1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

""" 

Discrete Fourier Transform (:mod:`numpy.fft`) 

============================================= 

 

.. currentmodule:: numpy.fft 

 

Standard FFTs 

------------- 

 

.. autosummary:: 

:toctree: generated/ 

 

fft Discrete Fourier transform. 

ifft Inverse discrete Fourier transform. 

fft2 Discrete Fourier transform in two dimensions. 

ifft2 Inverse discrete Fourier transform in two dimensions. 

fftn Discrete Fourier transform in N-dimensions. 

ifftn Inverse discrete Fourier transform in N dimensions. 

 

Real FFTs 

--------- 

 

.. autosummary:: 

:toctree: generated/ 

 

rfft Real discrete Fourier transform. 

irfft Inverse real discrete Fourier transform. 

rfft2 Real discrete Fourier transform in two dimensions. 

irfft2 Inverse real discrete Fourier transform in two dimensions. 

rfftn Real discrete Fourier transform in N dimensions. 

irfftn Inverse real discrete Fourier transform in N dimensions. 

 

Hermitian FFTs 

-------------- 

 

.. autosummary:: 

:toctree: generated/ 

 

hfft Hermitian discrete Fourier transform. 

ihfft Inverse Hermitian discrete Fourier transform. 

 

Helper routines 

--------------- 

 

.. autosummary:: 

:toctree: generated/ 

 

fftfreq Discrete Fourier Transform sample frequencies. 

rfftfreq DFT sample frequencies (for usage with rfft, irfft). 

fftshift Shift zero-frequency component to center of spectrum. 

ifftshift Inverse of fftshift. 

 

 

Background information 

---------------------- 

 

Fourier analysis is fundamentally a method for expressing a function as a 

sum of periodic components, and for recovering the function from those 

components. When both the function and its Fourier transform are 

replaced with discretized counterparts, it is called the discrete Fourier 

transform (DFT). The DFT has become a mainstay of numerical computing in 

part because of a very fast algorithm for computing it, called the Fast 

Fourier Transform (FFT), which was known to Gauss (1805) and was brought 

to light in its current form by Cooley and Tukey [CT]_. Press et al. [NR]_ 

provide an accessible introduction to Fourier analysis and its 

applications. 

 

Because the discrete Fourier transform separates its input into 

components that contribute at discrete frequencies, it has a great number 

of applications in digital signal processing, e.g., for filtering, and in 

this context the discretized input to the transform is customarily 

referred to as a *signal*, which exists in the *time domain*. The output 

is called a *spectrum* or *transform* and exists in the *frequency 

domain*. 

 

Implementation details 

---------------------- 

 

There are many ways to define the DFT, varying in the sign of the 

exponent, normalization, etc. In this implementation, the DFT is defined 

as 

 

.. math:: 

A_k = \\sum_{m=0}^{n-1} a_m \\exp\\left\\{-2\\pi i{mk \\over n}\\right\\} 

\\qquad k = 0,\\ldots,n-1. 

 

The DFT is in general defined for complex inputs and outputs, and a 

single-frequency component at linear frequency :math:`f` is 

represented by a complex exponential 

:math:`a_m = \\exp\\{2\\pi i\\,f m\\Delta t\\}`, where :math:`\\Delta t` 

is the sampling interval. 

 

The values in the result follow so-called "standard" order: If ``A = 

fft(a, n)``, then ``A[0]`` contains the zero-frequency term (the sum of 

the signal), which is always purely real for real inputs. Then ``A[1:n/2]`` 

contains the positive-frequency terms, and ``A[n/2+1:]`` contains the 

negative-frequency terms, in order of decreasingly negative frequency. 

For an even number of input points, ``A[n/2]`` represents both positive and 

negative Nyquist frequency, and is also purely real for real input. For 

an odd number of input points, ``A[(n-1)/2]`` contains the largest positive 

frequency, while ``A[(n+1)/2]`` contains the largest negative frequency. 

The routine ``np.fft.fftfreq(n)`` returns an array giving the frequencies 

of corresponding elements in the output. The routine 

``np.fft.fftshift(A)`` shifts transforms and their frequencies to put the 

zero-frequency components in the middle, and ``np.fft.ifftshift(A)`` undoes 

that shift. 

 

When the input `a` is a time-domain signal and ``A = fft(a)``, ``np.abs(A)`` 

is its amplitude spectrum and ``np.abs(A)**2`` is its power spectrum. 

The phase spectrum is obtained by ``np.angle(A)``. 

 

The inverse DFT is defined as 

 

.. math:: 

a_m = \\frac{1}{n}\\sum_{k=0}^{n-1}A_k\\exp\\left\\{2\\pi i{mk\\over n}\\right\\} 

\\qquad m = 0,\\ldots,n-1. 

 

It differs from the forward transform by the sign of the exponential 

argument and the default normalization by :math:`1/n`. 

 

Normalization 

------------- 

The default normalization has the direct transforms unscaled and the inverse 

transforms are scaled by :math:`1/n`. It is possible to obtain unitary 

transforms by setting the keyword argument ``norm`` to ``"ortho"`` (default is 

`None`) so that both direct and inverse transforms will be scaled by 

:math:`1/\\sqrt{n}`. 

 

Real and Hermitian transforms 

----------------------------- 

 

When the input is purely real, its transform is Hermitian, i.e., the 

component at frequency :math:`f_k` is the complex conjugate of the 

component at frequency :math:`-f_k`, which means that for real 

inputs there is no information in the negative frequency components that 

is not already available from the positive frequency components. 

The family of `rfft` functions is 

designed to operate on real inputs, and exploits this symmetry by 

computing only the positive frequency components, up to and including the 

Nyquist frequency. Thus, ``n`` input points produce ``n/2+1`` complex 

output points. The inverses of this family assumes the same symmetry of 

its input, and for an output of ``n`` points uses ``n/2+1`` input points. 

 

Correspondingly, when the spectrum is purely real, the signal is 

Hermitian. The `hfft` family of functions exploits this symmetry by 

using ``n/2+1`` complex points in the input (time) domain for ``n`` real 

points in the frequency domain. 

 

In higher dimensions, FFTs are used, e.g., for image analysis and 

filtering. The computational efficiency of the FFT means that it can 

also be a faster way to compute large convolutions, using the property 

that a convolution in the time domain is equivalent to a point-by-point 

multiplication in the frequency domain. 

 

Higher dimensions 

----------------- 

 

In two dimensions, the DFT is defined as 

 

.. math:: 

A_{kl} = \\sum_{m=0}^{M-1} \\sum_{n=0}^{N-1} 

a_{mn}\\exp\\left\\{-2\\pi i \\left({mk\\over M}+{nl\\over N}\\right)\\right\\} 

\\qquad k = 0, \\ldots, M-1;\\quad l = 0, \\ldots, N-1, 

 

which extends in the obvious way to higher dimensions, and the inverses 

in higher dimensions also extend in the same way. 

 

References 

---------- 

 

.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the 

machine calculation of complex Fourier series," *Math. Comput.* 

19: 297-301. 

 

.. [NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P., 

2007, *Numerical Recipes: The Art of Scientific Computing*, ch. 

12-13. Cambridge Univ. Press, Cambridge, UK. 

 

Examples 

-------- 

 

For examples, see the various functions. 

 

""" 

from __future__ import division, absolute_import, print_function 

 

depends = ['core']