1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

""" 

Discrete Fourier Transforms - helper.py 

 

""" 

from __future__ import division, absolute_import, print_function 

 

import collections 

try: 

import threading 

except ImportError: 

import dummy_threading as threading 

from numpy.compat import integer_types 

from numpy.core import integer, empty, arange, asarray, roll 

from numpy.core.overrides import array_function_dispatch, set_module 

 

# Created by Pearu Peterson, September 2002 

 

__all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq'] 

 

integer_types = integer_types + (integer,) 

 

 

def _fftshift_dispatcher(x, axes=None): 

return (x,) 

 

 

@array_function_dispatch(_fftshift_dispatcher, module='numpy.fft') 

def fftshift(x, axes=None): 

""" 

Shift the zero-frequency component to the center of the spectrum. 

 

This function swaps half-spaces for all axes listed (defaults to all). 

Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even. 

 

Parameters 

---------- 

x : array_like 

Input array. 

axes : int or shape tuple, optional 

Axes over which to shift. Default is None, which shifts all axes. 

 

Returns 

------- 

y : ndarray 

The shifted array. 

 

See Also 

-------- 

ifftshift : The inverse of `fftshift`. 

 

Examples 

-------- 

>>> freqs = np.fft.fftfreq(10, 0.1) 

>>> freqs 

array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.]) 

>>> np.fft.fftshift(freqs) 

array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.]) 

 

Shift the zero-frequency component only along the second axis: 

 

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) 

>>> freqs 

array([[ 0., 1., 2.], 

[ 3., 4., -4.], 

[-3., -2., -1.]]) 

>>> np.fft.fftshift(freqs, axes=(1,)) 

array([[ 2., 0., 1.], 

[-4., 3., 4.], 

[-1., -3., -2.]]) 

 

""" 

x = asarray(x) 

if axes is None: 

axes = tuple(range(x.ndim)) 

shift = [dim // 2 for dim in x.shape] 

elif isinstance(axes, integer_types): 

shift = x.shape[axes] // 2 

else: 

shift = [x.shape[ax] // 2 for ax in axes] 

 

return roll(x, shift, axes) 

 

 

@array_function_dispatch(_fftshift_dispatcher, module='numpy.fft') 

def ifftshift(x, axes=None): 

""" 

The inverse of `fftshift`. Although identical for even-length `x`, the 

functions differ by one sample for odd-length `x`. 

 

Parameters 

---------- 

x : array_like 

Input array. 

axes : int or shape tuple, optional 

Axes over which to calculate. Defaults to None, which shifts all axes. 

 

Returns 

------- 

y : ndarray 

The shifted array. 

 

See Also 

-------- 

fftshift : Shift zero-frequency component to the center of the spectrum. 

 

Examples 

-------- 

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) 

>>> freqs 

array([[ 0., 1., 2.], 

[ 3., 4., -4.], 

[-3., -2., -1.]]) 

>>> np.fft.ifftshift(np.fft.fftshift(freqs)) 

array([[ 0., 1., 2.], 

[ 3., 4., -4.], 

[-3., -2., -1.]]) 

 

""" 

x = asarray(x) 

if axes is None: 

axes = tuple(range(x.ndim)) 

shift = [-(dim // 2) for dim in x.shape] 

elif isinstance(axes, integer_types): 

shift = -(x.shape[axes] // 2) 

else: 

shift = [-(x.shape[ax] // 2) for ax in axes] 

 

return roll(x, shift, axes) 

 

 

@set_module('numpy.fft') 

def fftfreq(n, d=1.0): 

""" 

Return the Discrete Fourier Transform sample frequencies. 

 

The returned float array `f` contains the frequency bin centers in cycles 

per unit of the sample spacing (with zero at the start). For instance, if 

the sample spacing is in seconds, then the frequency unit is cycles/second. 

 

Given a window length `n` and a sample spacing `d`:: 

 

f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even 

f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd 

 

Parameters 

---------- 

n : int 

Window length. 

d : scalar, optional 

Sample spacing (inverse of the sampling rate). Defaults to 1. 

 

Returns 

------- 

f : ndarray 

Array of length `n` containing the sample frequencies. 

 

Examples 

-------- 

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float) 

>>> fourier = np.fft.fft(signal) 

>>> n = signal.size 

>>> timestep = 0.1 

>>> freq = np.fft.fftfreq(n, d=timestep) 

>>> freq 

array([ 0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25]) 

 

""" 

if not isinstance(n, integer_types): 

raise ValueError("n should be an integer") 

val = 1.0 / (n * d) 

results = empty(n, int) 

N = (n-1)//2 + 1 

p1 = arange(0, N, dtype=int) 

results[:N] = p1 

p2 = arange(-(n//2), 0, dtype=int) 

results[N:] = p2 

return results * val 

 

 

@set_module('numpy.fft') 

def rfftfreq(n, d=1.0): 

""" 

Return the Discrete Fourier Transform sample frequencies 

(for usage with rfft, irfft). 

 

The returned float array `f` contains the frequency bin centers in cycles 

per unit of the sample spacing (with zero at the start). For instance, if 

the sample spacing is in seconds, then the frequency unit is cycles/second. 

 

Given a window length `n` and a sample spacing `d`:: 

 

f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even 

f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd 

 

Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`) 

the Nyquist frequency component is considered to be positive. 

 

Parameters 

---------- 

n : int 

Window length. 

d : scalar, optional 

Sample spacing (inverse of the sampling rate). Defaults to 1. 

 

Returns 

------- 

f : ndarray 

Array of length ``n//2 + 1`` containing the sample frequencies. 

 

Examples 

-------- 

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float) 

>>> fourier = np.fft.rfft(signal) 

>>> n = signal.size 

>>> sample_rate = 100 

>>> freq = np.fft.fftfreq(n, d=1./sample_rate) 

>>> freq 

array([ 0., 10., 20., 30., 40., -50., -40., -30., -20., -10.]) 

>>> freq = np.fft.rfftfreq(n, d=1./sample_rate) 

>>> freq 

array([ 0., 10., 20., 30., 40., 50.]) 

 

""" 

if not isinstance(n, integer_types): 

raise ValueError("n should be an integer") 

val = 1.0/(n*d) 

N = n//2 + 1 

results = arange(0, N, dtype=int) 

return results * val 

 

 

class _FFTCache(object): 

""" 

Cache for the FFT twiddle factors as an LRU (least recently used) cache. 

 

Parameters 

---------- 

max_size_in_mb : int 

Maximum memory usage of the cache before items are being evicted. 

max_item_count : int 

Maximum item count of the cache before items are being evicted. 

 

Notes 

----- 

Items will be evicted if either limit has been reached upon getting and 

setting. The maximum memory usages is not strictly the given 

``max_size_in_mb`` but rather 

``max(max_size_in_mb, 1.5 * size_of_largest_item)``. Thus the cache will 

never be completely cleared - at least one item will remain and a single 

large item can cause the cache to retain several smaller items even if the 

given maximum cache size has been exceeded. 

""" 

def __init__(self, max_size_in_mb, max_item_count): 

self._max_size_in_bytes = max_size_in_mb * 1024 ** 2 

self._max_item_count = max_item_count 

self._dict = collections.OrderedDict() 

self._lock = threading.Lock() 

 

def put_twiddle_factors(self, n, factors): 

""" 

Store twiddle factors for an FFT of length n in the cache. 

 

Putting multiple twiddle factors for a certain n will store it multiple 

times. 

 

Parameters 

---------- 

n : int 

Data length for the FFT. 

factors : ndarray 

The actual twiddle values. 

""" 

with self._lock: 

# Pop + later add to move it to the end for LRU behavior. 

# Internally everything is stored in a dictionary whose values are 

# lists. 

try: 

value = self._dict.pop(n) 

except KeyError: 

value = [] 

value.append(factors) 

self._dict[n] = value 

self._prune_cache() 

 

def pop_twiddle_factors(self, n): 

""" 

Pop twiddle factors for an FFT of length n from the cache. 

 

Will return None if the requested twiddle factors are not available in 

the cache. 

 

Parameters 

---------- 

n : int 

Data length for the FFT. 

 

Returns 

------- 

out : ndarray or None 

The retrieved twiddle factors if available, else None. 

""" 

with self._lock: 

if n not in self._dict or not self._dict[n]: 

return None 

# Pop + later add to move it to the end for LRU behavior. 

all_values = self._dict.pop(n) 

value = all_values.pop() 

# Only put pack if there are still some arrays left in the list. 

if all_values: 

self._dict[n] = all_values 

return value 

 

def _prune_cache(self): 

# Always keep at least one item. 

while len(self._dict) > 1 and ( 

len(self._dict) > self._max_item_count or self._check_size()): 

self._dict.popitem(last=False) 

 

def _check_size(self): 

item_sizes = [sum(_j.nbytes for _j in _i) 

for _i in self._dict.values() if _i] 

if not item_sizes: 

return False 

max_size = max(self._max_size_in_bytes, 1.5 * max(item_sizes)) 

return sum(item_sizes) > max_size