

 

>>> a = np.array([1, 2], dtype=np.float32) 

>>> np.asarray(a, dtype=np.float32) is a 

True 

>>> np.asarray(a, dtype=np.float64) is a 

False 

 

Contrary to `asanyarray`, ndarray subclasses are not passed through: 

 

>>> issubclass(np.recarray, np.ndarray) 

True 

>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) 

>>> np.asarray(a) is a 

False 

>>> np.asanyarray(a) is a 

True 

 

""" 

return array(a, dtype, copy=False, order=order) 

 

 

@set_module('numpy') 

def asanyarray(a, dtype=None, order=None): 

"""Convert the input to an ndarray, but pass ndarray subclasses through. 

 

Parameters 

---------- 

a : array_like 

Input data, in any form that can be converted to an array. This 

includes scalars, lists, lists of tuples, tuples, tuples of tuples, 

tuples of lists, and ndarrays. 

dtype : data-type, optional 

By default, the data-type is inferred from the input data. 

order : {'C', 'F'}, optional 

Whether to use row-major (C-style) or column-major 

(Fortran-style) memory representation. Defaults to 'C'. 

 

Returns 

------- 

out : ndarray or an ndarray subclass 

Array interpretation of `a`. If `a` is an ndarray or a subclass 

of ndarray, it is returned as-is and no copy is performed. 

 

See Also 

-------- 

asarray : Similar function which always returns ndarrays. 

ascontiguousarray : Convert input to a contiguous array. 

asfarray : Convert input to a floating point ndarray. 

asfortranarray : Convert input to an ndarray with column-major 

memory order. 

asarray_chkfinite : Similar function which checks input for NaNs and 

Infs. 

fromiter : Create an array from an iterator. 

fromfunction : Construct an array by executing a function on grid 

positions. 

 

Examples 

-------- 

Convert a list into an array: 

 

>>> a = [1, 2] 

>>> np.asanyarray(a) 

array([1, 2]) 

 

Instances of `ndarray` subclasses are passed through as-is: 

 

>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) 

>>> np.asanyarray(a) is a 

True 

 

""" 

return array(a, dtype, copy=False, order=order, subok=True) 

 

 

@set_module('numpy') 

def ascontiguousarray(a, dtype=None): 

""" 

Return a contiguous array (ndim >= 1) in memory (C order). 

 

Parameters 

---------- 

a : array_like 

Input array. 

dtype : str or dtype object, optional 

Data-type of returned array. 

 

Returns 

------- 

out : ndarray 

Contiguous array of same shape and content as `a`, with type `dtype` 

if specified. 

 

See Also 

-------- 

asfortranarray : Convert input to an ndarray with column-major 

memory order. 

require : Return an ndarray that satisfies requirements. 

ndarray.flags : Information about the memory layout of the array. 

 

Examples 

-------- 

>>> x = np.arange(6).reshape(2,3) 

>>> np.ascontiguousarray(x, dtype=np.float32) 

array([[ 0., 1., 2.], 

[ 3., 4., 5.]], dtype=float32) 

>>> x.flags['C_CONTIGUOUS'] 

True 

 

Note: This function returns an array with at least one-dimension (1-d)  

so it will not preserve 0-d arrays.  

 

""" 

return array(a, dtype, copy=False, order='C', ndmin=1) 

 

 

@set_module('numpy') 

def asfortranarray(a, dtype=None): 

""" 

Return an array (ndim >= 1) laid out in Fortran order in memory. 

 

Parameters 

---------- 

a : array_like 

Input array. 

dtype : str or dtype object, optional 

By default, the data-type is inferred from the input data. 

 

Returns 

------- 

out : ndarray 

The input `a` in Fortran, or column-major, order. 

 

See Also 

-------- 

ascontiguousarray : Convert input to a contiguous (C order) array. 

asanyarray : Convert input to an ndarray with either row or 

column-major memory order. 

require : Return an ndarray that satisfies requirements. 

ndarray.flags : Information about the memory layout of the array. 

 

Examples 

-------- 

>>> x = np.arange(6).reshape(2,3) 

>>> y = np.asfortranarray(x) 

>>> x.flags['F_CONTIGUOUS'] 

False 

>>> y.flags['F_CONTIGUOUS'] 

True 

 

Note: This function returns an array with at least one-dimension (1-d)  

so it will not preserve 0-d arrays.  

 

""" 

return array(a, dtype, copy=False, order='F', ndmin=1) 

 

 

@set_module('numpy') 

def require(a, dtype=None, requirements=None): 

""" 

Return an ndarray of the provided type that satisfies requirements. 

 

This function is useful to be sure that an array with the correct flags 

is returned for passing to compiled code (perhaps through ctypes). 

 

Parameters 

---------- 

a : array_like 

The object to be converted to a type-and-requirement-satisfying array. 

dtype : data-type 

The required data-type. If None preserve the current dtype. If your 

application requires the data to be in native byteorder, include 

a byteorder specification as a part of the dtype specification. 

requirements : str or list of str 

The requirements list can be any of the following 

 

* 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array 

* 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array 

* 'ALIGNED' ('A') - ensure a data-type aligned array 

* 'WRITEABLE' ('W') - ensure a writable array 

* 'OWNDATA' ('O') - ensure an array that owns its own data 

* 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass 

 

See Also 

-------- 

asarray : Convert input to an ndarray. 

asanyarray : Convert to an ndarray, but pass through ndarray subclasses. 

ascontiguousarray : Convert input to a contiguous array. 

asfortranarray : Convert input to an ndarray with column-major 

memory order. 

ndarray.flags : Information about the memory layout of the array. 

 

Notes 

----- 

The returned array will be guaranteed to have the listed requirements 

by making a copy if needed. 

 

Examples 

-------- 

>>> x = np.arange(6).reshape(2,3) 

>>> x.flags 

C_CONTIGUOUS : True 

F_CONTIGUOUS : False 

OWNDATA : False 

WRITEABLE : True 

ALIGNED : True 

WRITEBACKIFCOPY : False 

UPDATEIFCOPY : False 

 

>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F']) 

>>> y.flags 

C_CONTIGUOUS : False 

F_CONTIGUOUS : True 

OWNDATA : True 

WRITEABLE : True 

ALIGNED : True 

WRITEBACKIFCOPY : False 

UPDATEIFCOPY : False 

 

""" 

possible_flags = {'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C', 

'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F', 

'A': 'A', 'ALIGNED': 'A', 

'W': 'W', 'WRITEABLE': 'W', 

'O': 'O', 'OWNDATA': 'O', 

'E': 'E', 'ENSUREARRAY': 'E'} 

if not requirements: 

return asanyarray(a, dtype=dtype) 

else: 

requirements = {possible_flags[x.upper()] for x in requirements} 

 

if 'E' in requirements: 

requirements.remove('E') 

subok = False 

else: 

subok = True 

 

order = 'A' 

if requirements >= {'C', 'F'}: 

raise ValueError('Cannot specify both "C" and "F" order') 

elif 'F' in requirements: 

order = 'F' 

requirements.remove('F') 

elif 'C' in requirements: 

order = 'C' 

requirements.remove('C') 

 

arr = array(a, dtype=dtype, order=order, copy=False, subok=subok) 

 

for prop in requirements: 

if not arr.flags[prop]: 

arr = arr.copy(order) 

break 

return arr 

 

 

@set_module('numpy') 

def isfortran(a): 

""" 

Returns True if the array is Fortran contiguous but *not* C contiguous. 

 

This function is obsolete and, because of changes due to relaxed stride 

checking, its return value for the same array may differ for versions 

of NumPy >= 1.10.0 and previous versions. If you only want to check if an 

array is Fortran contiguous use ``a.flags.f_contiguous`` instead. 

 

Parameters 

---------- 

a : ndarray 

Input array. 

 

 

Examples 

-------- 

 

np.array allows to specify whether the array is written in C-contiguous 

order (last index varies the fastest), or FORTRAN-contiguous order in 

memory (first index varies the fastest). 

 

>>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C') 

>>> a 

array([[1, 2, 3], 

[4, 5, 6]]) 

>>> np.isfortran(a) 

False 

 

>>> b = np.array([[1, 2, 3], [4, 5, 6]], order='FORTRAN') 

>>> b 

array([[1, 2, 3], 

[4, 5, 6]]) 

>>> np.isfortran(b) 

True 

 

 

The transpose of a C-ordered array is a FORTRAN-ordered array. 

 

>>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C') 

>>> a 

array([[1, 2, 3], 

[4, 5, 6]]) 

>>> np.isfortran(a) 

False 

>>> b = a.T 

>>> b 

array([[1, 4], 

[2, 5], 

[3, 6]]) 

>>> np.isfortran(b) 

True 

 

C-ordered arrays evaluate as False even if they are also FORTRAN-ordered. 

 

>>> np.isfortran(np.array([1, 2], order='FORTRAN')) 

False 

 

""" 

return a.flags.fnc 

 

 

def _argwhere_dispatcher(a): 

return (a,) 

 

 

@array_function_dispatch(_argwhere_dispatcher) 

def argwhere(a): 

""" 

Find the indices of array elements that are non-zero, grouped by element. 

 

Parameters 

---------- 

a : array_like 

Input data. 

 

Returns 

------- 

index_array : ndarray 

Indices of elements that are non-zero. Indices are grouped by element. 

 

See Also 

-------- 

where, nonzero 

 

Notes 

----- 

``np.argwhere(a)`` is the same as ``np.transpose(np.nonzero(a))``. 

 

The output of ``argwhere`` is not suitable for indexing arrays. 

For this purpose use ``nonzero(a)`` instead. 

 

Examples 

-------- 

>>> x = np.arange(6).reshape(2,3) 

>>> x 

array([[0, 1, 2], 

[3, 4, 5]]) 

>>> np.argwhere(x>1) 

array([[0, 2], 

[1, 0], 

[1, 1], 

[1, 2]]) 

 

""" 

return transpose(nonzero(a)) 

 

 

def _flatnonzero_dispatcher(a): 

return (a,) 

 

 

@array_function_dispatch(_flatnonzero_dispatcher) 

def flatnonzero(a): 

""" 

Return indices that are non-zero in the flattened version of a. 

 

This is equivalent to np.nonzero(np.ravel(a))[0]. 

 

Parameters 

---------- 

a : array_like 

Input data. 

 

Returns 

------- 

res : ndarray 

Output array, containing the indices of the elements of `a.ravel()` 

that are non-zero. 

 

See Also 

-------- 

nonzero : Return the indices of the non-zero elements of the input array. 

ravel : Return a 1-D array containing the elements of the input array. 

 

Examples 

-------- 

>>> x = np.arange(-2, 3) 

>>> x 

array([-2, -1, 0, 1, 2]) 

>>> np.flatnonzero(x) 

array([0, 1, 3, 4]) 

 

Use the indices of the non-zero elements as an index array to extract 

these elements: 

 

>>> x.ravel()[np.flatnonzero(x)] 

array([-2, -1, 1, 2]) 

 

""" 

return np.nonzero(np.ravel(a))[0] 

 

 

_mode_from_name_dict = {'v': 0, 

's': 1, 

'f': 2} 

 

 

def _mode_from_name(mode): 

if isinstance(mode, basestring): 

return _mode_from_name_dict[mode.lower()[0]] 

return mode 

 

 

def _correlate_dispatcher(a, v, mode=None): 

return (a, v) 

 

 

@array_function_dispatch(_correlate_dispatcher) 

def correlate(a, v, mode='valid'): 

""" 

Cross-correlation of two 1-dimensional sequences. 

 

This function computes the correlation as generally defined in signal 

processing texts:: 

 

c_{av}[k] = sum_n a[n+k] * conj(v[n]) 

 

with a and v sequences being zero-padded where necessary and conj being 

the conjugate. 

 

Parameters 

---------- 

a, v : array_like 

Input sequences. 

mode : {'valid', 'same', 'full'}, optional 

Refer to the `convolve` docstring. Note that the default 

is 'valid', unlike `convolve`, which uses 'full'. 

old_behavior : bool 

`old_behavior` was removed in NumPy 1.10. If you need the old 

behavior, use `multiarray.correlate`. 

 

Returns 

------- 

out : ndarray 

Discrete cross-correlation of `a` and `v`. 

 

See Also 

-------- 

convolve : Discrete, linear convolution of two one-dimensional sequences. 

multiarray.correlate : Old, no conjugate, version of correlate. 

 

Notes 

----- 

The definition of correlation above is not unique and sometimes correlation 

may be defined differently. Another common definition is:: 

 

c'_{av}[k] = sum_n a[n] conj(v[n+k]) 

 

which is related to ``c_{av}[k]`` by ``c'_{av}[k] = c_{av}[-k]``. 

 

Examples 

-------- 

>>> np.correlate([1, 2, 3], [0, 1, 0.5]) 

array([ 3.5]) 

>>> np.correlate([1, 2, 3], [0, 1, 0.5], "same") 

array([ 2. , 3.5, 3. ]) 

>>> np.correlate([1, 2, 3], [0, 1, 0.5], "full") 

array([ 0.5, 2. , 3.5, 3. , 0. ]) 

 

Using complex sequences: 

 

>>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full') 

array([ 0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j ]) 

 

Note that you get the time reversed, complex conjugated result 

when the two input sequences change places, i.e., 

``c_{va}[k] = c^{*}_{av}[-k]``: 

 

>>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full') 

array([ 0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j]) 

 

""" 

mode = _mode_from_name(mode) 

return multiarray.correlate2(a, v, mode) 

 

 

def _convolve_dispatcher(a, v, mode=None): 

return (a, v) 

 

 

@array_function_dispatch(_convolve_dispatcher) 

def convolve(a, v, mode='full'): 

""" 

Returns the discrete, linear convolution of two one-dimensional sequences. 

 

The convolution operator is often seen in signal processing, where it 

models the effect of a linear time-invariant system on a signal [1]_. In 

probability theory, the sum of two independent random variables is 

distributed according to the convolution of their individual 

distributions. 

 

If `v` is longer than `a`, the arrays are swapped before computation. 

 

Parameters 

---------- 

a : (N,) array_like 

First one-dimensional input array. 

v : (M,) array_like 

Second one-dimensional input array. 

mode : {'full', 'valid', 'same'}, optional 

'full': 

By default, mode is 'full'. This returns the convolution 

at each point of overlap, with an output shape of (N+M-1,). At 

the end-points of the convolution, the signals do not overlap 

completely, and boundary effects may be seen. 

 

'same': 

Mode 'same' returns output of length ``max(M, N)``. Boundary 

effects are still visible. 

 

'valid': 

Mode 'valid' returns output of length 

``max(M, N) - min(M, N) + 1``. The convolution product is only given 

for points where the signals overlap completely. Values outside 

the signal boundary have no effect. 

 

Returns 

------- 

out : ndarray 

Discrete, linear convolution of `a` and `v`. 

 

See Also 

-------- 

scipy.signal.fftconvolve : Convolve two arrays using the Fast Fourier 

Transform. 

scipy.linalg.toeplitz : Used to construct the convolution operator. 

polymul : Polynomial multiplication. Same output as convolve, but also 

accepts poly1d objects as input. 

 

Notes 

----- 

The discrete convolution operation is defined as 

 

.. math:: (a * v)[n] = \\sum_{m = -\\infty}^{\\infty} a[m] v[n - m] 

 

It can be shown that a convolution :math:`x(t) * y(t)` in time/space 

is equivalent to the multiplication :math:`X(f) Y(f)` in the Fourier 

domain, after appropriate padding (padding is necessary to prevent 

circular convolution). Since multiplication is more efficient (faster) 

than convolution, the function `scipy.signal.fftconvolve` exploits the 

FFT to calculate the convolution of large data-sets. 

 

References 

---------- 

.. [1] Wikipedia, "Convolution", 

https://en.wikipedia.org/wiki/Convolution 

 

Examples 

-------- 

Note how the convolution operator flips the second array 

before "sliding" the two across one another: 

 

>>> np.convolve([1, 2, 3], [0, 1, 0.5]) 

array([ 0. , 1. , 2.5, 4. , 1.5]) 

 

Only return the middle values of the convolution. 

Contains boundary effects, where zeros are taken 

into account: 

 

>>> np.convolve([1,2,3],[0,1,0.5], 'same') 

array([ 1. , 2.5, 4. ]) 

 

The two arrays are of the same length, so there 

is only one position where they completely overlap: 

 

>>> np.convolve([1,2,3],[0,1,0.5], 'valid') 

array([ 2.5]) 

 

""" 

a, v = array(a, copy=False, ndmin=1), array(v, copy=False, ndmin=1) 

if (len(v) > len(a)): 

a, v = v, a 

if len(a) == 0: 

raise ValueError('a cannot be empty') 

if len(v) == 0: 

raise ValueError('v cannot be empty') 

mode = _mode_from_name(mode) 

return multiarray.correlate(a, v[::-1], mode) 

 

 

def _outer_dispatcher(a, b, out=None): 

return (a, b, out) 

 

 

@array_function_dispatch(_outer_dispatcher) 

def outer(a, b, out=None): 

""" 

Compute the outer product of two vectors. 

 

Given two vectors, ``a = [a0, a1, ..., aM]`` and 

``b = [b0, b1, ..., bN]``, 

the outer product [1]_ is:: 

 

[[a0*b0 a0*b1 ... a0*bN ] 

[a1*b0 . 

[ ... . 

[aM*b0 aM*bN ]] 

 

Parameters 

---------- 

a : (M,) array_like 

First input vector. Input is flattened if 

not already 1-dimensional. 

b : (N,) array_like 

Second input vector. Input is flattened if 

not already 1-dimensional. 

out : (M, N) ndarray, optional 

A location where the result is stored 

 

.. versionadded:: 1.9.0 

 

Returns 

------- 

out : (M, N) ndarray 

``out[i, j] = a[i] * b[j]`` 

 

See also 

-------- 

inner 

einsum : ``einsum('i,j->ij', a.ravel(), b.ravel())`` is the equivalent. 

ufunc.outer : A generalization to N dimensions and other operations. 

``np.multiply.outer(a.ravel(), b.ravel())`` is the equivalent. 

 

References 

---------- 

.. [1] : G. H. Golub and C. F. Van Loan, *Matrix Computations*, 3rd 

ed., Baltimore, MD, Johns Hopkins University Press, 1996, 

pg. 8. 

 

Examples 

-------- 

Make a (*very* coarse) grid for computing a Mandelbrot set: 

 

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5)) 

>>> rl 

array([[-2., -1., 0., 1., 2.], 

[-2., -1., 0., 1., 2.], 

[-2., -1., 0., 1., 2.], 

[-2., -1., 0., 1., 2.], 

[-2., -1., 0., 1., 2.]]) 

>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,))) 

>>> im 

array([[ 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j], 

[ 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j], 

[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], 

[ 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j], 

[ 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]]) 

>>> grid = rl + im 

>>> grid 

array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j], 

[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j], 

[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j], 

[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j], 

[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]]) 

 

An example using a "vector" of letters: 

 

>>> x = np.array(['a', 'b', 'c'], dtype=object) 

>>> np.outer(x, [1, 2, 3]) 

array([[a, aa, aaa], 

[b, bb, bbb], 

[c, cc, ccc]], dtype=object) 

 

""" 

a = asarray(a) 

b = asarray(b) 

return multiply(a.ravel()[:, newaxis], b.ravel()[newaxis, :], out) 

 

 

def _tensordot_dispatcher(a, b, axes=None): 

return (a, b) 

 

 

@array_function_dispatch(_tensordot_dispatcher) 

def tensordot(a, b, axes=2): 

""" 

Compute tensor dot product along specified axes for arrays >= 1-D. 

 

Given two tensors (arrays of dimension greater than or equal to one), 

`a` and `b`, and an array_like object containing two array_like 

objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s 

elements (components) over the axes specified by ``a_axes`` and 

``b_axes``. The third argument can be a single non-negative 

integer_like scalar, ``N``; if it is such, then the last ``N`` 

dimensions of `a` and the first ``N`` dimensions of `b` are summed 

over. 

 

Parameters 

---------- 

a, b : array_like, len(shape) >= 1 

Tensors to "dot". 

 

axes : int or (2,) array_like 

* integer_like 

If an int N, sum over the last N axes of `a` and the first N axes 

of `b` in order. The sizes of the corresponding axes must match. 

* (2,) array_like 

Or, a list of axes to be summed over, first sequence applying to `a`, 

second to `b`. Both elements array_like must be of the same length. 

 

See Also 

-------- 

dot, einsum 

 

Notes 

----- 

Three common use cases are: 

* ``axes = 0`` : tensor product :math:`a\\otimes b` 

* ``axes = 1`` : tensor dot product :math:`a\\cdot b` 

* ``axes = 2`` : (default) tensor double contraction :math:`a:b` 

 

When `axes` is integer_like, the sequence for evaluation will be: first 

the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and 

Nth axis in `b` last. 

 

When there is more than one axis to sum over - and they are not the last 

(first) axes of `a` (`b`) - the argument `axes` should consist of 

two sequences of the same length, with the first axis to sum over given 

first in both sequences, the second axis second, and so forth. 

 

Examples 

-------- 

A "traditional" example: 

 

>>> a = np.arange(60.).reshape(3,4,5) 

>>> b = np.arange(24.).reshape(4,3,2) 

>>> c = np.tensordot(a,b, axes=([1,0],[0,1])) 

>>> c.shape 

(5, 2) 

>>> c 

array([[ 4400., 4730.], 

[ 4532., 4874.], 

[ 4664., 5018.], 

[ 4796., 5162.], 

[ 4928., 5306.]]) 

>>> # A slower but equivalent way of computing the same... 

>>> d = np.zeros((5,2)) 

>>> for i in range(5): 

... for j in range(2): 

... for k in range(3): 

... for n in range(4): 

... d[i,j] += a[k,n,i] * b[n,k,j] 

>>> c == d 

array([[ True, True], 

[ True, True], 

[ True, True], 

[ True, True], 

[ True, True]]) 

 

An extended example taking advantage of the overloading of + and \\*: 

 

>>> a = np.array(range(1, 9)) 

>>> a.shape = (2, 2, 2) 

>>> A = np.array(('a', 'b', 'c', 'd'), dtype=object) 

>>> A.shape = (2, 2) 

>>> a; A 

array([[[1, 2], 

[3, 4]], 

[[5, 6], 

[7, 8]]]) 

array([[a, b], 

[c, d]], dtype=object) 

 

>>> np.tensordot(a, A) # third argument default is 2 for double-contraction 

array([abbcccdddd, aaaaabbbbbbcccccccdddddddd], dtype=object) 

 

>>> np.tensordot(a, A, 1) 

array([[[acc, bdd], 

[aaacccc, bbbdddd]], 

[[aaaaacccccc, bbbbbdddddd], 

[aaaaaaacccccccc, bbbbbbbdddddddd]]], dtype=object) 

 

>>> np.tensordot(a, A, 0) # tensor product (result too long to incl.) 

array([[[[[a, b], 

[c, d]], 

... 

 

>>> np.tensordot(a, A, (0, 1)) 

array([[[abbbbb, cddddd], 

[aabbbbbb, ccdddddd]], 

[[aaabbbbbbb, cccddddddd], 

[aaaabbbbbbbb, ccccdddddddd]]], dtype=object) 

 

>>> np.tensordot(a, A, (2, 1)) 

array([[[abb, cdd], 

[aaabbbb, cccdddd]], 

[[aaaaabbbbbb, cccccdddddd], 

[aaaaaaabbbbbbbb, cccccccdddddddd]]], dtype=object) 

 

>>> np.tensordot(a, A, ((0, 1), (0, 1))) 

array([abbbcccccddddddd, aabbbbccccccdddddddd], dtype=object) 

 

>>> np.tensordot(a, A, ((2, 1), (1, 0))) 

array([acccbbdddd, aaaaacccccccbbbbbbdddddddd], dtype=object) 

 

""" 

try: 

iter(axes) 

except Exception: 

axes_a = list(range(-axes, 0)) 

axes_b = list(range(0, axes)) 

else: 

axes_a, axes_b = axes 

try: 

na = len(axes_a) 

axes_a = list(axes_a) 

except TypeError: 

axes_a = [axes_a] 

na = 1 

try: 

nb = len(axes_b) 

axes_b = list(axes_b) 

except TypeError: 

axes_b = [axes_b] 

nb = 1 

 

a, b = asarray(a), asarray(b) 

as_ = a.shape 

nda = a.ndim 

bs = b.shape 

ndb = b.ndim 

equal = True 

if na != nb: 

equal = False 

else: 

for k in range(na): 

if as_[axes_a[k]] != bs[axes_b[k]]: 

equal = False 

break 

if axes_a[k] < 0: 

axes_a[k] += nda 

if axes_b[k] < 0: 

axes_b[k] += ndb 

if not equal: 

raise ValueError("shape-mismatch for sum") 

 

# Move the axes to sum over to the end of "a" 

# and to the front of "b" 

notin = [k for k in range(nda) if k not in axes_a] 

newaxes_a = notin + axes_a 

N2 = 1 

for axis in axes_a: 

N2 *= as_[axis] 

newshape_a = (int(multiply.reduce([as_[ax] for ax in notin])), N2) 

olda = [as_[axis] for axis in notin] 

 

notin = [k for k in range(ndb) if k not in axes_b] 

newaxes_b = axes_b + notin 

N2 = 1 

for axis in axes_b: 

N2 *= bs[axis] 

newshape_b = (N2, int(multiply.reduce([bs[ax] for ax in notin]))) 

oldb = [bs[axis] for axis in notin] 

 

at = a.transpose(newaxes_a).reshape(newshape_a) 

bt = b.transpose(newaxes_b).reshape(newshape_b) 

res = dot(at, bt) 

return res.reshape(olda + oldb) 

 

 

def _roll_dispatcher(a, shift, axis=None): 

return (a,) 

 

 

@array_function_dispatch(_roll_dispatcher) 

def roll(a, shift, axis=None): 

""" 

Roll array elements along a given axis. 

 

Elements that roll beyond the last position are re-introduced at 

the first. 

 

Parameters 

---------- 

a : array_like 

Input array. 

shift : int or tuple of ints 

The number of places by which elements are shifted. If a tuple, 

then `axis` must be a tuple of the same size, and each of the 

given axes is shifted by the corresponding number. If an int 

while `axis` is a tuple of ints, then the same value is used for 

all given axes. 

axis : int or tuple of ints, optional 

Axis or axes along which elements are shifted. By default, the 

array is flattened before shifting, after which the original 

shape is restored. 

 

Returns 

------- 

res : ndarray 

Output array, with the same shape as `a`. 

 

See Also 

-------- 

rollaxis : Roll the specified axis backwards, until it lies in a 

given position. 

 

Notes 

----- 

.. versionadded:: 1.12.0 

 

Supports rolling over multiple dimensions simultaneously. 

 

Examples 

-------- 

>>> x = np.arange(10) 

>>> np.roll(x, 2) 

array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]) 

 

>>> x2 = np.reshape(x, (2,5)) 

>>> x2 

array([[0, 1, 2, 3, 4], 

[5, 6, 7, 8, 9]]) 

>>> np.roll(x2, 1) 

array([[9, 0, 1, 2, 3], 

[4, 5, 6, 7, 8]]) 

>>> np.roll(x2, 1, axis=0) 

array([[5, 6, 7, 8, 9], 

[0, 1, 2, 3, 4]]) 

>>> np.roll(x2, 1, axis=1) 

array([[4, 0, 1, 2, 3], 

[9, 5, 6, 7, 8]]) 

 

""" 

a = asanyarray(a) 

if axis is None: 

return roll(a.ravel(), shift, 0).reshape(a.shape) 

 

else: 

axis = normalize_axis_tuple(axis, a.ndim, allow_duplicate=True) 

broadcasted = broadcast(shift, axis) 

if broadcasted.ndim > 1: 

raise ValueError( 

"'shift' and 'axis' should be scalars or 1D sequences") 

shifts = {ax: 0 for ax in range(a.ndim)} 

for sh, ax in broadcasted: 

shifts[ax] += sh 

 

rolls = [((slice(None), slice(None)),)] * a.ndim 

for ax, offset in shifts.items(): 

offset %= a.shape[ax] or 1 # If `a` is empty, nothing matters. 

if offset: 

# (original, result), (original, result) 

rolls[ax] = ((slice(None, -offset), slice(offset, None)), 

(slice(-offset, None), slice(None, offset))) 

 

result = empty_like(a) 

for indices in itertools.product(*rolls): 

arr_index, res_index = zip(*indices) 

result[res_index] = a[arr_index] 

 

return result 

 

 

def _rollaxis_dispatcher(a, axis, start=None): 

return (a,) 

 

 

@array_function_dispatch(_rollaxis_dispatcher) 

def rollaxis(a, axis, start=0): 

""" 

Roll the specified axis backwards, until it lies in a given position. 

 

This function continues to be supported for backward compatibility, but you 

should prefer `moveaxis`. The `moveaxis` function was added in NumPy 

1.11. 

 

Parameters 

---------- 

a : ndarray 

Input array. 

axis : int 

The axis to roll backwards. The positions of the other axes do not 

change relative to one another. 

start : int, optional 

The axis is rolled until it lies before this position. The default, 

0, results in a "complete" roll. 

 

Returns 

------- 

res : ndarray 

For NumPy >= 1.10.0 a view of `a` is always returned. For earlier 

NumPy versions a view of `a` is returned only if the order of the 

axes is changed, otherwise the input array is returned. 

 

See Also 

-------- 

moveaxis : Move array axes to new positions. 

roll : Roll the elements of an array by a number of positions along a 

given axis. 

 

Examples 

-------- 

>>> a = np.ones((3,4,5,6)) 

>>> np.rollaxis(a, 3, 1).shape 

(3, 6, 4, 5) 

>>> np.rollaxis(a, 2).shape 

(5, 3, 4, 6) 

>>> np.rollaxis(a, 1, 4).shape 

(3, 5, 6, 4) 

 

""" 

n = a.ndim 

axis = normalize_axis_index(axis, n) 

if start < 0: 

start += n 

msg = "'%s' arg requires %d <= %s < %d, but %d was passed in" 

if not (0 <= start < n + 1): 

raise AxisError(msg % ('start', -n, 'start', n + 1, start)) 

if axis < start: 

# it's been removed 

start -= 1 

if axis == start: 

return a[...] 

axes = list(range(0, n)) 

axes.remove(axis) 

axes.insert(start, axis) 

return a.transpose(axes) 

 

 

def normalize_axis_tuple(axis, ndim, argname=None, allow_duplicate=False): 

""" 

Normalizes an axis argument into a tuple of non-negative integer axes. 

 

This handles shorthands such as ``1`` and converts them to ``(1,)``, 

as well as performing the handling of negative indices covered by 

`normalize_axis_index`. 

 

By default, this forbids axes from being specified multiple times. 

 

Used internally by multi-axis-checking logic. 

 

.. versionadded:: 1.13.0 

 

Parameters 

---------- 

axis : int, iterable of int 

The un-normalized index or indices of the axis. 

ndim : int 

The number of dimensions of the array that `axis` should be normalized 

against. 

argname : str, optional 

A prefix to put before the error message, typically the name of the 

argument. 

allow_duplicate : bool, optional 

If False, the default, disallow an axis from being specified twice. 

 

Returns 

------- 

normalized_axes : tuple of int 

The normalized axis index, such that `0 <= normalized_axis < ndim` 

 

Raises 

------ 

AxisError 

If any axis provided is out of range 

ValueError 

If an axis is repeated 

 

See also 

-------- 

normalize_axis_index : normalizing a single scalar axis 

""" 

# Optimization to speed-up the most common cases. 

if type(axis) not in (tuple, list): 

try: 

axis = [operator.index(axis)] 

except TypeError: 

pass 

# Going via an iterator directly is slower than via list comprehension. 

axis = tuple([normalize_axis_index(ax, ndim, argname) for ax in axis]) 

if not allow_duplicate and len(set(axis)) != len(axis): 

if argname: 

raise ValueError('repeated axis in `{}` argument'.format(argname)) 

else: 

raise ValueError('repeated axis') 

return axis 

 

 

def _moveaxis_dispatcher(a, source, destination): 

return (a,) 

 

 

@array_function_dispatch(_moveaxis_dispatcher) 

def moveaxis(a, source, destination): 

""" 

Move axes of an array to new positions. 

 

Other axes remain in their original order. 

 

.. versionadded:: 1.11.0 

 

Parameters 

---------- 

a : np.ndarray 

The array whose axes should be reordered. 

source : int or sequence of int 

Original positions of the axes to move. These must be unique. 

destination : int or sequence of int 

Destination positions for each of the original axes. These must also be 

unique. 

 

Returns 

------- 

result : np.ndarray 

Array with moved axes. This array is a view of the input array. 

 

See Also 

-------- 

transpose: Permute the dimensions of an array. 

swapaxes: Interchange two axes of an array. 

 

Examples 

-------- 

 

>>> x = np.zeros((3, 4, 5)) 

>>> np.moveaxis(x, 0, -1).shape 

(4, 5, 3) 

>>> np.moveaxis(x, -1, 0).shape 

(5, 3, 4) 

 

These all achieve the same result: 

 

>>> np.transpose(x).shape 

(5, 4, 3) 

>>> np.swapaxes(x, 0, -1).shape 

(5, 4, 3) 

>>> np.moveaxis(x, [0, 1], [-1, -2]).shape 

(5, 4, 3) 

>>> np.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape 

(5, 4, 3) 

 

""" 

try: 

# allow duck-array types if they define transpose 

transpose = a.transpose 

except AttributeError: 

a = asarray(a) 

transpose = a.transpose 

 

source = normalize_axis_tuple(source, a.ndim, 'source') 

destination = normalize_axis_tuple(destination, a.ndim, 'destination') 

if len(source) != len(destination): 

raise ValueError('`source` and `destination` arguments must have ' 

'the same number of elements') 

 

order = [n for n in range(a.ndim) if n not in source] 

 

for dest, src in sorted(zip(destination, source)): 

order.insert(dest, src) 

 

result = transpose(order) 

return result 

 

 

# fix hack in scipy which imports this function 

def _move_axis_to_0(a, axis): 

return moveaxis(a, axis, 0) 

 

 

def _cross_dispatcher(a, b, axisa=None, axisb=None, axisc=None, axis=None): 

return (a, b) 

 

 

@array_function_dispatch(_cross_dispatcher) 

def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None): 

""" 

Return the cross product of two (arrays of) vectors. 

 

The cross product of `a` and `b` in :math:`R^3` is a vector perpendicular 

to both `a` and `b`. If `a` and `b` are arrays of vectors, the vectors 

are defined by the last axis of `a` and `b` by default, and these axes 

can have dimensions 2 or 3. Where the dimension of either `a` or `b` is 

2, the third component of the input vector is assumed to be zero and the 

cross product calculated accordingly. In cases where both input vectors 

have dimension 2, the z-component of the cross product is returned. 

 

Parameters 

---------- 

a : array_like 

Components of the first vector(s). 

b : array_like 

Components of the second vector(s). 

axisa : int, optional 

Axis of `a` that defines the vector(s). By default, the last axis. 

axisb : int, optional 

Axis of `b` that defines the vector(s). By default, the last axis. 

axisc : int, optional 

Axis of `c` containing the cross product vector(s). Ignored if 

both input vectors have dimension 2, as the return is scalar. 

By default, the last axis. 

axis : int, optional 

If defined, the axis of `a`, `b` and `c` that defines the vector(s) 

and cross product(s). Overrides `axisa`, `axisb` and `axisc`. 

 

Returns 

------- 

c : ndarray 

Vector cross product(s). 

 

Raises 

------ 

ValueError 

When the dimension of the vector(s) in `a` and/or `b` does not 

equal 2 or 3. 

 

See Also 

-------- 

inner : Inner product 

outer : Outer product. 

ix_ : Construct index arrays. 

 

Notes 

----- 

.. versionadded:: 1.9.0 

 

Supports full broadcasting of the inputs. 

 

Examples 

-------- 

Vector cross-product. 

 

>>> x = [1, 2, 3] 

>>> y = [4, 5, 6] 

>>> np.cross(x, y) 

array([-3, 6, -3]) 

 

One vector with dimension 2. 

 

>>> x = [1, 2] 

>>> y = [4, 5, 6] 

>>> np.cross(x, y) 

array([12, -6, -3]) 

 

Equivalently: 

 

>>> x = [1, 2, 0] 

>>> y = [4, 5, 6] 

>>> np.cross(x, y) 

array([12, -6, -3]) 

 

Both vectors with dimension 2. 

 

>>> x = [1,2] 

>>> y = [4,5] 

>>> np.cross(x, y) 

-3 

 

Multiple vector cross-products. Note that the direction of the cross 

product vector is defined by the `right-hand rule`. 

 

>>> x = np.array([[1,2,3], [4,5,6]]) 

>>> y = np.array([[4,5,6], [1,2,3]]) 

>>> np.cross(x, y) 

array([[-3, 6, -3], 

[ 3, -6, 3]]) 

 

The orientation of `c` can be changed using the `axisc` keyword. 

 

>>> np.cross(x, y, axisc=0) 

array([[-3, 3], 

[ 6, -6], 

[-3, 3]]) 

 

Change the vector definition of `x` and `y` using `axisa` and `axisb`. 

 

>>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]]) 

>>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]]) 

>>> np.cross(x, y) 

array([[ -6, 12, -6], 

[ 0, 0, 0], 

[ 6, -12, 6]]) 

>>> np.cross(x, y, axisa=0, axisb=0) 

array([[-24, 48, -24], 

[-30, 60, -30], 

[-36, 72, -36]]) 

 

""" 

if axis is not None: 

axisa, axisb, axisc = (axis,) * 3 

a = asarray(a) 

b = asarray(b) 

# Check axisa and axisb are within bounds 

axisa = normalize_axis_index(axisa, a.ndim, msg_prefix='axisa') 

axisb = normalize_axis_index(axisb, b.ndim, msg_prefix='axisb') 

 

# Move working axis to the end of the shape 

a = moveaxis(a, axisa, -1) 

b = moveaxis(b, axisb, -1) 

msg = ("incompatible dimensions for cross product\n" 

"(dimension must be 2 or 3)") 

if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3): 

raise ValueError(msg) 

 

# Create the output array 

shape = broadcast(a[..., 0], b[..., 0]).shape 

if a.shape[-1] == 3 or b.shape[-1] == 3: 

shape += (3,) 

# Check axisc is within bounds 

axisc = normalize_axis_index(axisc, len(shape), msg_prefix='axisc') 

dtype = promote_types(a.dtype, b.dtype) 

cp = empty(shape, dtype) 

 

# create local aliases for readability 

a0 = a[..., 0] 

a1 = a[..., 1] 

if a.shape[-1] == 3: 

a2 = a[..., 2] 

b0 = b[..., 0] 

b1 = b[..., 1] 

if b.shape[-1] == 3: 

b2 = b[..., 2] 

if cp.ndim != 0 and cp.shape[-1] == 3: 

cp0 = cp[..., 0] 

cp1 = cp[..., 1] 

cp2 = cp[..., 2] 

 

if a.shape[-1] == 2: 

if b.shape[-1] == 2: 

# a0 * b1 - a1 * b0 

multiply(a0, b1, out=cp) 

cp -= a1 * b0 

return cp 

else: 

assert b.shape[-1] == 3 

# cp0 = a1 * b2 - 0 (a2 = 0) 

# cp1 = 0 - a0 * b2 (a2 = 0) 

# cp2 = a0 * b1 - a1 * b0 

multiply(a1, b2, out=cp0) 

multiply(a0, b2, out=cp1) 

negative(cp1, out=cp1) 

multiply(a0, b1, out=cp2) 

cp2 -= a1 * b0 

else: 

assert a.shape[-1] == 3 

if b.shape[-1] == 3: 

# cp0 = a1 * b2 - a2 * b1 

# cp1 = a2 * b0 - a0 * b2 

# cp2 = a0 * b1 - a1 * b0 

multiply(a1, b2, out=cp0) 

tmp = array(a2 * b1) 

cp0 -= tmp 

multiply(a2, b0, out=cp1) 

multiply(a0, b2, out=tmp) 

cp1 -= tmp 

multiply(a0, b1, out=cp2) 

multiply(a1, b0, out=tmp) 

cp2 -= tmp 

else: 

assert b.shape[-1] == 2 

# cp0 = 0 - a2 * b1 (b2 = 0) 

# cp1 = a2 * b0 - 0 (b2 = 0) 

# cp2 = a0 * b1 - a1 * b0 

multiply(a2, b1, out=cp0) 

negative(cp0, out=cp0) 

multiply(a2, b0, out=cp1) 

multiply(a0, b1, out=cp2) 

cp2 -= a1 * b0 

 

return moveaxis(cp, -1, axisc) 

 

 

little_endian = (sys.byteorder == 'little') 

 

 

@set_module('numpy') 

def indices(dimensions, dtype=int): 

""" 

Return an array representing the indices of a grid. 

 

Compute an array where the subarrays contain index values 0,1,... 

varying only along the corresponding axis. 

 

Parameters 

---------- 

dimensions : sequence of ints 

The shape of the grid. 

dtype : dtype, optional 

Data type of the result. 

 

Returns 

------- 

grid : ndarray 

The array of grid indices, 

``grid.shape = (len(dimensions),) + tuple(dimensions)``. 

 

See Also 

-------- 

mgrid, meshgrid 

 

Notes 

----- 

The output shape is obtained by prepending the number of dimensions 

in front of the tuple of dimensions, i.e. if `dimensions` is a tuple 

``(r0, ..., rN-1)`` of length ``N``, the output shape is 

``(N,r0,...,rN-1)``. 

 

The subarrays ``grid[k]`` contains the N-D array of indices along the 

``k-th`` axis. Explicitly:: 

 

grid[k,i0,i1,...,iN-1] = ik 

 

Examples 

-------- 

>>> grid = np.indices((2, 3)) 

>>> grid.shape 

(2, 2, 3) 

>>> grid[0] # row indices 

array([[0, 0, 0], 

[1, 1, 1]]) 

>>> grid[1] # column indices 

array([[0, 1, 2], 

[0, 1, 2]]) 

 

The indices can be used as an index into an array. 

 

>>> x = np.arange(20).reshape(5, 4) 

>>> row, col = np.indices((2, 3)) 

>>> x[row, col] 

array([[0, 1, 2], 

[4, 5, 6]]) 

 

Note that it would be more straightforward in the above example to 

extract the required elements directly with ``x[:2, :3]``. 

 

""" 

dimensions = tuple(dimensions) 

N = len(dimensions) 

shape = (1,)*N 

res = empty((N,)+dimensions, dtype=dtype) 

for i, dim in enumerate(dimensions): 

res[i] = arange(dim, dtype=dtype).reshape( 

shape[:i] + (dim,) + shape[i+1:] 

) 

return res 

 

 

@set_module('numpy') 

def fromfunction(function, shape, **kwargs): 

""" 

Construct an array by executing a function over each coordinate. 

 

The resulting array therefore has a value ``fn(x, y, z)`` at 

coordinate ``(x, y, z)``. 

 

Parameters 

---------- 

function : callable 

The function is called with N parameters, where N is the rank of 

`shape`. Each parameter represents the coordinates of the array 

varying along a specific axis. For example, if `shape` 

were ``(2, 2)``, then the parameters would be 

``array([[0, 0], [1, 1]])`` and ``array([[0, 1], [0, 1]])`` 

shape : (N,) tuple of ints 

Shape of the output array, which also determines the shape of 

the coordinate arrays passed to `function`. 

dtype : data-type, optional 

Data-type of the coordinate arrays passed to `function`. 

By default, `dtype` is float. 

 

Returns 

------- 

fromfunction : any 

The result of the call to `function` is passed back directly. 

Therefore the shape of `fromfunction` is completely determined by 

`function`. If `function` returns a scalar value, the shape of 

`fromfunction` would not match the `shape` parameter. 

 

See Also 

-------- 

indices, meshgrid 

 

Notes 

----- 

Keywords other than `dtype` are passed to `function`. 

 

Examples 

-------- 

>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int) 

array([[ True, False, False], 

[False, True, False], 

[False, False, True]]) 

 

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int) 

array([[0, 1, 2], 

[1, 2, 3], 

[2, 3, 4]]) 

 

""" 

dtype = kwargs.pop('dtype', float) 

args = indices(shape, dtype=dtype) 

return function(*args, **kwargs) 

 

 

def _frombuffer(buf, dtype, shape, order): 

return frombuffer(buf, dtype=dtype).reshape(shape, order=order) 

 

 

@set_module('numpy') 

def isscalar(num): 

""" 

Returns True if the type of `num` is a scalar type. 

 

Parameters 

---------- 

num : any 

Input argument, can be of any type and shape. 

 

Returns 

------- 

val : bool 

True if `num` is a scalar type, False if it is not. 

 

See Also 

-------- 

ndim : Get the number of dimensions of an array 

 

Notes 

----- 

In almost all cases ``np.ndim(x) == 0`` should be used instead of this 

function, as that will also return true for 0d arrays. This is how 

numpy overloads functions in the style of the ``dx`` arguments to `gradient` 

and the ``bins`` argument to `histogram`. Some key differences: 

 

+--------------------------------------+---------------+-------------------+ 

| x |``isscalar(x)``|``np.ndim(x) == 0``| 

+======================================+===============+===================+ 

| PEP 3141 numeric objects (including | ``True`` | ``True`` | 

| builtins) | | | 

+--------------------------------------+---------------+-------------------+ 

| builtin string and buffer objects | ``True`` | ``True`` | 

+--------------------------------------+---------------+-------------------+ 

| other builtin objects, like | ``False`` | ``True`` | 

| `pathlib.Path`, `Exception`, | | | 

| the result of `re.compile` | | | 

+--------------------------------------+---------------+-------------------+ 

| third-party objects like | ``False`` | ``True`` | 

| `matplotlib.figure.Figure` | | | 

+--------------------------------------+---------------+-------------------+ 

| zero-dimensional numpy arrays | ``False`` | ``True`` | 

+--------------------------------------+---------------+-------------------+ 

| other numpy arrays | ``False`` | ``False`` | 

+--------------------------------------+---------------+-------------------+ 

| `list`, `tuple`, and other sequence | ``False`` | ``False`` | 

| objects | | | 

+--------------------------------------+---------------+-------------------+ 

 

Examples 

-------- 

>>> np.isscalar(3.1) 

True 

>>> np.isscalar(np.array(3.1)) 

False 

>>> np.isscalar([3.1]) 

False 

>>> np.isscalar(False) 

True 

>>> np.isscalar('numpy') 

True 

 

NumPy supports PEP 3141 numbers: 

 

>>> from fractions import Fraction 

>>> isscalar(Fraction(5, 17)) 

True 

>>> from numbers import Number 

>>> isscalar(Number()) 

True 

 

""" 

return (isinstance(num, generic) 

or type(num) in ScalarType 

or isinstance(num, numbers.Number)) 

 

 

@set_module('numpy') 

def binary_repr(num, width=None): 

""" 

Return the binary representation of the input number as a string. 

 

For negative numbers, if width is not given, a minus sign is added to the 

front. If width is given, the two's complement of the number is 

returned, with respect to that width. 

 

In a two's-complement system negative numbers are represented by the two's 

complement of the absolute value. This is the most common method of 

representing signed integers on computers [1]_. A N-bit two's-complement 

system can represent every integer in the range 

:math:`-2^{N-1}` to :math:`+2^{N-1}-1`. 

 

Parameters 

---------- 

num : int 

Only an integer decimal number can be used. 

width : int, optional 

The length of the returned string if `num` is positive, or the length 

of the two's complement if `num` is negative, provided that `width` is 

at least a sufficient number of bits for `num` to be represented in the 

designated form. 

 

If the `width` value is insufficient, it will be ignored, and `num` will 

be returned in binary (`num` > 0) or two's complement (`num` < 0) form 

with its width equal to the minimum number of bits needed to represent 

the number in the designated form. This behavior is deprecated and will 

later raise an error. 

 

.. deprecated:: 1.12.0 

 

Returns 

------- 

bin : str 

Binary representation of `num` or two's complement of `num`. 

 

See Also 

-------- 

base_repr: Return a string representation of a number in the given base 

system. 

bin: Python's built-in binary representation generator of an integer. 

 

Notes 

----- 

`binary_repr` is equivalent to using `base_repr` with base 2, but about 25x 

faster. 

 

References 

---------- 

.. [1] Wikipedia, "Two's complement", 

https://en.wikipedia.org/wiki/Two's_complement 

 

Examples 

-------- 

>>> np.binary_repr(3) 

'11' 

>>> np.binary_repr(-3) 

'-11' 

>>> np.binary_repr(3, width=4) 

'0011' 

 

The two's complement is returned when the input number is negative and 

width is specified: 

 

>>> np.binary_repr(-3, width=3) 

'101' 

>>> np.binary_repr(-3, width=5) 

'11101' 

 

""" 

def warn_if_insufficient(width, binwidth): 

if width is not None and width < binwidth: 

warnings.warn( 

"Insufficient bit width provided. This behavior " 

"will raise an error in the future.", DeprecationWarning, 

stacklevel=3) 

 

if num == 0: 

return '0' * (width or 1) 

 

elif num > 0: 

binary = bin(num)[2:] 

binwidth = len(binary) 

outwidth = (binwidth if width is None 

else max(binwidth, width)) 

warn_if_insufficient(width, binwidth) 

return binary.zfill(outwidth) 

 

else: 

if width is None: 

return '-' + bin(-num)[2:] 

 

else: 

poswidth = len(bin(-num)[2:]) 

 

# See gh-8679: remove extra digit 

# for numbers at boundaries. 

if 2**(poswidth - 1) == -num: 

poswidth -= 1 

 

twocomp = 2**(poswidth + 1) + num 

binary = bin(twocomp)[2:] 

binwidth = len(binary) 

 

outwidth = max(binwidth, width) 

warn_if_insufficient(width, binwidth) 

return '1' * (outwidth - binwidth) + binary 

 

 

@set_module('numpy') 

def base_repr(number, base=2, padding=0): 

""" 

Return a string representation of a number in the given base system. 

 

Parameters 

---------- 

number : int 

The value to convert. Positive and negative values are handled. 

base : int, optional 

Convert `number` to the `base` number system. The valid range is 2-36, 

the default value is 2. 

padding : int, optional 

Number of zeros padded on the left. Default is 0 (no padding). 

 

Returns 

------- 

out : str 

String representation of `number` in `base` system. 

 

See Also 

-------- 

binary_repr : Faster version of `base_repr` for base 2. 

 

Examples 

-------- 

>>> np.base_repr(5) 

'101' 

>>> np.base_repr(6, 5) 

'11' 

>>> np.base_repr(7, base=5, padding=3) 

'00012' 

 

>>> np.base_repr(10, base=16) 

'A' 

>>> np.base_repr(32, base=16) 

'20' 

 

""" 

digits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' 

if base > len(digits): 

raise ValueError("Bases greater than 36 not handled in base_repr.") 

elif base < 2: 

raise ValueError("Bases less than 2 not handled in base_repr.") 

 

num = abs(number) 

res = [] 

while num: 

res.append(digits[num % base]) 

num //= base 

if padding: 

res.append('0' * padding) 

if number < 0: 

res.append('-') 

return ''.join(reversed(res or '0')) 

 

 

def load(file): 

""" 

Wrapper around cPickle.load which accepts either a file-like object or 

a filename. 

 

Note that the NumPy binary format is not based on pickle/cPickle anymore. 

For details on the preferred way of loading and saving files, see `load` 

and `save`. 

 

See Also 

-------- 

load, save 

 

""" 

# NumPy 1.15.0, 2017-12-10 

warnings.warn( 

"np.core.numeric.load is deprecated, use pickle.load instead", 

DeprecationWarning, stacklevel=2) 

if isinstance(file, type("")): 

file = open(file, "rb") 

return pickle.load(file) 

 

 

# These are all essentially abbreviations 

# These might wind up in a special abbreviations module 

 

 

def _maketup(descr, val): 

dt = dtype(descr) 

# Place val in all scalar tuples: 

fields = dt.fields 

if fields is None: 

return val 

else: 

res = [_maketup(fields[name][0], val) for name in dt.names] 

return tuple(res) 

 

 

@set_module('numpy') 

def identity(n, dtype=None): 

""" 

Return the identity array. 

 

The identity array is a square array with ones on 

the main diagonal. 

 

Parameters 

---------- 

n : int 

Number of rows (and columns) in `n` x `n` output. 

dtype : data-type, optional 

Data-type of the output. Defaults to ``float``. 

 

Returns 

------- 

out : ndarray 

`n` x `n` array with its main diagonal set to one, 

and all other elements 0. 

 

Examples 

-------- 

>>> np.identity(3) 

array([[ 1., 0., 0.], 

[ 0., 1., 0.], 

[ 0., 0., 1.]]) 

 

""" 

from numpy import eye 

return eye(n, dtype=dtype) 

 

 

def _allclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None): 

return (a, b) 

 

 

@array_function_dispatch(_allclose_dispatcher) 

def allclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): 

""" 

Returns True if two arrays are element-wise equal within a tolerance. 

 

The tolerance values are positive, typically very small numbers. The 

relative difference (`rtol` * abs(`b`)) and the absolute difference 

`atol` are added together to compare against the absolute difference 

between `a` and `b`. 

 

If either array contains one or more NaNs, False is returned. 

Infs are treated as equal if they are in the same place and of the same 

sign in both arrays. 

 

Parameters 

---------- 

a, b : array_like 

Input arrays to compare. 

rtol : float 

The relative tolerance parameter (see Notes). 

atol : float 

The absolute tolerance parameter (see Notes). 

equal_nan : bool 

Whether to compare NaN's as equal. If True, NaN's in `a` will be 

considered equal to NaN's in `b` in the output array. 

 

.. versionadded:: 1.10.0 

 

Returns 

------- 

allclose : bool 

Returns True if the two arrays are equal within the given 

tolerance; False otherwise. 

 

See Also 

-------- 

isclose, all, any, equal 

 

Notes 

----- 

If the following equation is element-wise True, then allclose returns 

True. 

 

absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`)) 

 

The above equation is not symmetric in `a` and `b`, so that 

``allclose(a, b)`` might be different from ``allclose(b, a)`` in 

some rare cases. 

 

The comparison of `a` and `b` uses standard broadcasting, which 

means that `a` and `b` need not have the same shape in order for 

``allclose(a, b)`` to evaluate to True. The same is true for 

`equal` but not `array_equal`. 

 

Examples 

-------- 

>>> np.allclose([1e10,1e-7], [1.00001e10,1e-8]) 

False 

>>> np.allclose([1e10,1e-8], [1.00001e10,1e-9]) 

True 

>>> np.allclose([1e10,1e-8], [1.0001e10,1e-9]) 

False 

>>> np.allclose([1.0, np.nan], [1.0, np.nan]) 

False 

>>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) 

True 

 

""" 

res = all(isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)) 

return bool(res) 

 

 

def _isclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None): 

return (a, b) 

 

 

@array_function_dispatch(_isclose_dispatcher) 

def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): 

""" 

Returns a boolean array where two arrays are element-wise equal within a 

tolerance. 

 

The tolerance values are positive, typically very small numbers. The 

relative difference (`rtol` * abs(`b`)) and the absolute difference 

`atol` are added together to compare against the absolute difference 

between `a` and `b`. 

 

.. warning:: The default `atol` is not appropriate for comparing numbers 

that are much smaller than one (see Notes). 

 

Parameters 

---------- 

a, b : array_like 

Input arrays to compare. 

rtol : float 

The relative tolerance parameter (see Notes). 

atol : float 

The absolute tolerance parameter (see Notes). 

equal_nan : bool 

Whether to compare NaN's as equal. If True, NaN's in `a` will be 

considered equal to NaN's in `b` in the output array. 

 

Returns 

------- 

y : array_like 

Returns a boolean array of where `a` and `b` are equal within the 

given tolerance. If both `a` and `b` are scalars, returns a single 

boolean value. 

 

See Also 

-------- 

allclose 

 

Notes 

----- 

.. versionadded:: 1.7.0 

 

For finite values, isclose uses the following equation to test whether 

two floating point values are equivalent. 

 

absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`)) 

 

Unlike the built-in `math.isclose`, the above equation is not symmetric 

in `a` and `b` -- it assumes `b` is the reference value -- so that 

`isclose(a, b)` might be different from `isclose(b, a)`. Furthermore, 

the default value of atol is not zero, and is used to determine what 

small values should be considered close to zero. The default value is 

appropriate for expected values of order unity: if the expected values 

are significantly smaller than one, it can result in false positives. 

`atol` should be carefully selected for the use case at hand. A zero value 

for `atol` will result in `False` if either `a` or `b` is zero. 

 

Examples 

-------- 

>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8]) 

array([True, False]) 

>>> np.isclose([1e10,1e-8], [1.00001e10,1e-9]) 

array([True, True]) 

>>> np.isclose([1e10,1e-8], [1.0001e10,1e-9]) 

array([False, True]) 

>>> np.isclose([1.0, np.nan], [1.0, np.nan]) 

array([True, False]) 

>>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) 

array([True, True]) 

>>> np.isclose([1e-8, 1e-7], [0.0, 0.0]) 

array([ True, False], dtype=bool) 

>>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0) 

array([False, False], dtype=bool) 

>>> np.isclose([1e-10, 1e-10], [1e-20, 0.0]) 

array([ True, True], dtype=bool) 

>>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0) 

array([False, True], dtype=bool) 

""" 

def within_tol(x, y, atol, rtol): 

with errstate(invalid='ignore'): 

return less_equal(abs(x-y), atol + rtol * abs(y)) 

 

x = asanyarray(a) 

y = asanyarray(b) 

 

# Make sure y is an inexact type to avoid bad behavior on abs(MIN_INT). 

# This will cause casting of x later. Also, make sure to allow subclasses 

# (e.g., for numpy.ma). 

dt = multiarray.result_type(y, 1.) 

y = array(y, dtype=dt, copy=False, subok=True) 

 

xfin = isfinite(x) 

yfin = isfinite(y) 

if all(xfin) and all(yfin): 

return within_tol(x, y, atol, rtol) 

else: 

finite = xfin & yfin 

cond = zeros_like(finite, subok=True) 

# Because we're using boolean indexing, x & y must be the same shape. 

# Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in 

# lib.stride_tricks, though, so we can't import it here. 

x = x * ones_like(cond) 

y = y * ones_like(cond) 

# Avoid subtraction with infinite/nan values... 

cond[finite] = within_tol(x[finite], y[finite], atol, rtol) 

# Check for equality of infinite values... 

cond[~finite] = (x[~finite] == y[~finite]) 

if equal_nan: 

# Make NaN == NaN 

both_nan = isnan(x) & isnan(y) 

 

# Needed to treat masked arrays correctly. = True would not work. 

cond[both_nan] = both_nan[both_nan] 

 

return cond[()] # Flatten 0d arrays to scalars 

 

 

def _array_equal_dispatcher(a1, a2): 

return (a1, a2) 

 

 

@array_function_dispatch(_array_equal_dispatcher) 

def array_equal(a1, a2): 

""" 

True if two arrays have the same shape and elements, False otherwise. 

 

Parameters 

---------- 

a1, a2 : array_like 

Input arrays. 

 

Returns 

------- 

b : bool 

Returns True if the arrays are equal. 

 

See Also 

-------- 

allclose: Returns True if two arrays are element-wise equal within a 

tolerance. 

array_equiv: Returns True if input arrays are shape consistent and all 

elements equal. 

 

Examples 

-------- 

>>> np.array_equal([1, 2], [1, 2]) 

True 

>>> np.array_equal(np.array([1, 2]), np.array([1, 2])) 

True 

>>> np.array_equal([1, 2], [1, 2, 3]) 

False 

>>> np.array_equal([1, 2], [1, 4]) 

False 

 

""" 

try: 

a1, a2 = asarray(a1), asarray(a2) 

except Exception: 

return False 

if a1.shape != a2.shape: 

return False 

return bool(asarray(a1 == a2).all()) 

 

 

def _array_equiv_dispatcher(a1, a2): 

return (a1, a2) 

 

 

@array_function_dispatch(_array_equiv_dispatcher) 

def array_equiv(a1, a2): 

""" 

Returns True if input arrays are shape consistent and all elements equal. 

 

Shape consistent means they are either the same shape, or one input array 

can be broadcasted to create the same shape as the other one. 

 

Parameters 

---------- 

a1, a2 : array_like 

Input arrays. 

 

Returns 

------- 

out : bool 

True if equivalent, False otherwise. 

 

Examples 

-------- 

>>> np.array_equiv([1, 2], [1, 2]) 

True 

>>> np.array_equiv([1, 2], [1, 3]) 

False 

 

Showing the shape equivalence: 

 

>>> np.array_equiv([1, 2], [[1, 2], [1, 2]]) 

True 

>>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]]) 

False 

 

>>> np.array_equiv([1, 2], [[1, 2], [1, 3]]) 

False 

 

""" 

try: 

a1, a2 = asarray(a1), asarray(a2) 

except Exception: 

return False 

try: 

multiarray.broadcast(a1, a2) 

except Exception: 

return False 

 

return bool(asarray(a1 == a2).all()) 

 

 

_errdict = {"ignore": ERR_IGNORE, 

"warn": ERR_WARN, 

"raise": ERR_RAISE, 

"call": ERR_CALL, 

"print": ERR_PRINT, 

"log": ERR_LOG} 

 

_errdict_rev = {value: key for key, value in _errdict.items()} 

 

 

@set_module('numpy') 

def seterr(all=None, divide=None, over=None, under=None, invalid=None): 

""" 

Set how floating-point errors are handled. 

 

Note that operations on integer scalar types (such as `int16`) are 

handled like floating point, and are affected by these settings. 

 

Parameters 

---------- 

all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional 

Set treatment for all types of floating-point errors at once: 

 

- ignore: Take no action when the exception occurs. 

- warn: Print a `RuntimeWarning` (via the Python `warnings` module). 

- raise: Raise a `FloatingPointError`. 

- call: Call a function specified using the `seterrcall` function. 

- print: Print a warning directly to ``stdout``. 

- log: Record error in a Log object specified by `seterrcall`. 

 

The default is not to change the current behavior. 

divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional 

Treatment for division by zero. 

over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional 

Treatment for floating-point overflow. 

under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional 

Treatment for floating-point underflow. 

invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional 

Treatment for invalid floating-point operation. 

 

Returns 

------- 

old_settings : dict 

Dictionary containing the old settings. 

 

See also 

-------- 

seterrcall : Set a callback function for the 'call' mode. 

geterr, geterrcall, errstate 

 

Notes 

----- 

The floating-point exceptions are defined in the IEEE 754 standard [1]_: 

 

- Division by zero: infinite result obtained from finite numbers. 

- Overflow: result too large to be expressed. 

- Underflow: result so close to zero that some precision 

was lost. 

- Invalid operation: result is not an expressible number, typically 

indicates that a NaN was produced. 

 

.. [1] https://en.wikipedia.org/wiki/IEEE_754 

 

Examples 

-------- 

>>> old_settings = np.seterr(all='ignore') #seterr to known value 

>>> np.seterr(over='raise') 

{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore', 

'under': 'ignore'} 

>>> np.seterr(**old_settings) # reset to default 

{'over': 'raise', 'divide': 'ignore', 'invalid': 'ignore', 

'under': 'ignore'} 

 

>>> np.int16(32000) * np.int16(3) 

30464 

>>> old_settings = np.seterr(all='warn', over='raise') 

>>> np.int16(32000) * np.int16(3) 

Traceback (most recent call last): 

File "<stdin>", line 1, in <module> 

FloatingPointError: overflow encountered in short_scalars 

 

>>> old_settings = np.seterr(all='print') 

>>> np.geterr() 

{'over': 'print', 'divide': 'print', 'invalid': 'print', 'under': 'print'} 

>>> np.int16(32000) * np.int16(3) 

Warning: overflow encountered in short_scalars 

30464 

 

""" 

 

pyvals = umath.geterrobj() 

old = geterr() 

 

if divide is None: 

divide = all or old['divide'] 

if over is None: 

over = all or old['over'] 

if under is None: 

under = all or old['under'] 

if invalid is None: 

invalid = all or old['invalid'] 

 

maskvalue = ((_errdict[divide] << SHIFT_DIVIDEBYZERO) + 

(_errdict[over] << SHIFT_OVERFLOW) + 

(_errdict[under] << SHIFT_UNDERFLOW) + 

(_errdict[invalid] << SHIFT_INVALID)) 

 

pyvals[1] = maskvalue 

umath.seterrobj(pyvals) 

return old 

 

 

@set_module('numpy') 

def geterr(): 

""" 

Get the current way of handling floating-point errors. 

 

Returns 

------- 

res : dict 

A dictionary with keys "divide", "over", "under", and "invalid", 

whose values are from the strings "ignore", "print", "log", "warn", 

"raise", and "call". The keys represent possible floating-point 

exceptions, and the values define how these exceptions are handled. 

 

See Also 

-------- 

geterrcall, seterr, seterrcall 

 

Notes 

----- 

For complete documentation of the types of floating-point exceptions and 

treatment options, see `seterr`. 

 

Examples 

-------- 

>>> np.geterr() 

{'over': 'warn', 'divide': 'warn', 'invalid': 'warn', 

'under': 'ignore'} 

>>> np.arange(3.) / np.arange(3.) 

array([ NaN, 1., 1.]) 

 

>>> oldsettings = np.seterr(all='warn', over='raise') 

>>> np.geterr() 

{'over': 'raise', 'divide': 'warn', 'invalid': 'warn', 'under': 'warn'} 

>>> np.arange(3.) / np.arange(3.) 

__main__:1: RuntimeWarning: invalid value encountered in divide 

array([ NaN, 1., 1.]) 

 

""" 

maskvalue = umath.geterrobj()[1] 

mask = 7 

res = {} 

val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask 

res['divide'] = _errdict_rev[val] 

val = (maskvalue >> SHIFT_OVERFLOW) & mask 

res['over'] = _errdict_rev[val] 

val = (maskvalue >> SHIFT_UNDERFLOW) & mask 

res['under'] = _errdict_rev[val] 

val = (maskvalue >> SHIFT_INVALID) & mask 

res['invalid'] = _errdict_rev[val] 

return res 

 

 

@set_module('numpy') 

def setbufsize(size): 

""" 

Set the size of the buffer used in ufuncs. 

 

Parameters 

---------- 

size : int 

Size of buffer. 

 

""" 

if size > 10e6: 

raise ValueError("Buffer size, %s, is too big." % size) 

if size < 5: 

raise ValueError("Buffer size, %s, is too small." % size) 

if size % 16 != 0: 

raise ValueError("Buffer size, %s, is not a multiple of 16." % size) 

 

pyvals = umath.geterrobj() 

old = getbufsize() 

pyvals[0] = size 

umath.seterrobj(pyvals) 

return old 

 

 

@set_module('numpy') 

def getbufsize(): 

""" 

Return the size of the buffer used in ufuncs. 

 

Returns 

------- 

getbufsize : int 

Size of ufunc buffer in bytes. 

 

""" 

return umath.geterrobj()[0] 

 

 

@set_module('numpy') 

def seterrcall(func): 

""" 

Set the floating-point error callback function or log object. 

 

There are two ways to capture floating-point error messages. The first 

is to set the error-handler to 'call', using `seterr`. Then, set 

the function to call using this function. 

 

The second is to set the error-handler to 'log', using `seterr`. 

Floating-point errors then trigger a call to the 'write' method of 

the provided object. 

 

Parameters 

---------- 

func : callable f(err, flag) or object with write method 

Function to call upon floating-point errors ('call'-mode) or 

object whose 'write' method is used to log such message ('log'-mode). 

 

The call function takes two arguments. The first is a string describing 

the type of error (such as "divide by zero", "overflow", "underflow", 

or "invalid value"), and the second is the status flag. The flag is a 

byte, whose four least-significant bits indicate the type of error, one 

of "divide", "over", "under", "invalid":: 

 

[0 0 0 0 divide over under invalid] 

 

In other words, ``flags = divide + 2*over + 4*under + 8*invalid``. 

 

If an object is provided, its write method should take one argument, 

a string. 

 

Returns 

------- 

h : callable, log instance or None 

The old error handler. 

 

See Also 

-------- 

seterr, geterr, geterrcall 

 

Examples 

-------- 

Callback upon error: 

 

>>> def err_handler(type, flag): 

... print("Floating point error (%s), with flag %s" % (type, flag)) 

... 

 

>>> saved_handler = np.seterrcall(err_handler) 

>>> save_err = np.seterr(all='call') 

 

>>> np.array([1, 2, 3]) / 0.0 

Floating point error (divide by zero), with flag 1 

array([ Inf, Inf, Inf]) 

 

>>> np.seterrcall(saved_handler) 

<function err_handler at 0x...> 

>>> np.seterr(**save_err) 

{'over': 'call', 'divide': 'call', 'invalid': 'call', 'under': 'call'} 

 

Log error message: 

 

>>> class Log(object): 

... def write(self, msg): 

... print("LOG: %s" % msg) 

... 

 

>>> log = Log() 

>>> saved_handler = np.seterrcall(log) 

>>> save_err = np.seterr(all='log') 

 

>>> np.array([1, 2, 3]) / 0.0 

LOG: Warning: divide by zero encountered in divide 

<BLANKLINE> 

array([ Inf, Inf, Inf]) 

 

>>> np.seterrcall(saved_handler) 

<__main__.Log object at 0x...> 

>>> np.seterr(**save_err) 

{'over': 'log', 'divide': 'log', 'invalid': 'log', 'under': 'log'} 

 

""" 

if func is not None and not isinstance(func, collections_abc.Callable): 

if not hasattr(func, 'write') or not isinstance(func.write, collections_abc.Callable): 

raise ValueError("Only callable can be used as callback") 

pyvals = umath.geterrobj() 

old = geterrcall() 

pyvals[2] = func 

umath.seterrobj(pyvals) 

return old 

 

 

@set_module('numpy') 

def geterrcall(): 

""" 

Return the current callback function used on floating-point errors. 

 

When the error handling for a floating-point error (one of "divide", 

"over", "under", or "invalid") is set to 'call' or 'log', the function 

that is called or the log instance that is written to is returned by 

`geterrcall`. This function or log instance has been set with 

`seterrcall`. 

 

Returns 

------- 

errobj : callable, log instance or None 

The current error handler. If no handler was set through `seterrcall`, 

``None`` is returned. 

 

See Also 

-------- 

seterrcall, seterr, geterr 

 

Notes 

----- 

For complete documentation of the types of floating-point exceptions and 

treatment options, see `seterr`. 

 

Examples 

-------- 

>>> np.geterrcall() # we did not yet set a handler, returns None 

 

>>> oldsettings = np.seterr(all='call') 

>>> def err_handler(type, flag): 

... print("Floating point error (%s), with flag %s" % (type, flag)) 

>>> oldhandler = np.seterrcall(err_handler) 

>>> np.array([1, 2, 3]) / 0.0 

Floating point error (divide by zero), with flag 1 

array([ Inf, Inf, Inf]) 

 

>>> cur_handler = np.geterrcall() 

>>> cur_handler is err_handler 

True 

 

""" 

return umath.geterrobj()[2] 

 

 

class _unspecified(object): 

pass 

 

 

_Unspecified = _unspecified() 

 

 

@set_module('numpy') 

class errstate(object): 

""" 

errstate(**kwargs) 

 

Context manager for floating-point error handling. 

 

Using an instance of `errstate` as a context manager allows statements in 

that context to execute with a known error handling behavior. Upon entering 

the context the error handling is set with `seterr` and `seterrcall`, and 

upon exiting it is reset to what it was before. 

 

Parameters 

---------- 

kwargs : {divide, over, under, invalid} 

Keyword arguments. The valid keywords are the possible floating-point 

exceptions. Each keyword should have a string value that defines the 

treatment for the particular error. Possible values are 

{'ignore', 'warn', 'raise', 'call', 'print', 'log'}. 

 

See Also 

-------- 

seterr, geterr, seterrcall, geterrcall 

 

Notes 

----- 

For complete documentation of the types of floating-point exceptions and 

treatment options, see `seterr`. 

 

Examples 

-------- 

>>> olderr = np.seterr(all='ignore') # Set error handling to known state. 

 

>>> np.arange(3) / 0. 

array([ NaN, Inf, Inf]) 

>>> with np.errstate(divide='warn'): 

... np.arange(3) / 0. 

... 

__main__:2: RuntimeWarning: divide by zero encountered in divide 

array([ NaN, Inf, Inf]) 

 

>>> np.sqrt(-1) 

nan 

>>> with np.errstate(invalid='raise'): 

... np.sqrt(-1) 

Traceback (most recent call last): 

File "<stdin>", line 2, in <module> 

FloatingPointError: invalid value encountered in sqrt 

 

Outside the context the error handling behavior has not changed: 

 

>>> np.geterr() 

{'over': 'warn', 'divide': 'warn', 'invalid': 'warn', 

'under': 'ignore'} 

 

""" 

# Note that we don't want to run the above doctests because they will fail 

# without a from __future__ import with_statement 

 

def __init__(self, **kwargs): 

self.call = kwargs.pop('call', _Unspecified) 

self.kwargs = kwargs 

 

def __enter__(self): 

self.oldstate = seterr(**self.kwargs) 

if self.call is not _Unspecified: 

self.oldcall = seterrcall(self.call) 

 

def __exit__(self, *exc_info): 

seterr(**self.oldstate) 

if self.call is not _Unspecified: 

seterrcall(self.oldcall) 

 

 

def _setdef(): 

defval = [UFUNC_BUFSIZE_DEFAULT, ERR_DEFAULT, None] 

umath.seterrobj(defval) 

 

 

# set the default values 

_setdef() 

 

Inf = inf = infty = Infinity = PINF 

nan = NaN = NAN 

False_ = bool_(False) 

True_ = bool_(True) 

 

 

def extend_all(module): 

existing = set(__all__) 

mall = getattr(module, '__all__') 

for a in mall: 

if a not in existing: 

__all__.append(a) 

 

 

from .umath import * 

from .numerictypes import * 

from . import fromnumeric 

from .fromnumeric import * 

from . import arrayprint 

from .arrayprint import * 

extend_all(fromnumeric) 

extend_all(umath) 

extend_all(numerictypes) 

extend_all(arrayprint)