1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

""" 

Discrete Fourier Transforms 

 

Routines in this module: 

 

fft(a, n=None, axis=-1) 

ifft(a, n=None, axis=-1) 

rfft(a, n=None, axis=-1) 

irfft(a, n=None, axis=-1) 

hfft(a, n=None, axis=-1) 

ihfft(a, n=None, axis=-1) 

fftn(a, s=None, axes=None) 

ifftn(a, s=None, axes=None) 

rfftn(a, s=None, axes=None) 

irfftn(a, s=None, axes=None) 

fft2(a, s=None, axes=(-2,-1)) 

ifft2(a, s=None, axes=(-2, -1)) 

rfft2(a, s=None, axes=(-2,-1)) 

irfft2(a, s=None, axes=(-2, -1)) 

 

i = inverse transform 

r = transform of purely real data 

h = Hermite transform 

n = n-dimensional transform 

2 = 2-dimensional transform 

(Note: 2D routines are just nD routines with different default 

behavior.) 

 

The underlying code for these functions is an f2c-translated and modified 

version of the FFTPACK routines. 

 

""" 

from __future__ import division, absolute_import, print_function 

 

__all__ = ['fft', 'ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn', 

'irfftn', 'rfft2', 'irfft2', 'fft2', 'ifft2', 'fftn', 'ifftn'] 

 

import functools 

 

from numpy.core import (array, asarray, zeros, swapaxes, shape, conjugate, 

take, sqrt) 

from numpy.core.multiarray import normalize_axis_index 

from numpy.core import overrides 

from . import fftpack_lite as fftpack 

from .helper import _FFTCache 

 

_fft_cache = _FFTCache(max_size_in_mb=100, max_item_count=32) 

_real_fft_cache = _FFTCache(max_size_in_mb=100, max_item_count=32) 

 

 

array_function_dispatch = functools.partial( 

overrides.array_function_dispatch, module='numpy.fft') 

 

 

def _raw_fft(a, n=None, axis=-1, init_function=fftpack.cffti, 

work_function=fftpack.cfftf, fft_cache=_fft_cache): 

a = asarray(a) 

axis = normalize_axis_index(axis, a.ndim) 

 

if n is None: 

n = a.shape[axis] 

 

if n < 1: 

raise ValueError("Invalid number of FFT data points (%d) specified." 

% n) 

 

# We have to ensure that only a single thread can access a wsave array 

# at any given time. Thus we remove it from the cache and insert it 

# again after it has been used. Multiple threads might create multiple 

# copies of the wsave array. This is intentional and a limitation of 

# the current C code. 

wsave = fft_cache.pop_twiddle_factors(n) 

if wsave is None: 

wsave = init_function(n) 

 

if a.shape[axis] != n: 

s = list(a.shape) 

if s[axis] > n: 

index = [slice(None)]*len(s) 

index[axis] = slice(0, n) 

a = a[tuple(index)] 

else: 

index = [slice(None)]*len(s) 

index[axis] = slice(0, s[axis]) 

s[axis] = n 

z = zeros(s, a.dtype.char) 

z[tuple(index)] = a 

a = z 

 

if axis != a.ndim - 1: 

a = swapaxes(a, axis, -1) 

r = work_function(a, wsave) 

if axis != a.ndim - 1: 

r = swapaxes(r, axis, -1) 

 

# As soon as we put wsave back into the cache, another thread could pick it 

# up and start using it, so we must not do this until after we're 

# completely done using it ourselves. 

fft_cache.put_twiddle_factors(n, wsave) 

 

return r 

 

 

def _unitary(norm): 

if norm not in (None, "ortho"): 

raise ValueError("Invalid norm value %s, should be None or \"ortho\"." 

% norm) 

return norm is not None 

 

 

def _fft_dispatcher(a, n=None, axis=None, norm=None): 

return (a,) 

 

 

@array_function_dispatch(_fft_dispatcher) 

def fft(a, n=None, axis=-1, norm=None): 

""" 

Compute the one-dimensional discrete Fourier Transform. 

 

This function computes the one-dimensional *n*-point discrete Fourier 

Transform (DFT) with the efficient Fast Fourier Transform (FFT) 

algorithm [CT]. 

 

Parameters 

---------- 

a : array_like 

Input array, can be complex. 

n : int, optional 

Length of the transformed axis of the output. 

If `n` is smaller than the length of the input, the input is cropped. 

If it is larger, the input is padded with zeros. If `n` is not given, 

the length of the input along the axis specified by `axis` is used. 

axis : int, optional 

Axis over which to compute the FFT. If not given, the last axis is 

used. 

norm : {None, "ortho"}, optional 

.. versionadded:: 1.10.0 

 

Normalization mode (see `numpy.fft`). Default is None. 

 

Returns 

------- 

out : complex ndarray 

The truncated or zero-padded input, transformed along the axis 

indicated by `axis`, or the last one if `axis` is not specified. 

 

Raises 

------ 

IndexError 

if `axes` is larger than the last axis of `a`. 

 

See Also 

-------- 

numpy.fft : for definition of the DFT and conventions used. 

ifft : The inverse of `fft`. 

fft2 : The two-dimensional FFT. 

fftn : The *n*-dimensional FFT. 

rfftn : The *n*-dimensional FFT of real input. 

fftfreq : Frequency bins for given FFT parameters. 

 

Notes 

----- 

FFT (Fast Fourier Transform) refers to a way the discrete Fourier 

Transform (DFT) can be calculated efficiently, by using symmetries in the 

calculated terms. The symmetry is highest when `n` is a power of 2, and 

the transform is therefore most efficient for these sizes. 

 

The DFT is defined, with the conventions used in this implementation, in 

the documentation for the `numpy.fft` module. 

 

References 

---------- 

.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the 

machine calculation of complex Fourier series," *Math. Comput.* 

19: 297-301. 

 

Examples 

-------- 

>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) 

array([ -3.44505240e-16 +1.14383329e-17j, 

8.00000000e+00 -5.71092652e-15j, 

2.33482938e-16 +1.22460635e-16j, 

1.64863782e-15 +1.77635684e-15j, 

9.95839695e-17 +2.33482938e-16j, 

0.00000000e+00 +1.66837030e-15j, 

1.14383329e-17 +1.22460635e-16j, 

-1.64863782e-15 +1.77635684e-15j]) 

 

In this example, real input has an FFT which is Hermitian, i.e., symmetric 

in the real part and anti-symmetric in the imaginary part, as described in 

the `numpy.fft` documentation: 

 

>>> import matplotlib.pyplot as plt 

>>> t = np.arange(256) 

>>> sp = np.fft.fft(np.sin(t)) 

>>> freq = np.fft.fftfreq(t.shape[-1]) 

>>> plt.plot(freq, sp.real, freq, sp.imag) 

[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] 

>>> plt.show() 

 

""" 

 

a = asarray(a).astype(complex, copy=False) 

if n is None: 

n = a.shape[axis] 

output = _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftf, _fft_cache) 

if _unitary(norm): 

output *= 1 / sqrt(n) 

return output 

 

 

@array_function_dispatch(_fft_dispatcher) 

def ifft(a, n=None, axis=-1, norm=None): 

""" 

Compute the one-dimensional inverse discrete Fourier Transform. 

 

This function computes the inverse of the one-dimensional *n*-point 

discrete Fourier transform computed by `fft`. In other words, 

``ifft(fft(a)) == a`` to within numerical accuracy. 

For a general description of the algorithm and definitions, 

see `numpy.fft`. 

 

The input should be ordered in the same way as is returned by `fft`, 

i.e., 

 

* ``a[0]`` should contain the zero frequency term, 

* ``a[1:n//2]`` should contain the positive-frequency terms, 

* ``a[n//2 + 1:]`` should contain the negative-frequency terms, in 

increasing order starting from the most negative frequency. 

 

For an even number of input points, ``A[n//2]`` represents the sum of 

the values at the positive and negative Nyquist frequencies, as the two 

are aliased together. See `numpy.fft` for details. 

 

Parameters 

---------- 

a : array_like 

Input array, can be complex. 

n : int, optional 

Length of the transformed axis of the output. 

If `n` is smaller than the length of the input, the input is cropped. 

If it is larger, the input is padded with zeros. If `n` is not given, 

the length of the input along the axis specified by `axis` is used. 

See notes about padding issues. 

axis : int, optional 

Axis over which to compute the inverse DFT. If not given, the last 

axis is used. 

norm : {None, "ortho"}, optional 

.. versionadded:: 1.10.0 

 

Normalization mode (see `numpy.fft`). Default is None. 

 

Returns 

------- 

out : complex ndarray 

The truncated or zero-padded input, transformed along the axis 

indicated by `axis`, or the last one if `axis` is not specified. 

 

Raises 

------ 

IndexError 

If `axes` is larger than the last axis of `a`. 

 

See Also 

-------- 

numpy.fft : An introduction, with definitions and general explanations. 

fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse 

ifft2 : The two-dimensional inverse FFT. 

ifftn : The n-dimensional inverse FFT. 

 

Notes 

----- 

If the input parameter `n` is larger than the size of the input, the input 

is padded by appending zeros at the end. Even though this is the common 

approach, it might lead to surprising results. If a different padding is 

desired, it must be performed before calling `ifft`. 

 

Examples 

-------- 

>>> np.fft.ifft([0, 4, 0, 0]) 

array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) 

 

Create and plot a band-limited signal with random phases: 

 

>>> import matplotlib.pyplot as plt 

>>> t = np.arange(400) 

>>> n = np.zeros((400,), dtype=complex) 

>>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,))) 

>>> s = np.fft.ifft(n) 

>>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--') 

... 

>>> plt.legend(('real', 'imaginary')) 

... 

>>> plt.show() 

 

""" 

# The copy may be required for multithreading. 

a = array(a, copy=True, dtype=complex) 

if n is None: 

n = a.shape[axis] 

unitary = _unitary(norm) 

output = _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftb, _fft_cache) 

return output * (1 / (sqrt(n) if unitary else n)) 

 

 

 

@array_function_dispatch(_fft_dispatcher) 

def rfft(a, n=None, axis=-1, norm=None): 

""" 

Compute the one-dimensional discrete Fourier Transform for real input. 

 

This function computes the one-dimensional *n*-point discrete Fourier 

Transform (DFT) of a real-valued array by means of an efficient algorithm 

called the Fast Fourier Transform (FFT). 

 

Parameters 

---------- 

a : array_like 

Input array 

n : int, optional 

Number of points along transformation axis in the input to use. 

If `n` is smaller than the length of the input, the input is cropped. 

If it is larger, the input is padded with zeros. If `n` is not given, 

the length of the input along the axis specified by `axis` is used. 

axis : int, optional 

Axis over which to compute the FFT. If not given, the last axis is 

used. 

norm : {None, "ortho"}, optional 

.. versionadded:: 1.10.0 

 

Normalization mode (see `numpy.fft`). Default is None. 

 

Returns 

------- 

out : complex ndarray 

The truncated or zero-padded input, transformed along the axis 

indicated by `axis`, or the last one if `axis` is not specified. 

If `n` is even, the length of the transformed axis is ``(n/2)+1``. 

If `n` is odd, the length is ``(n+1)/2``. 

 

Raises 

------ 

IndexError 

If `axis` is larger than the last axis of `a`. 

 

See Also 

-------- 

numpy.fft : For definition of the DFT and conventions used. 

irfft : The inverse of `rfft`. 

fft : The one-dimensional FFT of general (complex) input. 

fftn : The *n*-dimensional FFT. 

rfftn : The *n*-dimensional FFT of real input. 

 

Notes 

----- 

When the DFT is computed for purely real input, the output is 

Hermitian-symmetric, i.e. the negative frequency terms are just the complex 

conjugates of the corresponding positive-frequency terms, and the 

negative-frequency terms are therefore redundant. This function does not 

compute the negative frequency terms, and the length of the transformed 

axis of the output is therefore ``n//2 + 1``. 

 

When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains 

the zero-frequency term 0*fs, which is real due to Hermitian symmetry. 

 

If `n` is even, ``A[-1]`` contains the term representing both positive 

and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely 

real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains 

the largest positive frequency (fs/2*(n-1)/n), and is complex in the 

general case. 

 

If the input `a` contains an imaginary part, it is silently discarded. 

 

Examples 

-------- 

>>> np.fft.fft([0, 1, 0, 0]) 

array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) 

>>> np.fft.rfft([0, 1, 0, 0]) 

array([ 1.+0.j, 0.-1.j, -1.+0.j]) 

 

Notice how the final element of the `fft` output is the complex conjugate 

of the second element, for real input. For `rfft`, this symmetry is 

exploited to compute only the non-negative frequency terms. 

 

""" 

# The copy may be required for multithreading. 

a = array(a, copy=True, dtype=float) 

output = _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftf, 

_real_fft_cache) 

if _unitary(norm): 

if n is None: 

n = a.shape[axis] 

output *= 1 / sqrt(n) 

return output 

 

 

@array_function_dispatch(_fft_dispatcher) 

def irfft(a, n=None, axis=-1, norm=None): 

""" 

Compute the inverse of the n-point DFT for real input. 

 

This function computes the inverse of the one-dimensional *n*-point 

discrete Fourier Transform of real input computed by `rfft`. 

In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical 

accuracy. (See Notes below for why ``len(a)`` is necessary here.) 

 

The input is expected to be in the form returned by `rfft`, i.e. the 

real zero-frequency term followed by the complex positive frequency terms 

in order of increasing frequency. Since the discrete Fourier Transform of 

real input is Hermitian-symmetric, the negative frequency terms are taken 

to be the complex conjugates of the corresponding positive frequency terms. 

 

Parameters 

---------- 

a : array_like 

The input array. 

n : int, optional 

Length of the transformed axis of the output. 

For `n` output points, ``n//2+1`` input points are necessary. If the 

input is longer than this, it is cropped. If it is shorter than this, 

it is padded with zeros. If `n` is not given, it is determined from 

the length of the input along the axis specified by `axis`. 

axis : int, optional 

Axis over which to compute the inverse FFT. If not given, the last 

axis is used. 

norm : {None, "ortho"}, optional 

.. versionadded:: 1.10.0 

 

Normalization mode (see `numpy.fft`). Default is None. 

 

Returns 

------- 

out : ndarray 

The truncated or zero-padded input, transformed along the axis 

indicated by `axis`, or the last one if `axis` is not specified. 

The length of the transformed axis is `n`, or, if `n` is not given, 

``2*(m-1)`` where ``m`` is the length of the transformed axis of the 

input. To get an odd number of output points, `n` must be specified. 

 

Raises 

------ 

IndexError 

If `axis` is larger than the last axis of `a`. 

 

See Also 

-------- 

numpy.fft : For definition of the DFT and conventions used. 

rfft : The one-dimensional FFT of real input, of which `irfft` is inverse. 

fft : The one-dimensional FFT. 

irfft2 : The inverse of the two-dimensional FFT of real input. 

irfftn : The inverse of the *n*-dimensional FFT of real input. 

 

Notes 

----- 

Returns the real valued `n`-point inverse discrete Fourier transform 

of `a`, where `a` contains the non-negative frequency terms of a 

Hermitian-symmetric sequence. `n` is the length of the result, not the 

input. 

 

If you specify an `n` such that `a` must be zero-padded or truncated, the 

extra/removed values will be added/removed at high frequencies. One can 

thus resample a series to `m` points via Fourier interpolation by: 

``a_resamp = irfft(rfft(a), m)``. 

 

Examples 

-------- 

>>> np.fft.ifft([1, -1j, -1, 1j]) 

array([ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) 

>>> np.fft.irfft([1, -1j, -1]) 

array([ 0., 1., 0., 0.]) 

 

Notice how the last term in the input to the ordinary `ifft` is the 

complex conjugate of the second term, and the output has zero imaginary 

part everywhere. When calling `irfft`, the negative frequencies are not 

specified, and the output array is purely real. 

 

""" 

# The copy may be required for multithreading. 

a = array(a, copy=True, dtype=complex) 

if n is None: 

n = (a.shape[axis] - 1) * 2 

unitary = _unitary(norm) 

output = _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftb, 

_real_fft_cache) 

return output * (1 / (sqrt(n) if unitary else n)) 

 

 

@array_function_dispatch(_fft_dispatcher) 

def hfft(a, n=None, axis=-1, norm=None): 

""" 

Compute the FFT of a signal that has Hermitian symmetry, i.e., a real 

spectrum. 

 

Parameters 

---------- 

a : array_like 

The input array. 

n : int, optional 

Length of the transformed axis of the output. For `n` output 

points, ``n//2 + 1`` input points are necessary. If the input is 

longer than this, it is cropped. If it is shorter than this, it is 

padded with zeros. If `n` is not given, it is determined from the 

length of the input along the axis specified by `axis`. 

axis : int, optional 

Axis over which to compute the FFT. If not given, the last 

axis is used. 

norm : {None, "ortho"}, optional 

Normalization mode (see `numpy.fft`). Default is None. 

 

.. versionadded:: 1.10.0 

 

Returns 

------- 

out : ndarray 

The truncated or zero-padded input, transformed along the axis 

indicated by `axis`, or the last one if `axis` is not specified. 

The length of the transformed axis is `n`, or, if `n` is not given, 

``2*m - 2`` where ``m`` is the length of the transformed axis of 

the input. To get an odd number of output points, `n` must be 

specified, for instance as ``2*m - 1`` in the typical case, 

 

Raises 

------ 

IndexError 

If `axis` is larger than the last axis of `a`. 

 

See also 

-------- 

rfft : Compute the one-dimensional FFT for real input. 

ihfft : The inverse of `hfft`. 

 

Notes 

----- 

`hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the 

opposite case: here the signal has Hermitian symmetry in the time 

domain and is real in the frequency domain. So here it's `hfft` for 

which you must supply the length of the result if it is to be odd. 

 

* even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error, 

* odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error. 

 

Examples 

-------- 

>>> signal = np.array([1, 2, 3, 4, 3, 2]) 

>>> np.fft.fft(signal) 

array([ 15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) 

>>> np.fft.hfft(signal[:4]) # Input first half of signal 

array([ 15., -4., 0., -1., 0., -4.]) 

>>> np.fft.hfft(signal, 6) # Input entire signal and truncate 

array([ 15., -4., 0., -1., 0., -4.]) 

 

 

>>> signal = np.array([[1, 1.j], [-1.j, 2]]) 

>>> np.conj(signal.T) - signal # check Hermitian symmetry 

array([[ 0.-0.j, 0.+0.j], 

[ 0.+0.j, 0.-0.j]]) 

>>> freq_spectrum = np.fft.hfft(signal) 

>>> freq_spectrum 

array([[ 1., 1.], 

[ 2., -2.]]) 

 

""" 

# The copy may be required for multithreading. 

a = array(a, copy=True, dtype=complex) 

if n is None: 

n = (a.shape[axis] - 1) * 2 

unitary = _unitary(norm) 

return irfft(conjugate(a), n, axis) * (sqrt(n) if unitary else n) 

 

 

@array_function_dispatch(_fft_dispatcher) 

def ihfft(a, n=None, axis=-1, norm=None): 

""" 

Compute the inverse FFT of a signal that has Hermitian symmetry. 

 

Parameters 

---------- 

a : array_like 

Input array. 

n : int, optional 

Length of the inverse FFT, the number of points along 

transformation axis in the input to use. If `n` is smaller than 

the length of the input, the input is cropped. If it is larger, 

the input is padded with zeros. If `n` is not given, the length of 

the input along the axis specified by `axis` is used. 

axis : int, optional 

Axis over which to compute the inverse FFT. If not given, the last 

axis is used. 

norm : {None, "ortho"}, optional 

Normalization mode (see `numpy.fft`). Default is None. 

 

.. versionadded:: 1.10.0 

 

Returns 

------- 

out : complex ndarray 

The truncated or zero-padded input, transformed along the axis 

indicated by `axis`, or the last one if `axis` is not specified. 

The length of the transformed axis is ``n//2 + 1``. 

 

See also 

-------- 

hfft, irfft 

 

Notes 

----- 

`hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the 

opposite case: here the signal has Hermitian symmetry in the time 

domain and is real in the frequency domain. So here it's `hfft` for 

which you must supply the length of the result if it is to be odd: 

 

* even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error, 

* odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error. 

 

Examples 

-------- 

>>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) 

>>> np.fft.ifft(spectrum) 

array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j]) 

>>> np.fft.ihfft(spectrum) 

array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) 

 

""" 

# The copy may be required for multithreading. 

a = array(a, copy=True, dtype=float) 

if n is None: 

n = a.shape[axis] 

unitary = _unitary(norm) 

output = conjugate(rfft(a, n, axis)) 

return output * (1 / (sqrt(n) if unitary else n)) 

 

 

def _cook_nd_args(a, s=None, axes=None, invreal=0): 

if s is None: 

shapeless = 1 

if axes is None: 

s = list(a.shape) 

else: 

s = take(a.shape, axes) 

else: 

shapeless = 0 

s = list(s) 

if axes is None: 

axes = list(range(-len(s), 0)) 

if len(s) != len(axes): 

raise ValueError("Shape and axes have different lengths.") 

if invreal and shapeless: 

s[-1] = (a.shape[axes[-1]] - 1) * 2 

return s, axes 

 

 

def _raw_fftnd(a, s=None, axes=None, function=fft, norm=None): 

a = asarray(a) 

s, axes = _cook_nd_args(a, s, axes) 

itl = list(range(len(axes))) 

itl.reverse() 

for ii in itl: 

a = function(a, n=s[ii], axis=axes[ii], norm=norm) 

return a 

 

 

def _fftn_dispatcher(a, s=None, axes=None, norm=None): 

return (a,) 

 

 

@array_function_dispatch(_fftn_dispatcher) 

def fftn(a, s=None, axes=None, norm=None): 

""" 

Compute the N-dimensional discrete Fourier Transform. 

 

This function computes the *N*-dimensional discrete Fourier Transform over 

any number of axes in an *M*-dimensional array by means of the Fast Fourier 

Transform (FFT). 

 

Parameters 

---------- 

a : array_like 

Input array, can be complex. 

s : sequence of ints, optional 

Shape (length of each transformed axis) of the output 

(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). 

This corresponds to ``n`` for ``fft(x, n)``. 

Along any axis, if the given shape is smaller than that of the input, 

the input is cropped. If it is larger, the input is padded with zeros. 

if `s` is not given, the shape of the input along the axes specified 

by `axes` is used. 

axes : sequence of ints, optional 

Axes over which to compute the FFT. If not given, the last ``len(s)`` 

axes are used, or all axes if `s` is also not specified. 

Repeated indices in `axes` means that the transform over that axis is 

performed multiple times. 

norm : {None, "ortho"}, optional 

.. versionadded:: 1.10.0 

 

Normalization mode (see `numpy.fft`). Default is None. 

 

Returns 

------- 

out : complex ndarray 

The truncated or zero-padded input, transformed along the axes 

indicated by `axes`, or by a combination of `s` and `a`, 

as explained in the parameters section above. 

 

Raises 

------ 

ValueError 

If `s` and `axes` have different length. 

IndexError 

If an element of `axes` is larger than than the number of axes of `a`. 

 

See Also 

-------- 

numpy.fft : Overall view of discrete Fourier transforms, with definitions 

and conventions used. 

ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT. 

fft : The one-dimensional FFT, with definitions and conventions used. 

rfftn : The *n*-dimensional FFT of real input. 

fft2 : The two-dimensional FFT. 

fftshift : Shifts zero-frequency terms to centre of array 

 

Notes 

----- 

The output, analogously to `fft`, contains the term for zero frequency in 

the low-order corner of all axes, the positive frequency terms in the 

first half of all axes, the term for the Nyquist frequency in the middle 

of all axes and the negative frequency terms in the second half of all 

axes, in order of decreasingly negative frequency. 

 

See `numpy.fft` for details, definitions and conventions used. 

 

Examples 

-------- 

>>> a = np.mgrid[:3, :3, :3][0] 

>>> np.fft.fftn(a, axes=(1, 2)) 

array([[[ 0.+0.j, 0.+0.j, 0.+0.j], 

[ 0.+0.j, 0.+0.j, 0.+0.j], 

[ 0.+0.j, 0.+0.j, 0.+0.j]], 

[[ 9.+0.j, 0.+0.j, 0.+0.j], 

[ 0.+0.j, 0.+0.j, 0.+0.j], 

[ 0.+0.j, 0.+0.j, 0.+0.j]], 

[[ 18.+0.j, 0.+0.j, 0.+0.j], 

[ 0.+0.j, 0.+0.j, 0.+0.j], 

[ 0.+0.j, 0.+0.j, 0.+0.j]]]) 

>>> np.fft.fftn(a, (2, 2), axes=(0, 1)) 

array([[[ 2.+0.j, 2.+0.j, 2.+0.j], 

[ 0.+0.j, 0.+0.j, 0.+0.j]], 

[[-2.+0.j, -2.+0.j, -2.+0.j], 

[ 0.+0.j, 0.+0.j, 0.+0.j]]]) 

 

>>> import matplotlib.pyplot as plt 

>>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12, 

... 2 * np.pi * np.arange(200) / 34) 

>>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape) 

>>> FS = np.fft.fftn(S) 

>>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2)) 

<matplotlib.image.AxesImage object at 0x...> 

>>> plt.show() 

 

""" 

 

return _raw_fftnd(a, s, axes, fft, norm) 

 

 

@array_function_dispatch(_fftn_dispatcher) 

def ifftn(a, s=None, axes=None, norm=None): 

""" 

Compute the N-dimensional inverse discrete Fourier Transform. 

 

This function computes the inverse of the N-dimensional discrete 

Fourier Transform over any number of axes in an M-dimensional array by 

means of the Fast Fourier Transform (FFT). In other words, 

``ifftn(fftn(a)) == a`` to within numerical accuracy. 

For a description of the definitions and conventions used, see `numpy.fft`. 

 

The input, analogously to `ifft`, should be ordered in the same way as is 

returned by `fftn`, i.e. it should have the term for zero frequency 

in all axes in the low-order corner, the positive frequency terms in the 

first half of all axes, the term for the Nyquist frequency in the middle 

of all axes and the negative frequency terms in the second half of all 

axes, in order of decreasingly negative frequency. 

 

Parameters 

---------- 

a : array_like 

Input array, can be complex. 

s : sequence of ints, optional 

Shape (length of each transformed axis) of the output 

(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). 

This corresponds to ``n`` for ``ifft(x, n)``. 

Along any axis, if the given shape is smaller than that of the input, 

the input is cropped. If it is larger, the input is padded with zeros. 

if `s` is not given, the shape of the input along the axes specified 

by `axes` is used. See notes for issue on `ifft` zero padding. 

axes : sequence of ints, optional 

Axes over which to compute the IFFT. If not given, the last ``len(s)`` 

axes are used, or all axes if `s` is also not specified. 

Repeated indices in `axes` means that the inverse transform over that 

axis is performed multiple times. 

norm : {None, "ortho"}, optional 

.. versionadded:: 1.10.0 

 

Normalization mode (see `numpy.fft`). Default is None. 

 

Returns 

------- 

out : complex ndarray 

The truncated or zero-padded input, transformed along the axes 

indicated by `axes`, or by a combination of `s` or `a`, 

as explained in the parameters section above. 

 

Raises 

------ 

ValueError 

If `s` and `axes` have different length. 

IndexError 

If an element of `axes` is larger than than the number of axes of `a`. 

 

See Also 

-------- 

numpy.fft : Overall view of discrete Fourier transforms, with definitions 

and conventions used. 

fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse. 

ifft : The one-dimensional inverse FFT. 

ifft2 : The two-dimensional inverse FFT. 

ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning 

of array. 

 

Notes 

----- 

See `numpy.fft` for definitions and conventions used. 

 

Zero-padding, analogously with `ifft`, is performed by appending zeros to 

the input along the specified dimension. Although this is the common 

approach, it might lead to surprising results. If another form of zero 

padding is desired, it must be performed before `ifftn` is called. 

 

Examples 

-------- 

>>> a = np.eye(4) 

>>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,)) 

array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], 

[ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], 

[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], 

[ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]]) 

 

 

Create and plot an image with band-limited frequency content: 

 

>>> import matplotlib.pyplot as plt 

>>> n = np.zeros((200,200), dtype=complex) 

>>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20))) 

>>> im = np.fft.ifftn(n).real 

>>> plt.imshow(im) 

<matplotlib.image.AxesImage object at 0x...> 

>>> plt.show() 

 

""" 

 

return _raw_fftnd(a, s, axes, ifft, norm) 

 

 

@array_function_dispatch(_fftn_dispatcher) 

def fft2(a, s=None, axes=(-2, -1), norm=None): 

""" 

Compute the 2-dimensional discrete Fourier Transform 

 

This function computes the *n*-dimensional discrete Fourier Transform 

over any axes in an *M*-dimensional array by means of the 

Fast Fourier Transform (FFT). By default, the transform is computed over 

the last two axes of the input array, i.e., a 2-dimensional FFT. 

 

Parameters 

---------- 

a : array_like 

Input array, can be complex 

s : sequence of ints, optional 

Shape (length of each transformed axis) of the output 

(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). 

This corresponds to ``n`` for ``fft(x, n)``. 

Along each axis, if the given shape is smaller than that of the input, 

the input is cropped. If it is larger, the input is padded with zeros. 

if `s` is not given, the shape of the input along the axes specified 

by `axes` is used. 

axes : sequence of ints, optional 

Axes over which to compute the FFT. If not given, the last two 

axes are used. A repeated index in `axes` means the transform over 

that axis is performed multiple times. A one-element sequence means 

that a one-dimensional FFT is performed. 

norm : {None, "ortho"}, optional 

.. versionadded:: 1.10.0 

 

Normalization mode (see `numpy.fft`). Default is None. 

 

Returns 

------- 

out : complex ndarray 

The truncated or zero-padded input, transformed along the axes 

indicated by `axes`, or the last two axes if `axes` is not given. 

 

Raises 

------ 

ValueError 

If `s` and `axes` have different length, or `axes` not given and 

``len(s) != 2``. 

IndexError 

If an element of `axes` is larger than than the number of axes of `a`. 

 

See Also 

-------- 

numpy.fft : Overall view of discrete Fourier transforms, with definitions 

and conventions used. 

ifft2 : The inverse two-dimensional FFT. 

fft : The one-dimensional FFT. 

fftn : The *n*-dimensional FFT. 

fftshift : Shifts zero-frequency terms to the center of the array. 

For two-dimensional input, swaps first and third quadrants, and second 

and fourth quadrants. 

 

Notes 

----- 

`fft2` is just `fftn` with a different default for `axes`. 

 

The output, analogously to `fft`, contains the term for zero frequency in 

the low-order corner of the transformed axes, the positive frequency terms 

in the first half of these axes, the term for the Nyquist frequency in the 

middle of the axes and the negative frequency terms in the second half of 

the axes, in order of decreasingly negative frequency. 

 

See `fftn` for details and a plotting example, and `numpy.fft` for 

definitions and conventions used. 

 

 

Examples 

-------- 

>>> a = np.mgrid[:5, :5][0] 

>>> np.fft.fft2(a) 

array([[ 50.0 +0.j , 0.0 +0.j , 0.0 +0.j , 

0.0 +0.j , 0.0 +0.j ], 

[-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j , 

0.0 +0.j , 0.0 +0.j ], 

[-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j , 

0.0 +0.j , 0.0 +0.j ], 

[-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j , 

0.0 +0.j , 0.0 +0.j ], 

[-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j , 

0.0 +0.j , 0.0 +0.j ]]) 

 

""" 

 

return _raw_fftnd(a, s, axes, fft, norm) 

 

 

@array_function_dispatch(_fftn_dispatcher) 

def ifft2(a, s=None, axes=(-2, -1), norm=None): 

""" 

Compute the 2-dimensional inverse discrete Fourier Transform. 

 

This function computes the inverse of the 2-dimensional discrete Fourier 

Transform over any number of axes in an M-dimensional array by means of 

the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(a)) == a`` 

to within numerical accuracy. By default, the inverse transform is 

computed over the last two axes of the input array. 

 

The input, analogously to `ifft`, should be ordered in the same way as is 

returned by `fft2`, i.e. it should have the term for zero frequency 

in the low-order corner of the two axes, the positive frequency terms in 

the first half of these axes, the term for the Nyquist frequency in the 

middle of the axes and the negative frequency terms in the second half of 

both axes, in order of decreasingly negative frequency. 

 

Parameters 

---------- 

a : array_like 

Input array, can be complex. 

s : sequence of ints, optional 

Shape (length of each axis) of the output (``s[0]`` refers to axis 0, 

``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``. 

Along each axis, if the given shape is smaller than that of the input, 

the input is cropped. If it is larger, the input is padded with zeros. 

if `s` is not given, the shape of the input along the axes specified 

by `axes` is used. See notes for issue on `ifft` zero padding. 

axes : sequence of ints, optional 

Axes over which to compute the FFT. If not given, the last two 

axes are used. A repeated index in `axes` means the transform over 

that axis is performed multiple times. A one-element sequence means 

that a one-dimensional FFT is performed. 

norm : {None, "ortho"}, optional 

.. versionadded:: 1.10.0 

 

Normalization mode (see `numpy.fft`). Default is None. 

 

Returns 

------- 

out : complex ndarray 

The truncated or zero-padded input, transformed along the axes 

indicated by `axes`, or the last two axes if `axes` is not given. 

 

Raises 

------ 

ValueError 

If `s` and `axes` have different length, or `axes` not given and 

``len(s) != 2``. 

IndexError 

If an element of `axes` is larger than than the number of axes of `a`. 

 

See Also 

-------- 

numpy.fft : Overall view of discrete Fourier transforms, with definitions 

and conventions used. 

fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse. 

ifftn : The inverse of the *n*-dimensional FFT. 

fft : The one-dimensional FFT. 

ifft : The one-dimensional inverse FFT. 

 

Notes 

----- 

`ifft2` is just `ifftn` with a different default for `axes`. 

 

See `ifftn` for details and a plotting example, and `numpy.fft` for 

definition and conventions used. 

 

Zero-padding, analogously with `ifft`, is performed by appending zeros to 

the input along the specified dimension. Although this is the common 

approach, it might lead to surprising results. If another form of zero 

padding is desired, it must be performed before `ifft2` is called. 

 

Examples 

-------- 

>>> a = 4 * np.eye(4) 

>>> np.fft.ifft2(a) 

array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], 

[ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], 

[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], 

[ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]) 

 

""" 

 

return _raw_fftnd(a, s, axes, ifft, norm) 

 

 

@array_function_dispatch(_fftn_dispatcher) 

def rfftn(a, s=None, axes=None, norm=None): 

""" 

Compute the N-dimensional discrete Fourier Transform for real input. 

 

This function computes the N-dimensional discrete Fourier Transform over 

any number of axes in an M-dimensional real array by means of the Fast 

Fourier Transform (FFT). By default, all axes are transformed, with the 

real transform performed over the last axis, while the remaining 

transforms are complex. 

 

Parameters 

---------- 

a : array_like 

Input array, taken to be real. 

s : sequence of ints, optional 

Shape (length along each transformed axis) to use from the input. 

(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). 

The final element of `s` corresponds to `n` for ``rfft(x, n)``, while 

for the remaining axes, it corresponds to `n` for ``fft(x, n)``. 

Along any axis, if the given shape is smaller than that of the input, 

the input is cropped. If it is larger, the input is padded with zeros. 

if `s` is not given, the shape of the input along the axes specified 

by `axes` is used. 

axes : sequence of ints, optional 

Axes over which to compute the FFT. If not given, the last ``len(s)`` 

axes are used, or all axes if `s` is also not specified. 

norm : {None, "ortho"}, optional 

.. versionadded:: 1.10.0 

 

Normalization mode (see `numpy.fft`). Default is None. 

 

Returns 

------- 

out : complex ndarray 

The truncated or zero-padded input, transformed along the axes 

indicated by `axes`, or by a combination of `s` and `a`, 

as explained in the parameters section above. 

The length of the last axis transformed will be ``s[-1]//2+1``, 

while the remaining transformed axes will have lengths according to 

`s`, or unchanged from the input. 

 

Raises 

------ 

ValueError 

If `s` and `axes` have different length. 

IndexError 

If an element of `axes` is larger than than the number of axes of `a`. 

 

See Also 

-------- 

irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT 

of real input. 

fft : The one-dimensional FFT, with definitions and conventions used. 

rfft : The one-dimensional FFT of real input. 

fftn : The n-dimensional FFT. 

rfft2 : The two-dimensional FFT of real input. 

 

Notes 

----- 

The transform for real input is performed over the last transformation 

axis, as by `rfft`, then the transform over the remaining axes is 

performed as by `fftn`. The order of the output is as for `rfft` for the 

final transformation axis, and as for `fftn` for the remaining 

transformation axes. 

 

See `fft` for details, definitions and conventions used. 

 

Examples 

-------- 

>>> a = np.ones((2, 2, 2)) 

>>> np.fft.rfftn(a) 

array([[[ 8.+0.j, 0.+0.j], 

[ 0.+0.j, 0.+0.j]], 

[[ 0.+0.j, 0.+0.j], 

[ 0.+0.j, 0.+0.j]]]) 

 

>>> np.fft.rfftn(a, axes=(2, 0)) 

array([[[ 4.+0.j, 0.+0.j], 

[ 4.+0.j, 0.+0.j]], 

[[ 0.+0.j, 0.+0.j], 

[ 0.+0.j, 0.+0.j]]]) 

 

""" 

# The copy may be required for multithreading. 

a = array(a, copy=True, dtype=float) 

s, axes = _cook_nd_args(a, s, axes) 

a = rfft(a, s[-1], axes[-1], norm) 

for ii in range(len(axes)-1): 

a = fft(a, s[ii], axes[ii], norm) 

return a 

 

 

@array_function_dispatch(_fftn_dispatcher) 

def rfft2(a, s=None, axes=(-2, -1), norm=None): 

""" 

Compute the 2-dimensional FFT of a real array. 

 

Parameters 

---------- 

a : array 

Input array, taken to be real. 

s : sequence of ints, optional 

Shape of the FFT. 

axes : sequence of ints, optional 

Axes over which to compute the FFT. 

norm : {None, "ortho"}, optional 

.. versionadded:: 1.10.0 

 

Normalization mode (see `numpy.fft`). Default is None. 

 

Returns 

------- 

out : ndarray 

The result of the real 2-D FFT. 

 

See Also 

-------- 

rfftn : Compute the N-dimensional discrete Fourier Transform for real 

input. 

 

Notes 

----- 

This is really just `rfftn` with different default behavior. 

For more details see `rfftn`. 

 

""" 

 

return rfftn(a, s, axes, norm) 

 

 

@array_function_dispatch(_fftn_dispatcher) 

def irfftn(a, s=None, axes=None, norm=None): 

""" 

Compute the inverse of the N-dimensional FFT of real input. 

 

This function computes the inverse of the N-dimensional discrete 

Fourier Transform for real input over any number of axes in an 

M-dimensional array by means of the Fast Fourier Transform (FFT). In 

other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical 

accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`, 

and for the same reason.) 

 

The input should be ordered in the same way as is returned by `rfftn`, 

i.e. as for `irfft` for the final transformation axis, and as for `ifftn` 

along all the other axes. 

 

Parameters 

---------- 

a : array_like 

Input array. 

s : sequence of ints, optional 

Shape (length of each transformed axis) of the output 

(``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the 

number of input points used along this axis, except for the last axis, 

where ``s[-1]//2+1`` points of the input are used. 

Along any axis, if the shape indicated by `s` is smaller than that of 

the input, the input is cropped. If it is larger, the input is padded 

with zeros. If `s` is not given, the shape of the input along the 

axes specified by `axes` is used. 

axes : sequence of ints, optional 

Axes over which to compute the inverse FFT. If not given, the last 

`len(s)` axes are used, or all axes if `s` is also not specified. 

Repeated indices in `axes` means that the inverse transform over that 

axis is performed multiple times. 

norm : {None, "ortho"}, optional 

.. versionadded:: 1.10.0 

 

Normalization mode (see `numpy.fft`). Default is None. 

 

Returns 

------- 

out : ndarray 

The truncated or zero-padded input, transformed along the axes 

indicated by `axes`, or by a combination of `s` or `a`, 

as explained in the parameters section above. 

The length of each transformed axis is as given by the corresponding 

element of `s`, or the length of the input in every axis except for the 

last one if `s` is not given. In the final transformed axis the length 

of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the 

length of the final transformed axis of the input. To get an odd 

number of output points in the final axis, `s` must be specified. 

 

Raises 

------ 

ValueError 

If `s` and `axes` have different length. 

IndexError 

If an element of `axes` is larger than than the number of axes of `a`. 

 

See Also 

-------- 

rfftn : The forward n-dimensional FFT of real input, 

of which `ifftn` is the inverse. 

fft : The one-dimensional FFT, with definitions and conventions used. 

irfft : The inverse of the one-dimensional FFT of real input. 

irfft2 : The inverse of the two-dimensional FFT of real input. 

 

Notes 

----- 

See `fft` for definitions and conventions used. 

 

See `rfft` for definitions and conventions used for real input. 

 

Examples 

-------- 

>>> a = np.zeros((3, 2, 2)) 

>>> a[0, 0, 0] = 3 * 2 * 2 

>>> np.fft.irfftn(a) 

array([[[ 1., 1.], 

[ 1., 1.]], 

[[ 1., 1.], 

[ 1., 1.]], 

[[ 1., 1.], 

[ 1., 1.]]]) 

 

""" 

# The copy may be required for multithreading. 

a = array(a, copy=True, dtype=complex) 

s, axes = _cook_nd_args(a, s, axes, invreal=1) 

for ii in range(len(axes)-1): 

a = ifft(a, s[ii], axes[ii], norm) 

a = irfft(a, s[-1], axes[-1], norm) 

return a 

 

 

@array_function_dispatch(_fftn_dispatcher) 

def irfft2(a, s=None, axes=(-2, -1), norm=None): 

""" 

Compute the 2-dimensional inverse FFT of a real array. 

 

Parameters 

---------- 

a : array_like 

The input array 

s : sequence of ints, optional 

Shape of the inverse FFT. 

axes : sequence of ints, optional 

The axes over which to compute the inverse fft. 

Default is the last two axes. 

norm : {None, "ortho"}, optional 

.. versionadded:: 1.10.0 

 

Normalization mode (see `numpy.fft`). Default is None. 

 

Returns 

------- 

out : ndarray 

The result of the inverse real 2-D FFT. 

 

See Also 

-------- 

irfftn : Compute the inverse of the N-dimensional FFT of real input. 

 

Notes 

----- 

This is really `irfftn` with different defaults. 

For more details see `irfftn`. 

 

""" 

 

return irfftn(a, s, axes, norm)