1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

"""A collection of functions designed to help I/O with ascii files. 

 

""" 

from __future__ import division, absolute_import, print_function 

 

__docformat__ = "restructuredtext en" 

 

import sys 

import numpy as np 

import numpy.core.numeric as nx 

from numpy.compat import asbytes, asunicode, bytes, basestring 

 

if sys.version_info[0] >= 3: 

from builtins import bool, int, float, complex, object, str 

unicode = str 

else: 

from __builtin__ import bool, int, float, complex, object, unicode, str 

 

 

def _decode_line(line, encoding=None): 

"""Decode bytes from binary input streams. 

 

Defaults to decoding from 'latin1'. That differs from the behavior of 

np.compat.asunicode that decodes from 'ascii'. 

 

Parameters 

---------- 

line : str or bytes 

Line to be decoded. 

 

Returns 

------- 

decoded_line : unicode 

Unicode in Python 2, a str (unicode) in Python 3. 

 

""" 

if type(line) is bytes: 

if encoding is None: 

line = line.decode('latin1') 

else: 

line = line.decode(encoding) 

 

return line 

 

 

def _is_string_like(obj): 

""" 

Check whether obj behaves like a string. 

""" 

try: 

obj + '' 

except (TypeError, ValueError): 

return False 

return True 

 

 

def _is_bytes_like(obj): 

""" 

Check whether obj behaves like a bytes object. 

""" 

try: 

obj + b'' 

except (TypeError, ValueError): 

return False 

return True 

 

 

def _to_filehandle(fname, flag='r', return_opened=False): 

""" 

Returns the filehandle corresponding to a string or a file. 

If the string ends in '.gz', the file is automatically unzipped. 

 

Parameters 

---------- 

fname : string, filehandle 

Name of the file whose filehandle must be returned. 

flag : string, optional 

Flag indicating the status of the file ('r' for read, 'w' for write). 

return_opened : boolean, optional 

Whether to return the opening status of the file. 

""" 

if _is_string_like(fname): 

if fname.endswith('.gz'): 

import gzip 

fhd = gzip.open(fname, flag) 

elif fname.endswith('.bz2'): 

import bz2 

fhd = bz2.BZ2File(fname) 

else: 

fhd = file(fname, flag) 

opened = True 

elif hasattr(fname, 'seek'): 

fhd = fname 

opened = False 

else: 

raise ValueError('fname must be a string or file handle') 

if return_opened: 

return fhd, opened 

return fhd 

 

 

def has_nested_fields(ndtype): 

""" 

Returns whether one or several fields of a dtype are nested. 

 

Parameters 

---------- 

ndtype : dtype 

Data-type of a structured array. 

 

Raises 

------ 

AttributeError 

If `ndtype` does not have a `names` attribute. 

 

Examples 

-------- 

>>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) 

>>> np.lib._iotools.has_nested_fields(dt) 

False 

 

""" 

for name in ndtype.names or (): 

if ndtype[name].names: 

return True 

return False 

 

 

def flatten_dtype(ndtype, flatten_base=False): 

""" 

Unpack a structured data-type by collapsing nested fields and/or fields 

with a shape. 

 

Note that the field names are lost. 

 

Parameters 

---------- 

ndtype : dtype 

The datatype to collapse 

flatten_base : bool, optional 

If True, transform a field with a shape into several fields. Default is 

False. 

 

Examples 

-------- 

>>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), 

... ('block', int, (2, 3))]) 

>>> np.lib._iotools.flatten_dtype(dt) 

[dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')] 

>>> np.lib._iotools.flatten_dtype(dt, flatten_base=True) 

[dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'), 

dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'), 

dtype('int32')] 

 

""" 

names = ndtype.names 

if names is None: 

if flatten_base: 

return [ndtype.base] * int(np.prod(ndtype.shape)) 

return [ndtype.base] 

else: 

types = [] 

for field in names: 

info = ndtype.fields[field] 

flat_dt = flatten_dtype(info[0], flatten_base) 

types.extend(flat_dt) 

return types 

 

 

class LineSplitter(object): 

""" 

Object to split a string at a given delimiter or at given places. 

 

Parameters 

---------- 

delimiter : str, int, or sequence of ints, optional 

If a string, character used to delimit consecutive fields. 

If an integer or a sequence of integers, width(s) of each field. 

comments : str, optional 

Character used to mark the beginning of a comment. Default is '#'. 

autostrip : bool, optional 

Whether to strip each individual field. Default is True. 

 

""" 

 

def autostrip(self, method): 

""" 

Wrapper to strip each member of the output of `method`. 

 

Parameters 

---------- 

method : function 

Function that takes a single argument and returns a sequence of 

strings. 

 

Returns 

------- 

wrapped : function 

The result of wrapping `method`. `wrapped` takes a single input 

argument and returns a list of strings that are stripped of 

white-space. 

 

""" 

return lambda input: [_.strip() for _ in method(input)] 

# 

 

def __init__(self, delimiter=None, comments='#', autostrip=True, encoding=None): 

delimiter = _decode_line(delimiter) 

comments = _decode_line(comments) 

 

self.comments = comments 

 

# Delimiter is a character 

if (delimiter is None) or isinstance(delimiter, basestring): 

delimiter = delimiter or None 

_handyman = self._delimited_splitter 

# Delimiter is a list of field widths 

elif hasattr(delimiter, '__iter__'): 

_handyman = self._variablewidth_splitter 

idx = np.cumsum([0] + list(delimiter)) 

delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] 

# Delimiter is a single integer 

elif int(delimiter): 

(_handyman, delimiter) = ( 

self._fixedwidth_splitter, int(delimiter)) 

else: 

(_handyman, delimiter) = (self._delimited_splitter, None) 

self.delimiter = delimiter 

if autostrip: 

self._handyman = self.autostrip(_handyman) 

else: 

self._handyman = _handyman 

self.encoding = encoding 

# 

 

def _delimited_splitter(self, line): 

"""Chop off comments, strip, and split at delimiter. """ 

if self.comments is not None: 

line = line.split(self.comments)[0] 

line = line.strip(" \r\n") 

if not line: 

return [] 

return line.split(self.delimiter) 

# 

 

def _fixedwidth_splitter(self, line): 

if self.comments is not None: 

line = line.split(self.comments)[0] 

line = line.strip("\r\n") 

if not line: 

return [] 

fixed = self.delimiter 

slices = [slice(i, i + fixed) for i in range(0, len(line), fixed)] 

return [line[s] for s in slices] 

# 

 

def _variablewidth_splitter(self, line): 

if self.comments is not None: 

line = line.split(self.comments)[0] 

if not line: 

return [] 

slices = self.delimiter 

return [line[s] for s in slices] 

# 

 

def __call__(self, line): 

return self._handyman(_decode_line(line, self.encoding)) 

 

 

class NameValidator(object): 

""" 

Object to validate a list of strings to use as field names. 

 

The strings are stripped of any non alphanumeric character, and spaces 

are replaced by '_'. During instantiation, the user can define a list 

of names to exclude, as well as a list of invalid characters. Names in 

the exclusion list are appended a '_' character. 

 

Once an instance has been created, it can be called with a list of 

names, and a list of valid names will be created. The `__call__` 

method accepts an optional keyword "default" that sets the default name 

in case of ambiguity. By default this is 'f', so that names will 

default to `f0`, `f1`, etc. 

 

Parameters 

---------- 

excludelist : sequence, optional 

A list of names to exclude. This list is appended to the default 

list ['return', 'file', 'print']. Excluded names are appended an 

underscore: for example, `file` becomes `file_` if supplied. 

deletechars : str, optional 

A string combining invalid characters that must be deleted from the 

names. 

case_sensitive : {True, False, 'upper', 'lower'}, optional 

* If True, field names are case-sensitive. 

* If False or 'upper', field names are converted to upper case. 

* If 'lower', field names are converted to lower case. 

 

The default value is True. 

replace_space : '_', optional 

Character(s) used in replacement of white spaces. 

 

Notes 

----- 

Calling an instance of `NameValidator` is the same as calling its 

method `validate`. 

 

Examples 

-------- 

>>> validator = np.lib._iotools.NameValidator() 

>>> validator(['file', 'field2', 'with space', 'CaSe']) 

['file_', 'field2', 'with_space', 'CaSe'] 

 

>>> validator = np.lib._iotools.NameValidator(excludelist=['excl'], 

deletechars='q', 

case_sensitive='False') 

>>> validator(['excl', 'field2', 'no_q', 'with space', 'CaSe']) 

['excl_', 'field2', 'no_', 'with_space', 'case'] 

 

""" 

# 

defaultexcludelist = ['return', 'file', 'print'] 

defaultdeletechars = set(r"""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""") 

# 

 

def __init__(self, excludelist=None, deletechars=None, 

case_sensitive=None, replace_space='_'): 

# Process the exclusion list .. 

if excludelist is None: 

excludelist = [] 

excludelist.extend(self.defaultexcludelist) 

self.excludelist = excludelist 

# Process the list of characters to delete 

if deletechars is None: 

delete = self.defaultdeletechars 

else: 

delete = set(deletechars) 

delete.add('"') 

self.deletechars = delete 

# Process the case option ..... 

if (case_sensitive is None) or (case_sensitive is True): 

self.case_converter = lambda x: x 

elif (case_sensitive is False) or case_sensitive.startswith('u'): 

self.case_converter = lambda x: x.upper() 

elif case_sensitive.startswith('l'): 

self.case_converter = lambda x: x.lower() 

else: 

msg = 'unrecognized case_sensitive value %s.' % case_sensitive 

raise ValueError(msg) 

# 

self.replace_space = replace_space 

 

def validate(self, names, defaultfmt="f%i", nbfields=None): 

""" 

Validate a list of strings as field names for a structured array. 

 

Parameters 

---------- 

names : sequence of str 

Strings to be validated. 

defaultfmt : str, optional 

Default format string, used if validating a given string 

reduces its length to zero. 

nbfields : integer, optional 

Final number of validated names, used to expand or shrink the 

initial list of names. 

 

Returns 

------- 

validatednames : list of str 

The list of validated field names. 

 

Notes 

----- 

A `NameValidator` instance can be called directly, which is the 

same as calling `validate`. For examples, see `NameValidator`. 

 

""" 

# Initial checks .............. 

if (names is None): 

if (nbfields is None): 

return None 

names = [] 

if isinstance(names, basestring): 

names = [names, ] 

if nbfields is not None: 

nbnames = len(names) 

if (nbnames < nbfields): 

names = list(names) + [''] * (nbfields - nbnames) 

elif (nbnames > nbfields): 

names = names[:nbfields] 

# Set some shortcuts ........... 

deletechars = self.deletechars 

excludelist = self.excludelist 

case_converter = self.case_converter 

replace_space = self.replace_space 

# Initializes some variables ... 

validatednames = [] 

seen = dict() 

nbempty = 0 

# 

for item in names: 

item = case_converter(item).strip() 

if replace_space: 

item = item.replace(' ', replace_space) 

item = ''.join([c for c in item if c not in deletechars]) 

if item == '': 

item = defaultfmt % nbempty 

while item in names: 

nbempty += 1 

item = defaultfmt % nbempty 

nbempty += 1 

elif item in excludelist: 

item += '_' 

cnt = seen.get(item, 0) 

if cnt > 0: 

validatednames.append(item + '_%d' % cnt) 

else: 

validatednames.append(item) 

seen[item] = cnt + 1 

return tuple(validatednames) 

# 

 

def __call__(self, names, defaultfmt="f%i", nbfields=None): 

return self.validate(names, defaultfmt=defaultfmt, nbfields=nbfields) 

 

 

def str2bool(value): 

""" 

Tries to transform a string supposed to represent a boolean to a boolean. 

 

Parameters 

---------- 

value : str 

The string that is transformed to a boolean. 

 

Returns 

------- 

boolval : bool 

The boolean representation of `value`. 

 

Raises 

------ 

ValueError 

If the string is not 'True' or 'False' (case independent) 

 

Examples 

-------- 

>>> np.lib._iotools.str2bool('TRUE') 

True 

>>> np.lib._iotools.str2bool('false') 

False 

 

""" 

value = value.upper() 

if value == 'TRUE': 

return True 

elif value == 'FALSE': 

return False 

else: 

raise ValueError("Invalid boolean") 

 

 

class ConverterError(Exception): 

""" 

Exception raised when an error occurs in a converter for string values. 

 

""" 

pass 

 

 

class ConverterLockError(ConverterError): 

""" 

Exception raised when an attempt is made to upgrade a locked converter. 

 

""" 

pass 

 

 

class ConversionWarning(UserWarning): 

""" 

Warning issued when a string converter has a problem. 

 

Notes 

----- 

In `genfromtxt` a `ConversionWarning` is issued if raising exceptions 

is explicitly suppressed with the "invalid_raise" keyword. 

 

""" 

pass 

 

 

class StringConverter(object): 

""" 

Factory class for function transforming a string into another object 

(int, float). 

 

After initialization, an instance can be called to transform a string 

into another object. If the string is recognized as representing a 

missing value, a default value is returned. 

 

Attributes 

---------- 

func : function 

Function used for the conversion. 

default : any 

Default value to return when the input corresponds to a missing 

value. 

type : type 

Type of the output. 

_status : int 

Integer representing the order of the conversion. 

_mapper : sequence of tuples 

Sequence of tuples (dtype, function, default value) to evaluate in 

order. 

_locked : bool 

Holds `locked` parameter. 

 

Parameters 

---------- 

dtype_or_func : {None, dtype, function}, optional 

If a `dtype`, specifies the input data type, used to define a basic 

function and a default value for missing data. For example, when 

`dtype` is float, the `func` attribute is set to `float` and the 

default value to `np.nan`. If a function, this function is used to 

convert a string to another object. In this case, it is recommended 

to give an associated default value as input. 

default : any, optional 

Value to return by default, that is, when the string to be 

converted is flagged as missing. If not given, `StringConverter` 

tries to supply a reasonable default value. 

missing_values : {None, sequence of str}, optional 

``None`` or sequence of strings indicating a missing value. If ``None`` 

then missing values are indicated by empty entries. The default is 

``None``. 

locked : bool, optional 

Whether the StringConverter should be locked to prevent automatic 

upgrade or not. Default is False. 

 

""" 

# 

_mapper = [(nx.bool_, str2bool, False), 

(nx.integer, int, -1)] 

 

# On 32-bit systems, we need to make sure that we explicitly include 

# nx.int64 since ns.integer is nx.int32. 

if nx.dtype(nx.integer).itemsize < nx.dtype(nx.int64).itemsize: 

_mapper.append((nx.int64, int, -1)) 

 

_mapper.extend([(nx.floating, float, nx.nan), 

(nx.complexfloating, complex, nx.nan + 0j), 

(nx.longdouble, nx.longdouble, nx.nan), 

(nx.unicode_, asunicode, '???'), 

(nx.string_, asbytes, '???')]) 

 

(_defaulttype, _defaultfunc, _defaultfill) = zip(*_mapper) 

 

@classmethod 

def _getdtype(cls, val): 

"""Returns the dtype of the input variable.""" 

return np.array(val).dtype 

# 

 

@classmethod 

def _getsubdtype(cls, val): 

"""Returns the type of the dtype of the input variable.""" 

return np.array(val).dtype.type 

# 

# This is a bit annoying. We want to return the "general" type in most 

# cases (ie. "string" rather than "S10"), but we want to return the 

# specific type for datetime64 (ie. "datetime64[us]" rather than 

# "datetime64"). 

 

@classmethod 

def _dtypeortype(cls, dtype): 

"""Returns dtype for datetime64 and type of dtype otherwise.""" 

if dtype.type == np.datetime64: 

return dtype 

return dtype.type 

# 

 

@classmethod 

def upgrade_mapper(cls, func, default=None): 

""" 

Upgrade the mapper of a StringConverter by adding a new function and 

its corresponding default. 

 

The input function (or sequence of functions) and its associated 

default value (if any) is inserted in penultimate position of the 

mapper. The corresponding type is estimated from the dtype of the 

default value. 

 

Parameters 

---------- 

func : var 

Function, or sequence of functions 

 

Examples 

-------- 

>>> import dateutil.parser 

>>> import datetime 

>>> dateparser = datetustil.parser.parse 

>>> defaultdate = datetime.date(2000, 1, 1) 

>>> StringConverter.upgrade_mapper(dateparser, default=defaultdate) 

""" 

# Func is a single functions 

if hasattr(func, '__call__'): 

cls._mapper.insert(-1, (cls._getsubdtype(default), func, default)) 

return 

elif hasattr(func, '__iter__'): 

if isinstance(func[0], (tuple, list)): 

for _ in func: 

cls._mapper.insert(-1, _) 

return 

if default is None: 

default = [None] * len(func) 

else: 

default = list(default) 

default.append([None] * (len(func) - len(default))) 

for (fct, dft) in zip(func, default): 

cls._mapper.insert(-1, (cls._getsubdtype(dft), fct, dft)) 

# 

 

def __init__(self, dtype_or_func=None, default=None, missing_values=None, 

locked=False): 

# Defines a lock for upgrade 

self._locked = bool(locked) 

# No input dtype: minimal initialization 

if dtype_or_func is None: 

self.func = str2bool 

self._status = 0 

self.default = default or False 

dtype = np.dtype('bool') 

else: 

# Is the input a np.dtype ? 

try: 

self.func = None 

dtype = np.dtype(dtype_or_func) 

except TypeError: 

# dtype_or_func must be a function, then 

if not hasattr(dtype_or_func, '__call__'): 

errmsg = ("The input argument `dtype` is neither a" 

" function nor a dtype (got '%s' instead)") 

raise TypeError(errmsg % type(dtype_or_func)) 

# Set the function 

self.func = dtype_or_func 

# If we don't have a default, try to guess it or set it to 

# None 

if default is None: 

try: 

default = self.func('0') 

except ValueError: 

default = None 

dtype = self._getdtype(default) 

# Set the status according to the dtype 

_status = -1 

for (i, (deftype, func, default_def)) in enumerate(self._mapper): 

if np.issubdtype(dtype.type, deftype): 

_status = i 

if default is None: 

self.default = default_def 

else: 

self.default = default 

break 

# if a converter for the specific dtype is available use that 

last_func = func 

for (i, (deftype, func, default_def)) in enumerate(self._mapper): 

if dtype.type == deftype: 

_status = i 

last_func = func 

if default is None: 

self.default = default_def 

else: 

self.default = default 

break 

func = last_func 

if _status == -1: 

# We never found a match in the _mapper... 

_status = 0 

self.default = default 

self._status = _status 

# If the input was a dtype, set the function to the last we saw 

if self.func is None: 

self.func = func 

# If the status is 1 (int), change the function to 

# something more robust. 

if self.func == self._mapper[1][1]: 

if issubclass(dtype.type, np.uint64): 

self.func = np.uint64 

elif issubclass(dtype.type, np.int64): 

self.func = np.int64 

else: 

self.func = lambda x: int(float(x)) 

# Store the list of strings corresponding to missing values. 

if missing_values is None: 

self.missing_values = {''} 

else: 

if isinstance(missing_values, basestring): 

missing_values = missing_values.split(",") 

self.missing_values = set(list(missing_values) + ['']) 

# 

self._callingfunction = self._strict_call 

self.type = self._dtypeortype(dtype) 

self._checked = False 

self._initial_default = default 

# 

 

def _loose_call(self, value): 

try: 

return self.func(value) 

except ValueError: 

return self.default 

# 

 

def _strict_call(self, value): 

try: 

 

# We check if we can convert the value using the current function 

new_value = self.func(value) 

 

# In addition to having to check whether func can convert the 

# value, we also have to make sure that we don't get overflow 

# errors for integers. 

if self.func is int: 

try: 

np.array(value, dtype=self.type) 

except OverflowError: 

raise ValueError 

 

# We're still here so we can now return the new value 

return new_value 

 

except ValueError: 

if value.strip() in self.missing_values: 

if not self._status: 

self._checked = False 

return self.default 

raise ValueError("Cannot convert string '%s'" % value) 

# 

 

def __call__(self, value): 

return self._callingfunction(value) 

# 

 

def upgrade(self, value): 

""" 

Find the best converter for a given string, and return the result. 

 

The supplied string `value` is converted by testing different 

converters in order. First the `func` method of the 

`StringConverter` instance is tried, if this fails other available 

converters are tried. The order in which these other converters 

are tried is determined by the `_status` attribute of the instance. 

 

Parameters 

---------- 

value : str 

The string to convert. 

 

Returns 

------- 

out : any 

The result of converting `value` with the appropriate converter. 

 

""" 

self._checked = True 

try: 

return self._strict_call(value) 

except ValueError: 

# Raise an exception if we locked the converter... 

if self._locked: 

errmsg = "Converter is locked and cannot be upgraded" 

raise ConverterLockError(errmsg) 

_statusmax = len(self._mapper) 

# Complains if we try to upgrade by the maximum 

_status = self._status 

if _status == _statusmax: 

errmsg = "Could not find a valid conversion function" 

raise ConverterError(errmsg) 

elif _status < _statusmax - 1: 

_status += 1 

(self.type, self.func, default) = self._mapper[_status] 

self._status = _status 

if self._initial_default is not None: 

self.default = self._initial_default 

else: 

self.default = default 

return self.upgrade(value) 

 

def iterupgrade(self, value): 

self._checked = True 

if not hasattr(value, '__iter__'): 

value = (value,) 

_strict_call = self._strict_call 

try: 

for _m in value: 

_strict_call(_m) 

except ValueError: 

# Raise an exception if we locked the converter... 

if self._locked: 

errmsg = "Converter is locked and cannot be upgraded" 

raise ConverterLockError(errmsg) 

_statusmax = len(self._mapper) 

# Complains if we try to upgrade by the maximum 

_status = self._status 

if _status == _statusmax: 

raise ConverterError( 

"Could not find a valid conversion function" 

) 

elif _status < _statusmax - 1: 

_status += 1 

(self.type, self.func, default) = self._mapper[_status] 

if self._initial_default is not None: 

self.default = self._initial_default 

else: 

self.default = default 

self._status = _status 

self.iterupgrade(value) 

 

def update(self, func, default=None, testing_value=None, 

missing_values='', locked=False): 

""" 

Set StringConverter attributes directly. 

 

Parameters 

---------- 

func : function 

Conversion function. 

default : any, optional 

Value to return by default, that is, when the string to be 

converted is flagged as missing. If not given, 

`StringConverter` tries to supply a reasonable default value. 

testing_value : str, optional 

A string representing a standard input value of the converter. 

This string is used to help defining a reasonable default 

value. 

missing_values : {sequence of str, None}, optional 

Sequence of strings indicating a missing value. If ``None``, then 

the existing `missing_values` are cleared. The default is `''`. 

locked : bool, optional 

Whether the StringConverter should be locked to prevent 

automatic upgrade or not. Default is False. 

 

Notes 

----- 

`update` takes the same parameters as the constructor of 

`StringConverter`, except that `func` does not accept a `dtype` 

whereas `dtype_or_func` in the constructor does. 

 

""" 

self.func = func 

self._locked = locked 

 

# Don't reset the default to None if we can avoid it 

if default is not None: 

self.default = default 

self.type = self._dtypeortype(self._getdtype(default)) 

else: 

try: 

tester = func(testing_value or '1') 

except (TypeError, ValueError): 

tester = None 

self.type = self._dtypeortype(self._getdtype(tester)) 

 

# Add the missing values to the existing set or clear it. 

if missing_values is None: 

# Clear all missing values even though the ctor initializes it to 

# set(['']) when the argument is None. 

self.missing_values = set() 

else: 

if not np.iterable(missing_values): 

missing_values = [missing_values] 

if not all(isinstance(v, basestring) for v in missing_values): 

raise TypeError("missing_values must be strings or unicode") 

self.missing_values.update(missing_values) 

 

 

def easy_dtype(ndtype, names=None, defaultfmt="f%i", **validationargs): 

""" 

Convenience function to create a `np.dtype` object. 

 

The function processes the input `dtype` and matches it with the given 

names. 

 

Parameters 

---------- 

ndtype : var 

Definition of the dtype. Can be any string or dictionary recognized 

by the `np.dtype` function, or a sequence of types. 

names : str or sequence, optional 

Sequence of strings to use as field names for a structured dtype. 

For convenience, `names` can be a string of a comma-separated list 

of names. 

defaultfmt : str, optional 

Format string used to define missing names, such as ``"f%i"`` 

(default) or ``"fields_%02i"``. 

validationargs : optional 

A series of optional arguments used to initialize a 

`NameValidator`. 

 

Examples 

-------- 

>>> np.lib._iotools.easy_dtype(float) 

dtype('float64') 

>>> np.lib._iotools.easy_dtype("i4, f8") 

dtype([('f0', '<i4'), ('f1', '<f8')]) 

>>> np.lib._iotools.easy_dtype("i4, f8", defaultfmt="field_%03i") 

dtype([('field_000', '<i4'), ('field_001', '<f8')]) 

 

>>> np.lib._iotools.easy_dtype((int, float, float), names="a,b,c") 

dtype([('a', '<i8'), ('b', '<f8'), ('c', '<f8')]) 

>>> np.lib._iotools.easy_dtype(float, names="a,b,c") 

dtype([('a', '<f8'), ('b', '<f8'), ('c', '<f8')]) 

 

""" 

try: 

ndtype = np.dtype(ndtype) 

except TypeError: 

validate = NameValidator(**validationargs) 

nbfields = len(ndtype) 

if names is None: 

names = [''] * len(ndtype) 

elif isinstance(names, basestring): 

names = names.split(",") 

names = validate(names, nbfields=nbfields, defaultfmt=defaultfmt) 

ndtype = np.dtype(dict(formats=ndtype, names=names)) 

else: 

nbtypes = len(ndtype) 

# Explicit names 

if names is not None: 

validate = NameValidator(**validationargs) 

if isinstance(names, basestring): 

names = names.split(",") 

# Simple dtype: repeat to match the nb of names 

if nbtypes == 0: 

formats = tuple([ndtype.type] * len(names)) 

names = validate(names, defaultfmt=defaultfmt) 

ndtype = np.dtype(list(zip(names, formats))) 

# Structured dtype: just validate the names as needed 

else: 

ndtype.names = validate(names, nbfields=nbtypes, 

defaultfmt=defaultfmt) 

# No implicit names 

elif (nbtypes > 0): 

validate = NameValidator(**validationargs) 

# Default initial names : should we change the format ? 

if ((ndtype.names == tuple("f%i" % i for i in range(nbtypes))) and 

(defaultfmt != "f%i")): 

ndtype.names = validate([''] * nbtypes, defaultfmt=defaultfmt) 

# Explicit initial names : just validate 

else: 

ndtype.names = validate(ndtype.names, defaultfmt=defaultfmt) 

return ndtype